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Chapter  1 Rates of Change

1.1 Change in discrete steps
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Toward the end of the eighteenth century, a German elementary school teacher
decided to keep his pupils busy by assigning them a long, boring arithmetic problem:
to add up all the numbers from one to a hundred. 1 The children set to work on their
slates, and the teacher lit his pipe, confident of a long break. But almost immediately,
a boy named Carl Friedrich Gauss brought up his answer: 5,050.

Fig. 1.1: Adding the numbers from 1 to 7.

Figure 1.1 suggests one way of solving this type of problem. The filled-in columns of
the graph represent the numbers from 1 to 7, and adding them up means finding the
area of the shaded region.

Roughly half the square is shaded in, so if we want only an approximate solution, we
can simply calculate .

Fig. 1.2: A trick for finding the sum

But, as suggested in Figure 1.2, it's not much more work to get an exact result. There
are seven sawteeth sticking out out above the diagonal, with a total area of , so
the total shaded area is . In general, the sum of the first numbers
will be , which explains Gauss's result:

1. I'm giving my own retelling of a hoary legend. We don't really know the exact problem, just that it was supposed to have
been something of this flavor.

1
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1.1.1 Two sides of the same coin
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problems like this come up frequently. Imagine that each household in a certain small
town sends a total of one ton of garbage to the dump every year. Over time, the
garbage accumulates in the dump, taking up more and more space.

Fig. 1.3: Carl Friedrich Gauss (1777-1855) a long time after graduating from elementary school

Let's label the years as and let the function 2 represent the
amount of garbage that has accumulated by the end of year . If the population is
constant, say 13 households, then garbage accumulates at a constant rate, and we
have .

But maybe the town's population is growing. If the population starts out as 1
household in year 1, and then grows to 2 in year 2, and soon, then we have the same
kind of problem that the young Gauss solved. After 100 years, the accumulated
amount of garbage will be 5,050 tons. The pile of refuse grows more quickly every
year; the rate of change of is not constant. Tabulating the examples we've done so
far, we have this:

rate of change Accumulated result

13

The rate of change of the function can be notated as . Given the function , we
can always determine the function for any value of by doing a running sum.

Likewise, if we know , we can determine by subtraction. In the example where
, we can find . Or if we

knew that the accumulated amount of garbage was given by , we could
calculate the town's population like this:

2. Recall that when x is a function, the notation x(n) means the output of the function when the input is n. It doesn't
represent multiplication of a number x by a number n.

Chapter 1 2
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Fig. 1.4:

is the slope of x.

The graphical interpretation of this is shown in Figure 1.4: on a graph of
, the slope of the line connecting two successive points is the value

of the function .

In other words, the functions and are like different sides of the same coin. If you
know one, you can find the other | with two caveats.

First, we've been assuming implicitly that the function starts out at . That
might not be true in general. For instance, if we're adding water to a reservoir over a
certain period of time, the reservoir probably didn't start out completely empty. Thus,
if we know , we can't find out everything about without some further information:
the starting value of . If someone tells you , you can't conclude , but
only , where is some constant. There's no such ambiguity if you're
going the opposite way, from to . Even if , we still have

.

Second, it may be difficult, or even impossible, to find a formula for the answer when
we want to determine the running sum given a formula for the rate of change .
Gauss had a flash of insight that led him to the result , but in general we
might only be able to use a computer spreadsheet to calculate a number for the
running sum, rather than an equation that would be valid for all values of .

1.1.2 Some guesses
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Even though we lack Gauss's genius, we can recognize certain patterns. One pattern is
that if is a function that gets bigger and bigger, it seems like will be a function that
grows even faster than . In the example of and , consider
what happens for a large value of n, like 100. At this value of , , which is

3
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pretty big, but even without pawing around for a calculator, we know that is going to
turn out really really big. Since is large, is quite a bit bigger than , so roughly
speaking, we can approximate . 100 may be a big number, but
5,000 is a lot bigger. Continuing in this way, for we have , but

--- now has far outstripped . This can be a fun game to play with a
calculator: look at which functions grow the fastest. For instance, your calculator might
have an button, an button, and a button for (the factorial function, defined as

). You'll find that is pretty big, but
is incomparably greater, and Is so big that it causes an error.

All the and functions we've seen so far have been polynomials. If is a
polynomial, then of course we can find a polynomial for as well, because if is a
polynomial, then will be one too. It also looks like every polynomial
we could choose for might also correspond to an that's a polynomial. And not only
that, but it looks as though there's a pattern in the power of . Suppose is a
polynomial, and the highest power of it contains is a certain number - the “order” of
the polynomial. Then is a polynomial of that order minus one. Again, it's fairly easy
to prove this going one way, passing from to , but more difficult to prove the
opposite relationship: that if is a polynomial of a certain order, then must be a
polynomial with an order that's greater by one.

We'd imagine, then, that the running sum of would be a polynomial of order
3. If we calculate on a computer spreadsheet, we
get 338,350, which looks suspiciously close to 1,000,000/3. It looks like ,
where the dots represent terms involving lower powers of such as . The fact that
the coefficient of the term is 1/3 is proved in Problem 1.21 (Page 24).

Chapter 1 4



Example

Fig. 1.5: A pyramid with a volume of

Figure 1.5 shows a pyramid consisting of a single cubical block on top,
supported by a layer, supported in turn by a layer. The
total volume is , in units of the volume of a single block.

Generalizing to the sum ,and applying the
result of the preceding paragraph, we find that the volume of such a
pyramid is approximately , where is the area of the
base and is the height.

When is very large, we can get as good an approximation as we like
to a smooth-sided pyramid, and the error incurred in

by omitting the lower-order terms ... can be
made as small as desired.

We therefore conclude that the volume is exactly for a
smooth sided pyramid with these proportions.

This is a special case of a theorem first proved by Euclid (propositions
XII-6 and XII-7) two thousand years before calculus was invented.

5



1.2 Continuous change
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 1.6: Isaac Newton (1643- 1727)

Did you notice that I sneaked something past you in the example of water filling up a
reservoir? The and functions I've been using as examples have all been functions
defined on the integers, so they represent change that happens in discrete steps, but
the flow of water into a reservoir is smooth and continuous. Or is it? Water is made
out of molecules, after all. It's just that water molecules are so small that we don't
notice them as individuals. Figure 1.7 shows a graph that is discrete, but almost
appears continuous because the scale has been chosen so that the points blend
together visually.

Fig. 1.7: On this scale, the graph of

appears almost continuous.

Chapter 1 6
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The physicist Isaac Newton started thinking along these lines in the 1660's, and
figured out ways of analyzing and functions that were truly continuous. The
notation is due to him (and he only used it for continuous functions). Because he
was dealing with the continuous flow of change, he called his new set of mathematical
techniques the method of fluxions, but nowadays it's known as the calculus.

Fig. 1.8: The function

,and its tangent line at the point (1, 1=2).

Newton was a physicist, and he needed to invent the calculus as part of his study of
how objects move. If an object is moving in one dimension, we can specify its position
with a variable , and will then be a function of time, . The rate of change of its
position, , is its speed, or velocity. Earlier experiments by Galileo had established
that when a ball rolled down a slope, its position was proportional to , so Newton
inferred that a graph like Figure 1.8 would be typical for any object moving under the
influence of a constant force. (It could be , or , or anything else proportional
to , depending on the force acting on the object and the object's mass.)

Because the functions are continuous, not discrete, we can no longer define the
relationship between and by saying is a running sum of 's, or that x_ is the
difference between two successive 's. But we already found a geometrical
relationship between the two functions in the discrete case, and that can serve as our
definition for the continuous case: is the area under the graph of , or, if you like,
is the slope of the graph of . For now we'll concentrate on the slope idea.

7



Fig. 1.9: This line isn’t a tangent line: it crosses the graph.

This definition is still a little vague, because we haven't defined what we mean by the
"slope" of a curving graph. For a discrete graph like Figure 1.4, we could define it as
the slope of the line drawn between neighboring points. Visually, it's clear that the
continuous version of this is something like the line drawn in Figure 1.8. This is
referred to as the tangent line.

We still need to convert this intuitive idea of a tangent line into a formal definition. In a
typical example like figure h, the tangent line can be defined as the line that touches
the graph at a certain point, but, unlike the line in Figure 1.9, doesn't cut across the
graph at that point. 3 By measuring with a ruler on Figure 1.8, we find that the slope is
very close to 1, so evidently . To prove this, we construct the function
representing the line: . We want to prove that this line doesn't cross
the graph of . The difference between the two functions, , is the
polynomial , and this polynomial will be zero for any value of where
the line touches or crosses the curve. We can use the quadratic formula to _nd these
points, and the result is that there is only one of them, which is . Since is
positive for at least some points to the left and right of , and it only equals zero
at , it must never be negative, which means that the line always lies below the
curve, never crossing it.

3. In the case where the original graph is itself a line, the tangent line simply co- incides with the graph, and this also sat-
ises the denition, because the tangent line doesn't cut across the graph; it lies on top of it. There is one other excep-
tional case, called a point of in ection, which we won't worry about right now. For a more complicated defiition that
correctly handles all the cases, see Detours (Page 169).
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1.2.1 A derivative
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

That proves that , but it was a lot of work, and we don't want to do that
much work to evaluate at every value of . There's a way to avoid all that, and find a
formula for . Compare Figure 1.8 and Figure 1.10. They're both graphs of the same
function, and they both look the same. What's different? The only difference is the
scales: in Figure 1.10, the axis has been shrunk by a factor of 2, and the axis by a
factor of 4. The graph looks the same, because doubling quadruples . The
tangent line here is the tangent line at , not , and although it looks like the
same line as the one in Figure 1.8, it isn't, because the scales are different. The line in
Figure 1.8 had a slope of rise/run = 1/1 = 1, but this one's slope is 4/2 = 2. That means

. In general, this scaling argument shows that for any .

Fig. 1.10: The function

again. How is this different from Figure 1.8?

This is called differentiating: finding a formula for the function , given a formula for
the function . The term comes from the idea that for a discrete function, the slope is
the difference between two successive values of the function.

The function is referred to as the derivative of the function , and the art of
differentiating is differential calculus. The opposite process, computing a formula for

when given , is called integrating, and makes up the field of integral calculus; this
terminology is based on the idea that computing a running sum is like putting
together (integrating) many little pieces.

Note the similarity between this result for continuous functions,
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and our earlier result for discrete ones,

The similarity is no coincidence. A continuous function is just a smoothed-out version
of a discrete one. For instance, the continuous version of the staircase function shown
in Figure 1.2 would simply be a triangle without the saw teeth sticking out; the area of
those ugly sawteeth is what's represented by the term in the discrete result

, which is the only thing that makes it different from the continuous
result .

1.2.2 Properties of the derivative
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

It follows immediately from the definition of the derivative that multiplying a function
by a constant multiplies its derivative by the same constant, so for example since we
know that the derivative of is , we can immediately tell that the derivative of is

, and the derivative of is .

Also, if we add two functions, their derivatives add. To give a good example of this, we
need to have another function that we can differentiate, one that isn't just some
multiple of . An easy one is : the derivative of is 1, since the graph of is a
line with a slope of 1, and the tangent line lies right on top of the original line.

Example
The derivative of is the derivative of plus the derivative
of , since derivatives add. The derivative of is 5 times the
derivative of , and the derivative of is 2 times the derivative of ,
so putting everything together, we find that the derivative of

is . The derivative of a constant
is zero, since a constant function's graph is a horizontal line, with a
slope of zero. We now know enough to differentiate any second order
polynomial.
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Example
An insect pest from the United States is inadvertently released in a
village in rural China. The pests spread outward at a rate of
kilometers per year, forming a widening circle of contagion. Find the
number of square kilometers per year that become newly infested.
Check that the units of the result make sense. Interpret the result.

Let be the time, in years, since the pest was introduced. The radius
of the circle is , and its area is . To make this
look like a polynomial, we have to rewrite it as . The
derivative is

The units of are km/year, so squaring it gives . The 2 and

the are unitless, and multiplying by gives units of ,
which is what we expect for , since it represents the number of
square kilometers per year that become infested.

Interpreting the result, we notice a couple of things. First, the rate of
infestation isn’t constant; it’s proportional to , so people might not
pay so much attention at first, but later on the effort required to
combat the problem will grow more and more quickly. Second, we
notice that the result is proportional to . This suggests that
anything that could be done to reduce would be very helpful. For
instance, a measure that cut in half would reduce by a factor of
four.

1.2.3 Higher-order polynomials
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

So far, we have the following results for polynomials up to order

function derivative

1 0

t 1

2t

Interpreting 1 as , we detect what seems to be a general rule, which is that the
derivative of is .
The proof is straightforward but not very illuminating if carried out with the methods
developed in this chapter, so I've relegated it to Derivatives of polynomials (Page 169).
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It can be proved much more easily using the methods of To infinity — and beyond!
(Page 25).

Example
If , find .

This is similar to Example (Page 10), the only difference being that we
can now handle higher powers of . The derivative of is , so we
have

Example
Calculate and . Does this seem consistent with a
conjecture that the rule for differentiating holds for k < 0?

We have and , the difference being
. This suggests that the graph of has a tangent

line at with a slope of about

If the rule for differentiating were to hold, then we would have
, and evaluating this at x = 3 would give -1/9, which is indeed

about -0.11. Yes, the rule does appear to hold for negative , although
this numerical check does not constitute a proof. A proof is given in
Example (Page 29).

1.2.4 The second derivative
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

I described how Galileo and Newton found that an object subject to an external force,
starting from rest, would have a velocity that was proportional to , and a position
that varied like . The proportionality constant for the velocity is called the
acceleration, , so that and . For example, a sports car accelerating
from a stop sign would have a large acceleration, and its velocity at a given time
would therefore be a large number. The acceleration can be thought of as the
derivative of the derivative of , written , with two dots. In our example, � . In
general, the acceleration doesn't need to be constant. For example, the sports car will
eventually have to stop accelerating, perhaps because the backward force of air friction

becomes as great as the force pushing it forward. The total force acting on the car would

then be zero, and the car would continue in motion at a constant speed.
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Example
Suppose the pilot of a blimp has just turned on the motor that runs
its propeller, and the propeller is spinning up. The resulting force on
the blimp is therefore increasing steadily, and let’s say that this
causes the blimp to have an acceleration , which increases
steadily with time. We want to find the blimp’s velocity and position
as functions of time.

For the velocity, we need a polynomial whose derivative is . We
know that the derivative of is , so we need to use a function

that’s bigger by a factor of . In fact, we could add

any constant to this, and make it , for example,
where the 14 would represent the blimp’s initial velocity. But since
the blimp has been sitting dead in the air until the motor started
working, we can assume the initial velocity was zero. Remember, any
time you’re working backwards like this to find a function whose
derivative is some other function (integrating, in other words), there
is the possibility of adding on a constant like this.

Finally, for the position, we need something whose derivative is

. The derivative of would be , so we need something half

as big as this: .

Fig. 1.11: The functions

, and .

The second derivative can be interpreted as a measure of the curvature of the graph,
as shown in Figure 1.11. The graph of the function is a line, with no curvature.
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Its first derivative is 2, and its second derivative is zero. The function has a second
derivative of 2, and the more tightly curved function has a bigger second
derivative,14.

Fig. 1.12: The functions

and

Positive and negative signs of the second derivative indicate concavity. In Figure 1.12,
the function is like a cup with its mouth pointing up. We say that it's "concave up,"
and this corresponds to its positive second derivative. The function , with a
second derivative less than zero, is concave down. Another way of saying it is that if
you're driving along a road shaped like , going in the direction of increasing , then
your steering wheel is turned to the left, whereas on a road shaped like it's
turned to the right.
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Fig. 1.13: The functions

has an inflection point at

Figure 1.13 shows a third possibility. The function has a derivative , which equals
zero at . This called a point of inflection. The concavity of the graph is down on
the left, up on the right. The inflection point is where it switches from one concavity to
the other. In the alternative description in terms of the steering wheel, the inflection
point is where your steering wheel is crossing from left to right.

1.3 Applications Maxima and minima
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

When a function goes up and then smoothly turns around and comes back down
again, it has zero slope at the top. A place where , then, could represent a place
where was at a maximum. On the other hand, it could be concave up, in which case
we'd have a minimum. The term extremum refers to either a maximum or a
minimum.
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Example
Fred receives a mysterious e-mail tip telling him that his investment
in a certain stock will have a value given by

, where is the year. Should
he sell at some point? If so, when?

If the value reaches a maximum at some time, then the derivative
should be zero then. Taking the derivative and setting it equal to
zero, we have

Obviously the solution at is bogus, since the stock
market didn’t exist four thousand years ago, and the tip only claimed
the function would be valid for .

Should Fred sell on New Year’s eve of 2006?

But this could be a maximum, a minimum, or an inflection point.
Fred definitely does not want to sell at if it’s a minimum!
To check which of the three possibilities hold, Fred takes the second
derivative:

Plugging in , we find that the second derivative is
negative at that time, so it is indeed a maximum.

Implicit in this whole discussion was the assumption that the maximum or minimum
occurred where the function was smooth. There are some other possibilities.

In Figure 1.14, the function's minimum occurs at an end-point of its domain.
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Fig. 1.14: The function

has a minimum at , which is not a place where . This point is the edge of

the function’s domain.

Fig. 1.15: The function

has a minimum at , which is not a place where . This is a point

where the function isn’t differentiable.

Another possibility is that the function can have a minimum or maximum at some
point where its derivative isn't well defined. Figure 1.15 shows such a situation. There
is a kink in the function at , so a wide variety of lines could be placed through

17



the graph there, all with different slopes and all staying on one side of the graph.
There is no uniquely defined tangent line, so the derivative is undefined.

Example
Rancher Rick has a length of cyclone fence with which to enclose a

rectangular pasture. Show that he can enclose the greatest possible area by

forming a square with sides of length .

If the width and length of the rectangle are and , and Rick is going to use

up all his fencing material, then the perimeter of the rectangle, ,

equals , so for a given width, , the length is . The area is

. The function only means anything realistic for

, since for values of outside this region either the width or the

height of the rectangle would be negative. The function could therefore

have a maximum either at a place where , or at the endpoints of the

function’s domain. We can eliminate the latter possibility, because the areais

zero at the endpoints.

To evaluate the derivative, we first need to reexpress a as a polynomial

The derivative is

Setting this equal to zero, we find , as claimed. This is a maximum, not

a minimum or an inflection point, because the second derivative is the constant

, which is negative for all , including .

1.3.1 Propagation of errors
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The Women's National Basketball Association says that balls used in its games should
have a radius of 11.6 cm, with an allowable range of error of plus or minus 0.1 cm (one
millimeter). How accurately can we determine the ball's volume?
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Fig. 1.16: How accurately can we determine the ball’s volume?

The equation for the volume of a sphere gives (about
six and a half liters). We have a function , and we want to know how much of an
effect will be produced on the function's output if its input is changed by a certain
small amount. Since the amount by which can be changed is small compared to ,
it's reasonable to take the tangent line as an approximation to the actual graph. The
slope of the tangent line is the derivative of , which is . (This is the ball's
surface area.) Setting (slope) = (rise)/(run) and solving for the rise, which represents
the change in , we find that it could be off by as much as

. The volume of the ball can therefore be expressed as
, where the original figure of 6538 has been rounded off to the

nearest hundred in order to avoid creating the impression that the 3 and the 8
actually mean anything | they clearly don't, since the possible error is out in the
hundreds' place.

This calculation is an example of a very common situation that occurs in the sciences,
and even in everyday life, in which we base a calculation on a number that has some
range of uncertainty in it, causing a corresponding range of uncertainty in the _nal
result. This is called propagation of errors. The idea is that the derivative expresses
how sensitive the function's output is to its input.

The example of the basketball could also have been handled without calculus, simply
by recalculating the volume using a radius that was raised from 11.6 to 11.7 cm, and
finding the difference between the two volumes. Understanding it in terms of calculus,
however, gives us a different way of getting at the same ideas, and often allows us to
understand more deeply what's going on. For example, we noticed in passing that the
derivative of the volume was simply the surface area of the ball, which provides a nice
geometric visualization. We can imagine inflating the ball so that its radius is increased
by a millimeter. The amount of added volume equals the surface area of the ball
multiplied by one millimeter, just as the amount of volume added to the world's
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oceans by global warming equals the oceans' surface area multiplied by the added
depth.

For an example of an insight that we would have missed if we hadn't applied calculus,
consider how much error is incurred in the measurement of the width of a book if the
ruler is placed on the book at a slightly incorrect angle, so that it doesn't form an angle
of exactly 90 degrees with spine. The measurement has its minimum (and correct)
value if the ruler is placed at exactly 90 degrees. Since the function has a minimum at
this angle, its derivative is zero. That means that we expect essentially no error in the
measurement if the ruler's angle is just a tiny bit o_. This gives us the insight that it's
not worth fiddling excessively over the angle in this measurement. Other sources of
error will be more important. For example, is the book a uniform rectangle? Are we
using the worn end of the ruler as its zero, rather than letting the ruler hang over both
sides of the book and subtracting the two measurements?

1.4 Problems

1.4.1 Problem 1.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Graph the function in the neighborhood of , draw a tangent line, and use its
slope to verify that the derivative equals at this point

Solutions for chapter 1 (Page 189)

1.4.2 Problem 1.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Graph the function in the neighborhood of , draw a tangent line, and use
its slope to estimate the derivative. Answer: 0.5403023058. (You will of course not get
an answer this precise using this technique.) .

Solutions for chapter 1 (Page 189)

1.4.3 Problem 1.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate the following functions with respect to .

Solutions for chapter 1 (Page 189)

1.4.4 Problem 1.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .
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Solutions for chapter 1 (Page 189)

1.4.5 Problem 1.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .

Solutions for chapter 1 (Page 189)

1.4.6 Problem 1.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find two different functions whose derivatives are the constant 3, and give a
geometrical interpretation.

Solutions for chapter 1 (Page 189)

1.4.7 Problem 1.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find a function whose derivative is . In other words, integrate the given
function.

Solutions for chapter 1 (Page 189)

1.4.8 Problem 1.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find a function whose derivative is . In other words, integrate the given
function.

Solutions for chapter 1 (Page 189)

1.4.9 Problem 1.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find a function whose derivative is . In other words, integrate
the given function.

Solutions for chapter 1 (Page 189)
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1.4.10 Problem 1.10
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Let be the time that has elapsed since the Big Bang. In that time, one would imagine
that light, traveling at speed , has been able to travel a maximum distance . (In fact
the distance is several times more than this, because according to Einstein's theory of
general relativity, space itself has been expanding while the ray of light was in transit.)
The portion of the universe that we can observe would then be a sphere of radius ,
with volume . Compute the rate at which the
volume of the observable universe is increasing, and check that your answer has the
right units, as in Example (Page 11).

Solutions for chapter 1 (Page 189)

1.4.11 Problem 1.11
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Kinetic energy is a measure of an object's quantity of motion; when you buy gasoline,
the energy you're paying for will be converted into the car's kinetic energy (actually
only some of it, since the engine isn't perfectly efficient). The kinetic energy of an
object with mass and velocity is given by . For a car accelerating
at a steady rate, with , find the rate at which the engine is required to put
out kinetic energy. , with units of energy over time, is known as the power. Check
that your answer has the right units, as in Example (Page 11).

Solutions for chapter 1 (Page 189)

1.4.12 Problem 1.12
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A metal square expands and contracts with temperature, the lengths of its sides
varying according to the equation . Find the rate of change of its
surface area with respect to temperature. That is, find , where the variable with
respect to which you're differentiating is the temperature, . Check that your answer
has the right units, as in Example (Page 11).

Solutions for chapter 1 (Page 189)

1.4.13 Problem 1.13
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find the second derivative of .

Solutions for chapter 1 (Page 189)
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1.4.14 Problem 1.14
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Locate any points of infection of the function . Verify by graphing that the
concavity of the function reverses itself at this point.

Solutions for chapter 1 (Page 189)

1.4.15 Problem 1.15
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Let's see if the rule that the derivative of is also works for . Use a graph
to test one particular case, choosing one particular negative value of , and one
particular value of . If it works, what does that tell you about the rule? If it doesn't
work?.

Solutions for chapter 1 (Page 189)

1.4.16 Problem 1.16
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Two atoms will interact via electrical forces between their protons and electrons. To
put them at a distance from one another (measured from nucleus to nucleus), a
certain amount of energy is required, and the minimum energy occurs when the
atoms are in equilibrium, forming a molecule. Often a fairly good approximation to
the energy is the Lennard-Jones expression

where and are constants. Note that, as proved in To infinity — and beyond! (Page
25), the rule that the derivative of is also works for . Show that there is
an equilibrium at . Verify (either by graphing or by testing the second derivative)
that this is a minimum, not a maximum or a point of inflection.

Solutions for chapter 1 (Page 189)

1.4.17 Problem 1.17
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove that the total number of maxima and minima possessed by a third-order
polynomial is at most two.

Solutions for chapter 1 (Page 189)
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1.4.18 Problem 1.18
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Functions and are defined on the whole real line, and are differentiable
everywhere. Let be their sum. In what ways, if any, are the extrema of , ,
and related?

Solutions for chapter 1 (Page 189)

1.4.19 Problem 1.19
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Euclid proved that the volume of a pyramid equals , where is the area of its
base, and its height. A pyramidal tent without tent-poles is erected by blowing air
into it under pressure. The area of the base is easy to measure accurately, because
the base is nailed down, but the height fluctuates somewhat and is hard to measure
accurately. If the amount of uncertainty in the measured height is plus or minus ,
find the amount of possible error in the volume.

Solutions for chapter 1 (Page 189)

1.4.20 Problem 1.20
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A hobbyist is going to measure the height to which her model rocket rises at the peak
of its trajectory. She plans to take a digital photo from far away and then do
trigonometry to determine the height, given the baseline from the launchpad to the
camera and the angular height of the rocket as determined from analysis of the
photo. Comment on the error incurred by the inability to snap the photo at exactly the
right moment.

Solutions for chapter 1 (Page 189)

1.4.21 Problem 1.21
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove, as claimed on Some guesses (Page 3), that if the sum is a
polynomial, it must be of third order, and the coefficient of the term must be .

Solutions for chapter 1 (Page 189)
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Chapter  2 To infinity — and beyond!
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 2.1: Gottfried Leibniz (1646-1716)

Little kids readily pick up the idea of infinity. “When I grow up, I'm gonna have a million
Barbies."Oh yeah? Well, I'm gonna have a billion." “Well, I'm gonna have infinity
Barbies.”” So what? I'll have two infinity of them." Adults laugh, convinced that infinity,

, is the biggest number, so 2 can't be any bigger. This is the idea behind a joke in
the movie Toy Story. Buzz Lightyear's slogan is “To infinity - and beyond!" We assume
there isn't any beyond. Infinity is supposed to be the biggest there is, so by definition
there can't be anything bigger, right?

2.1 Infinitesimals
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Actually mathematicians have invented many different logical systems for working
with infinity, and in most of them infinity does come in different sizes and flavors.
Newton, as well as the German mathematician Leibniz who invented
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calculus independently, 1 had a strong intuitive idea that calculus was really about numbers

that were infinitely small: infinitesimals, the opposite of infinities. For instance, consider the

number . That 2 in the first decimal place is the same 2 that appears in the

expression for the derivative of .

(1.1, 1.21).

Fig. 2.2: A close-up view of the function

, showing the line that connects the points (1, 1) and

Figure 2.2shows the idea visually. The line connecting the points (1, 1) and (1.1, 1.21) is
almost indistinguishable from the tangent line on this scale. Its slope is (1.21 1)/(1.1 1)
= 2.1, which is very close to the tangent line's slope of 2. It was a good approximation
because the points were close together, separated by only 0.1 on the axis.

If we needed a better approximation, we could try calculating . The
slope of the line connecting the points (1, 1) and (1.01, 1.0201) is 2.01, which is even
closer to the slope of the tangent line.

Fig. 2.3: A geometrical interpretation of the derivative of

1. There is some dispute over this point. Newton and his supporters claimed that Leibniz plagiarized Newton's ideas, and merely
invented a new notation for them.
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Another method of visualizing the idea is that we can interpret as the area of a
square with sides of length , as suggested in Figure 2.3. We increase by an
infinitesimally small number . The is Leibniz's notation for a very small difference,
and is to be read as a single symbol, "dee-tee," not as a number multiplied by a

number . The idea is that is smaller than any ordinary number you could imagine, but

it's not zero. The area of the square is increased by , which is

analogous to the finite numbers 0.21 and 0.0201 we calculated earlier. Where before we

divided by a finite change in such as 0.1 or 0.01, now we divide by , producing

for the derivative. On a graph like Figure 2.2, is the slope of the tangent line: the

change in divided by the changed in .

But adding an infinitesimal number onto doesn't really change it by any amount
that's even theoretically measurable in the real world, so the answer is really .
Evaluating it at gives the exact result, 2, that the earlier approximate results, 2.1
and 2.01, were getting closer and closer to.

Example
To show the power of infinitesimals and the Leibniz notation, let’s
prove that the derivative of is :

where the dots indicate infinitesimal terms that we can neglect.

This result required significant sweat and ingenuity when proved on Derivatives of
polynomials (Page 169) by the methods of Rates of Change (Page 1), and not only that
but the old method would have required a completely different method of proof for a
function that wasn't a polynomial, whereas the new one can be applied more
generally, as we'll see presently in Example (Page 29);Example (Page 29);Example
(Page 30) and Example (Page 31).

It's easy to get the mistaken impression that infinitesimals exist in some remote
fairyland where we can never touch them. This may be true in the same artsy-fartsy
sense that we can never truly understand , because its decimal expansion goes on
forever, and we therefore can never compute it exactly. But in practical work, that
doesn't stop us from working with . We just approximate it as, e.g., 1.41.
Infinitesimals are no more or less mysterious than irrational numbers, and in
particular we can represent them concretely on a computer. If you go to

, you'll find a web-based calculator called Inf,
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which can handle infinite and infinitesimal numbers. It has a built-in symbol, d, which
represents an infinitesimally small number such as the dx's and dt's we've been
handling symbolically.

Let's use Inf to verify that the derivative of , evaluated at , is equal to 3, as
found by plugging in to the result of Example (Page 27). The : symbol is the prompt
that shows you Inf is ready to accept your typed input.

: ((1+d)^3-1)/d

3+3d+d^2

As claimed, the result is 3, or close enough to 3 that the infinitesimal error doesn't
matter in real life. It might look like Inf did this example by using algebra to simplify
the expression, but in fact Inf doesn't know anything about algebra. One way to see
this is to use Inf to compare d with various real numbers:

: d<1

true

: d<0.01

true

: d<0.0000001

true

: d<0

false

If d were just a variable being treated according to the axioms of algebra, there would
be no way to tell how it compared with other numbers without having some special
information. Inf doesn't know algebra, but it does know that d is a positive number
that is less than any positive real number that can be represented using decimals or
scientific notation.
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Example
In Example (Page 12), we made a rough numerical check to see if the
differentiation rule , which was proved on Derivatives of
polynomials (Page 169) for , was also valid for ,
i.e., for the function . Let’s look for an actual proof. To find a
natural method of attack, let’s first redo the numerical check in a
slightly more suggestive form. Again approximating the derivating at

, we have

Let’s apply the grade-school technique for subtracting fractions, in
which we first get them over the same denominator:

The result is

Replacing 3 with and 0.01 with , this becomes

Example
The derivative of , with in units of radians, is

and with the trig identity ,

this becomes

Applying the small-angle approximations and we

have

where “. . . ” represents the error caused by the small-angle approximations.
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This is essentially all there is to the computation of the derivative, except for

the remaining technical point that we haven’t proved that the small-angle

approximations are good enough. In Example (Page 27), when we calculated

the derivative of , the resulting expression for the quotient dx= dt came out in

a form in which we could inspect the “. . . ” terms and verify before discarding

them that they were infinitesimal. The issue is less trivial in the present

example. This point is addressed more rigorously on Details of the proof of the

derivative of the sine function (Page 170)

Fig. 2.4: Graphs of

, and its derivative .

Figure 2.4 shows the graphs of the function and its derivative. Note how the

two graphs correspond. At , the slope of sin t is at its largest, and is

positive; this is where the derivative, cos t, attains its maximum positive value

of 1. At , has reached a maximum, and has a slope of zero;

is zero here. At , in the middle of the graph, sin t has its

maximum negative slope, and cos t is at its most negative extreme of -1.

Physically, could represent the position of a pendulum as it moved back

and forth from left to right, and cos t would then be the pendulum’s velocity.

Example
What about the derivative of the cosine? The cosine and the sine are
really the same function, shifted to the left or right by . If the
derivative of the sine is the same as itself, but shifted to the left by

, then the derivative of the cosine must be a cosine shifted to the
left by :
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The next example will require a little trickery. By the end of this chapter you'll

learn general techniques for cranking out any derivative cookbook-style,

without having to come up with any tricks.

Example

Fig. 2.5: The function

Find the derivative of , evaluated at .

The graph shows what the function looks like. It blows up to infinity at ,

but it’s well behaved at , where it has a positive slope.

For insight, let’s calculate some points on the curve. The point at which we’re

differentiating is (0, 1). If we put in a small, positive value of , we can observe

how much the result increases relative to 1, and this will give us an

approximation to the derivative. For example, we find that at = 0.001, the

function has the value 1.001001001001, and so the derivative is approximately

(1.0011)/(.001-0), or about 1. We can therefore conjecture that the derivative is

exactly 1, but that’s not the same as proving it.

But let’s take another look at that number 1.001001001001. It’s clearly a

repeating decimal. In other words, it appears that

and we can easily verify this by multiplying both sides of the equation by 1-1/

1000 and collecting like powers. This is a special case of the geometric series
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which can be derived 2 by doing synthetic division (the equivalent of
long division for polynomials), or simply verified, after forming the
conjecture based on the numerical example above, by multiplying
both sides by 1-t.

As we’ll see in Safe use of infinitesimals (Page 32), and have been implicitly

assuming so far, infinitesimals obey all the same elementary laws of algebra

as the real numbers, so the above derivation also holds for an infinitesimal

value of . We can verify the result using Inf:

: 1/(1-d)

1+d+d^2+d^3+d^4

Notice, however, that the series is truncated after the first five terms. This is

similar to the truncation that happens when you ask your calculator to find

as a decimal.

The result for the derivative is

2.2 Safe use of infinitesimals
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The idea of infinitesimally small numbers has always irked purists.

Fig. 2.6: Bishop George Berkeley (1685-1753)

One prominent critic of the calculus was Newton's contemporary George Berkeley, the
Bishop of Cloyne. Although some of his complaints are clearly wrong (he denied the
possibility of the second derivative), there was clearly something to his criticism of the

2. As a technical aside, it's not necessary for our present purposes to go into the issue of how to make the most general possible
definition of what is meant by a sum like this one which has an infinite number of terms; the only fact we'll need here is that the
error infinite sum obtained by leaving out the ". . . " has only higher powers of t. This is taken up in more detail in Sequences
and Series (Page 127) . Note that the series only gives the right answer for t < 1. E.g., for t = 1, it equals 1+1+1+:..., which, if it
means anything, clearly means something infinite.
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infinitesimals. He wrote sarcastically, “They are neither finite quantities, nor quantities
infinitely small, nor yet nothing. May we not call them ghosts of departed quantities?"

Infinitesimals seemed scary, because if you mishandled them, you could prove absurd
things. For example, let be an infinitesimal. Then is also
infinitesimal. Therefore both and equal infinity, so .

Multiplying by on both sides, we have a proof that 1 = 1/2.

In the eighteenth century, the use of infinitesimals became like adultery: commonly
practiced, but shameful to admit to in polite circles. Those who used them learned
certain rules of thumb for handling them correctly. For instance, they would identify
the aw in my proof of 1 = 1/2 as my assumption that there was only one size of
infinity, when actually should be interpreted as an infinity twice as big as

. The use of the symbol played into this trap, because the use of a single
symbol for infinity implied that infinities only came in one size. However, the
practitioners of infinitesimals had trouble articulating a clear set of principles for their
proper use, and couldn't prove that a self-consistent system could be built around
them.

By the twentieth century, when I learned calculus, a clear consensus had formed that
infinite and infinitesimal numbers weren't numbers at all. A notation like , my
calculus teacher told me, wasn't really one number divided by another, it was merely a
symbol for something called a limit,

where and represented finite changes. I'll give a formal definition (actually two
different formal definitions) of the term "limit" in Limits (Page 67), but intuitively the
concept is that we can get as good an approximation to the derivative as we like,
provided that we make small enough.

That satisfied me until we got to a certain topic (implicit differentiation) in which we
were encouraged to break the away from the , leaving them on opposite sides of
the equation. I buttonholed my teacher after class and asked why he was now doing
what he'd told me you couldn't really do, and his response was that and weren't
really numbers, but most of the time you could get away with treating them as if they
were, and you would get the right answer in the end. Most of the time!? That bothered
me. How was I supposed to know when it wasn't "most of the time?"
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Fig. 2.7: Abraham Robinson (1918-1974)

But unknown to me and my teacher, mathematician Abraham Robinson had already
shown in the 1960's that it was possible to construct a self-consistent number system
that included infinite and infinitesimal numbers. He called it the hyperreal number
system, and it included the real numbers as a subset. 3

Moreover, the rules for what you can and can't do with the hyperreals turn out to be
extremely simple. Take any true statement about the real numbers. Suppose it's
possible to translate it into a statement about the hyperreals in the most obvious way,
simply by replacing the word "real" with the word "hyperreal." Then the translated
statement is also true. This is known as the transfer principle.

Let's look back at my bogus proof of in light of this simple principle. The final
step of the proof, for example, is perfectly valid: multiplying both sides of the equation
by the same thing. The following statement about the real numbers is true:

For any real numbers , , and , if , then .

This can be translated in an obvious way into a statement about the hyperreals:

For any hyperreal numbers , , and , if , then .

However, what about the statement that both and equal infinity, so
they're equal to each other? This isn't the translation of a statement that's true about
the reals, so there's no reason to believe it's true when applied to the hyperreals | and
in fact it's false.

What the transfer principle tells us is that the real numbers as we normally think of
them are not unique in obeying the ordinary rules of algebra. There are completely
different systems of numbers, such as the hyperreals, that also obey them.

3. The main text of this book treats iinfinitesimal with the minimum fuss necessary in order to avoid the common goofs.
More detailed discussions are of- ten relegated to the back of the book, as in Example (Page 29). The reader who wants
to learn even more about the hyperreal system should consult the list of further reading on References and Further
Reading (Page 219).
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How, then, are the hyperreals even different from the reals, if everything that's true of
one is true of the other? But recall that the transfer principle doesn't guarantee that
every statement about the reals is also true of the hyperreals. It only works if the
statement about the reals can be translated into a statement about the hyperreals in
the most simple, straightforward way imaginable, simply by replacing the word “real"
with the word “hyperreal." Here's an example of a true statement about the reals that
can't be translated in this way:

For any real number , there is an integer that is greater than .

This one can't be translated so simplemindedly, because it refers to a subset of the
reals called the integers. It might be possible to translate it somehow, but it would
require some insight into the correct way to translate that word “integer." The transfer
principle doesn't apply to this statement, which indeed is false for the hyperreals,
because the hyperreals contain infinite numbers that are greater than all the integers.
In fact, the contradiction of this statement can be taken as a definition of what makes
the hyperreals special, and different from the reals: we assume that there is at least
one hyperreal number, , which is greater than all the integers.

As an analogy from everyday life, consider the following statements about the student
body of the high school I attended:

1. Every student at my high school had two eyes and a face.
2. Every student at my high school who was on the football team was a jerk.

Let's try to translate these into statements about the population of California in
general. The student body of my high school is like the set of real numbers, and the
present-day population of Californiais like the hyperreals. Statement 1 can be
translated mindlessly into a statement that every Californian has two eyes and a face;
we simply substitute “every Californian" for “every student at my high school." But
statement 2 isn't so easy, because it refers to the subset of students who were on the
football team, and it's not obvious what the corresponding subset of Californians
would be. Would it include everybody who played high school, college, or pro football?
Maybe it shouldn't include the pros, because they belong to an organization covering
a region bigger than California. Statement 2 is the kind of statement that the transfer
principle doesn't apply to. 4

4. 4For a slightly more precise and formal statement of the transfer principle, see Formal statement of the transfer
principle (Page 172).
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Example
As a nontrivial example of how to apply the transfer principle, let’s
consider how to handle expressions like the one that occurred when
we wanted to differentiate using infinitesimals:

I argued earlier that is so close to that for all practical
purposes, the answer is really . But is it really valid in general to say
that is the same hyperreal number as ? No. We can apply
the transfer principle to the following statement about the reals:

For any real numbers and , with , .

Since dt isn’t zero, .

More generally, Example (Page 36) leads us to visualize every number as being
surrounded by a "halo" of numbers that don't equal it, but differ from it by only an
infinitesimal amount. Just as a magnifying glass would allow you to see the fleas on a
dog, you would need an infinitely strong microscope to see this halo. This is similar to
the idea that every integer is surrounded by a bunch of fractions that would round off
to that integer. We can define the standard part of a finite hyperreal number, which
means the unique real number that differs from it infinitesimally. For instance, the
standard part of , notated , equals . The derivative of a function
should actually be defined as the standard part of , but we often write to
mean the derivative, and don't worry about the distinction.

One of the things Bishop Berkeley disliked about infinitesimals was the idea that they
existed in a kind of hierarchy, with being not just infinitesimally small, but
infinitesimally small compared to the infinitesimal . If is the flea on a dog, then

is a submicroscopic flea that lives on the flea, as in Swift's doggerel: "Big fleas have
little fleas/ On their backs to ride 'em,/ and little fleas have lesser fleas,/And so, ad
infinitum." Berkeley's criticism was off the mark here: there is such a hierarchy. Our
basic assumption about the hyperreals was that they contain at least one infinite
number, , which is bigger than all the integers. If this is true, then must be less
than , less than , less then - less than for any integer .
Therefore the hyperreals are guaranteed to include infinitesimals as well, and so we
have at least three levels to the hierarchy: infinities comparable to , finite numbers,
and infinitesimals comparable to . If you can swallow that, then it's not too much
of a leap to add more rungs to the ladder, like extra-small infinitesimals that are
comparable to . If this seems a little crazy, it may comfort you to think of
statements about the hyperreals as descriptions of limiting processes involving real
numbers. For instance, in the sequence of numbers

, it's clear that the number
represented by the digit 1 in the final decimal place is getting smaller faster than the
contribution due to the digit 2 in the middle.

One subtle issue here, which I avoided mentioning in the differentiation of the sine
function in Example (Page 29), is whether the transfer principle is sufficient to let us
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define all the functions that appear as familiar keys on a calculator:
and so on. After all, these functions were originally defined

as rules that would take a real number as an input and give a real number as an
output. It's not trivially obvious that their definitions can naturally be extended to take
a hyperreal number as an input and give back a hyperreal as an output. Essentially the
answer is that we can apply the transfer principle to them just as we would to
statements about simple arithmetic, but I've discussed this a little more in Is the
transfer principle true? (Page 173).

2.3 The product rule
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

When I first learned calculus, it seemed to me that if the derivative of was 3, and
the derivative of was 7, then the derivative of multiplied by ought to be just plain
old , not . The reason there's a factor of 2 in the correct answer is that has two
reasons to grow as gets bigger: it grows because the first factor of is increasing, but
also because the second one is. In general, it's possible to find the derivative of the
product of two functions any time we know the derivatives of the individual functions.

The product rule
If and are both functions of , then the derivative of their product
is

The proof is easy. Changing by an infinitesimal amount dt changes the product by
an amount

and dividing by dt makes this into

whose standard part is the result to be proved.

Example
Find the derivative of the function .

Figure 2.8 gives the geometrical interpretation of the product rule. Imagine that the
king, in his castle at the southwest corner of his rectangular kingdom, sends out a line
of infantry to expand his territory to the north, and a line of cavalry to take over more
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land to the east. In a time interval dt, the cavalry, which moves faster, covers a
distance greater than that covered by the infantry, . However, the strip of
territory conquered by the cavalry, , isn't as great as it could have been, because
in our example isn't as big as .

Fig. 2.8: A geometrical interpretation of the product rule.

A helpful feature of the Leibniz notation is that one can easily use it to check whether
the units of an answer make sense. If we measure distances in meters and time in
seconds, then has units of square meters (area), and so does the change in the
area, . Dividing by dt gives the number of square meters per second being
conquered. On the right-hand side of the product rule, has units of meters per
second (velocity), and multiplying it by makes the units square meters per second,
which is consistent with the left-hand side. The units of the second term on the right
likewise check out. Some beginners might be tempted to guess that the product rule
would be , but the Leibniz notation instantly reveals
that this can't be the case, because then the units on the left, , wouldn't match
the ones on the right, .

Because this unit-checking feature is so helpful, there is a special way of writing a
second derivative in the Leibniz notation. What Newton called , Leibniz wrote as

Although the different placement of the 2's on top and bottom seems strange and
inconsistent to many beginners, it actually works out nicely. If is a distance,
measured in meters, and is a time, in units of seconds, then the second derivative is
supposed to have units of acceleration, in units of meters per second per second, also
written , or . (The acceleration of falling objects on Earth is in
these units.) The Leibniz notation is meant to suggest exactly this: the top of the
fraction looks like it has units of meters, because we're not squaring , while the
bottom of the fraction looks like it has units of seconds squared, because it looks like
we're squaring dt. Therefore the units come out right. It's important to realize,
however, that the symbol d isn't a number (not a real one, and not a hyperreal one,
either), so we can't really square it; the notation is not to be taken as a literal
statement about infinitesimals.
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Example
A tricky use of the product rule is to find the derivative of . Since

can be written as , we might suspect that the rule

would work, giving a derivative
. However, the method from Rates of Change (Page 1) used to prove
that rule proved in Derivatives of polynomials (Page 169) only work if

is an integer, so the best we could do would be to confirm our
conjecture approximately by graphing or numerical estimation.

Using the product rule, we can write for our unknown
derivative, and back into the result using the product rule:

But , so as claimed.

The trick used in Example (Page 39) can also be used to prove that the power rule
applies to cases where is an integer less than 0, but I'll instead

prove this in Example (Page 46) by a technique that doesn't depend on a trick, and
also applies to values of that aren't integers.

2.4 The chain rule
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 2.9: Three clowns on seesaws demonstrate the chain rule.

Figure 2.9 shows three clowns on seesaws. If the leftmost clown moves down by a
distance , the middle one will come up by , but this will also cause the one on the
right to move down by . If we want to predict how much the rightmost clown will
move in response to a certain amount of motion by the leftmost one, we have
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This is called the chain rule. It says that if a change in causes to change, and then
causes to change, then this chain of changes has a cascading effect. Mathematically,
there is no big mystery here. We simply cancel on the top and bottom. The only
minor subtlety is that we would like to be able to be sloppy by using an expression like

to mean both the quotient of two infinitesimal numbers and a derivative,
which is defined as the standard part of this quotient. This sloppiness turns out to be
all right, as proved in Proof of the chain rule (Page 178).

Example
Jane hikes 3 kilometers in an hour, and hiking burns 70 calories per
kilometer. At what rate does she burn calories?

We let be the number of hours she’s spent hiking so far, the
distance covered, and the calories spent. Then

Example
Figure 2.10 shows a piece of farm equipment containing a train of gears with
13, 21, and 42 teeth. If the smallest gear is driven by a motor, relate the rate of
rotation of the biggest gear to the rate of rotation of the motor.
Let x, y, and z be the angular positions of the three gears. Then by the chain
rule,
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Fig. 2.10:

The chain rule lets us find the derivative of a function that has been built out of one
function stuck inside another.
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Example
Find the derivative of the function .

Let , so that . Then

The way people usually say it is that the chain rule tells you to take
the derivative of the outside function, the sine in this case, and then
multiply by the derivative of “the inside stuff,” which here is the
square. Once you get used to doing it, you don’t need to invent a
third, intermediate variable, as we did here with .

Example
Let’s express the chain rule without the use of the Leibniz notation.
Let the function be defined by . Then the derivative
of is given by

Example
We’ve already proved that the derivative of is for
(Example (Page 29)) and for (Derivatives of
polynomials (Page 169)). Use these facts to extend the rule to all
integer values of .

For , the function can be written as , where
is positive. Applying the chain rule, we find

.

2.5 Exponentials and logarithms The exponential
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The exponential function , where is the base of natural logarithms,
comes constantly up in applications as diverse as credit-card interest, the growth of
animal populations, and electric circuits. For its derivative we have
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The second factor, , doesn't have in it, so it must just be a constant.
Therefore we know that the derivative of is simply , multiplied by some unknown
constant,

A rough check by graphing at, say , shows that the slope is close to 1, so is
close to 1. Numerical calculation also shows that, for example,

is very close to 1. But how do we know
it's exactly one when dx is really infinitesimal? We can use Inf:

: [exp(d)-1]/d

1+0.5d+...

(The ... indicates where I've snipped some higher-order terms out of the output.) It
seems clear that is equal to 1 except for negligible terms involving higher powers of

. A rigorous proof is given in Derivative of ex (Page 179).

Example
The concentration of a foreign substance in the bloodstream generally falls off
exponentially with time as , where is the initial concentration,
and a is a constant. For caffeine in adults, a is typically about 7 hours. An
example is shown in Figure 2.11. Differentiate the concentration with respect
to time, and interpret the result. Check that the units of the result make sense.
Using the chain rule,

This can be interpreted as the rate at which caffeine Is being removed from
the blood and put into the person’s urine. It’s negative because the
concentration is decreasing. According to the original expression for , a
substance with a large a will take a long time to reduce its concentration,
since won’t be very big unless we have large on top to compensate for
the large on the bottom. In other words, larger values of a represent
substances that the body has a harder time getting rid of efficiently. The
derivative has a on the bottom, and the interpretation of this is that for a drug
that is hard to eliminate, the rate at which it is removed from the blood is low.
It makes sense that a has units of time, because the exponential function has
to have a unitless argument, so the units of have to cancel out. The units
of the result come from the factor of , and it makes sense that the units
are concentration divided by time, because the result represents the rate at
which the concentration is changing.
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Fig. 2.11: A typical graph of the concentration of caffeine in the blood, in units of

milligrams per liter, as a function of time, in hours.

Example
Find the derivative of the function .

In general, one of the tricks to doing calculus is to rewrite functions
in forms that you know how to handle. This one can be rewritten as a
base-e exponent:

Applying the chain rule, we have the derivative of the exponential,
which is just the same exponential, multiplied by the derivative of
the inside stuff:

In other words, the “c” referred to in the discussion of the derivative
of becomes in the case of the base-10 exponential.
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2.5.1 The logarithm
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The natural logarithm is the function that undoes the exponential. In a situation like
this, we have

where on the left we're thinking of as a function of , and on the right we consider
to be a function of . Applying this to the natural logarithm,

Fig. 2.12: Differentiation and integration of functions of the form

. Constants out in front of the functions are not shown, so keep in mind that,
for example, the derivative of isn’t , it’s 2 .

This is noteworthy because it shows that there must be an exception to the rule that
the derivative of is , and the integral of is . (In The chain rule
(Page 39) I remarked that this rule could be proved using the product rule for negative
integer values of , but that I would give a simpler, less tricky, and more general proof
later. The proof is Example (Page 46) below.) The integral of is not , which
wouldn't make sense anyway because it involves division by zero. 5 Likewise the
derivative of is , which is zero. Figure 2.12 shows the idea. The functions

5. Speaking casually, one can say that division by zero gives infinity. This is often a good way to think when trying to
connect mathematics to reality. However, it doesn't really work that way according to our rigorous treatment of the
hyperreals. Consider this statement: \For a nonzero real number a, there is no real number b such that a = 0b." This
means that we can't divide a by 0 and get b. Applying the transfer principle to this statement, we see that the same is
true for the hyperreals: division by zero is un- defined. However, we can divide a finite number by an infinitesimal, and
get an infinite result, which is almost the same thing.
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xn form a kind of ladder, with differentiation taking us down one rung, and integration
taking us up. However, there are two special cases where differentiation takes us of
the ladder entirely.

Example
Prove for any real value of , not just an integer.

By the chain rule,

(For , the result is zero.)

When I started the discussion of the derivative of the logarithm, I wrote right
of the bat. That meant I was implicitly assuming was positive. More generally, the
derivative of equals , regardless of the sign (see Problem 2.29 (Page 58) ).

2.6 Quotients
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

So far we've been successful with a divide-and-conquer approach to differentiation:
the product rule and the chain rule offer methods of breaking a function down into
simpler parts, and finding the derivative of the whole thing based on knowledge of the
derivatives of the parts. We know how to find the derivatives of sums, differences, and
products, so the obvious next step is to look for a way of handling division. This is
straightforward, since we know that the derivative of the function is .

Let and be functions of .

Then by the product rule,

and by the chain rule,

This is so easy to rederive on demand that I suggest not memorizing it.

By the way, notice how the notation becomes a little awkward when we want to write
a derivative like . When we're differentiating a complicated function, it can
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be uncomfortable trying to cram the expression into the top of the d.../d... fraction.
Therefore it would be more common to write such an expression like this:

This could be considered an abuse of notation, making d look like a number being
divided by another number , when actually is meaningless on its own. On the
other hand, we can consider the symbol to represent the operation of
differentiation with respect to ; such an interpretation will seem more natural to
those who have been inculcated with the taboo against considering inffnitesimals as
numbers in the first place.

Using the new notation, the quotient rule becomes

The interpretation of the minus sign is that if increases, decreases.

Example
Differentiate , and check that the result makes
sense.

We identify with and with .

The result is

One way to check that the result makes sense is to consider extreme
values of . For very large values of , the 1 on the bottom of

becomes negligible compared to the , and the function
approaches as a limit. Therefore we expect that the

derivative should approach zero, since the derivative of a
constant is zero. It works: plugging in bigger and bigger numbers for

in the expression for the derivative does give smaller and smaller
results. (In the second term, the denominator gets bigger faster than
the numerator, because it has a square in it.)

Another way to check the result is to verify that the units work out.
Suppose arbitrarily that x has units of gallons. (If the 3 on the bottom
is unitless, then the 1 would have to represent 1 gallon, since you
can’t add things that have different units.) The function is defined
by an expression with units of gallons divided by gallons, so is
unitless. Therefore the derivative should have units of inverse
gallons. Both terms in the expression for the derivative do have those
units, so the units of the answer check out.
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2.7 Differentiation on a computer
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In this chapter you've learned a set of rules for evaluating derivatives: derivatives of
products, quotients, functions inside other functions, etc. Because these rules exist,
it's always possible to find a formula for a function's derivative, given the formula for
the original function. Not only that, but there is no real creativity required, so a
computer can be programmed to do all the drudgery. For example, you can download
a free, opensource program called Yacas from and
install it on a Windows or Linux machine. There is even a version you can run in a web
browser without installing any special software:

A typical session with Yacas looks like this:

Example

D(x) x^2

2*x

D(x) Exp(x^2)

2*x*Exp(x^2)

D(x) Sin(Cos(Sin(x)))

-Cos(x)*Sin(Sin(x))

*Cos(Cos(Sin(x)))

Upright type represents your input, and italicized type is the program's output.
First I asked it to differentiate with respect to , and it told me the result was .
Then I did the derivative of , which I also could have done fairly easily by hand. (If
you're trying this out on a computer as you read along, make sure to capitalize
functions like Exp, Sin, and Cos.) Finally I tried an example where I didn't know the
answer off the top of my head, and that would have been a little tedious to calculate
by hand.

Unfortunately things are a little less rosy in the world of integrals. There are a few
rules that can help you do integrals, e.g., that the integral of a sum equals the sum of
the integrals, but the rules don't cover all the possible cases. Using Yacas to evaluate
the integrals of the same functions, here's what happens. 6

6. If you're trying these on your own computer, note that the long input line for the function sin cos sin x shouldn't be
broken up into two lines as shown in the listing.
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Example

Integrate(x) x^2

x^3/3

Integrate(x) Exp(x^2)

Integrate(x)Exp(x^2)

Integrate(x)

Sin(Cos(Sin(x)))

Integrate(x)

Sin(Cos(Sin(x)))

The first one works fine, and I can easily verify that the answer is correct, by taking the
derivative of , which is . (The answer could have been , or ,
where was any constant, but Yacas doesn't bother to tell us that.) The second and
third ones don't work, however; Yacas just spits back the input at us without making
any progress on it. And it may not be because Yacas isn't smart enough to figure out
these integrals. The function can't be integrated at all in terms of a formula
containing ordinary operations and functions such as addition, multiplication,
exponentiation, trig functions, exponentials, and so on.

That's not to say that a program like this is useless. For example, here's an integral
that I wouldn't have known how to do, but that Yacas handles easily:

Example

Integrate(x) Sin(Ln(x))

(x*Sin(Ln(x)))/2

-(x*Cos(Ln(x)))/2

This one is easy to check by differentiating, but I could have been marooned on a
desert island for a decade before I could have figured it out in the first place. There
are various rules, then, for integration, but they don't cover all possible cases as the
rules for differentiation do, and sometimes it isn't obvious which rule to apply. Yacas's
ability to integrate sin ln shows that it had a rule in its bag of tricks that I don't know,
or didn't remember, or didn't realize applied to this integral.

Back in the 17th century, when Newton and Leibniz invented calculus, there were no
computers, so it was a big deal to be able to find a simple formula for your result.
Nowadays, however, it may not be such a big deal. Suppose I want to find the
derivative of sin cos , evaluated at . I can do something like this on a
calculator:
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Example

sin cos sin 1 =

0.61813407

sin cos sin 1.0001 =

0.61810240

(0.61810240-0.61813407)

/.0001 =

-0.3167

I have the right answer, with plenty of precision for most realistic applications,
although I might have never guessed that the mysterious number 0.3167 was actually
(cos 1)(sin sin 1)(cos cos sin 1). This could get a little tedious if I wanted to graph the
function, for instance, but then I could just use a computer spreadsheet, or write a
little computer program. In this chapter, I'm going to show you how to do derivatives
and integrals using simple computer programs, using Yacas. The following little Yacas
program does the same thing as the set of calculator operations shown above:

Example

1 f(x):=Sin(Cos(Sin(x)))

2 x:=1

3 dx:=.0001

4 N( (f(x+dx)-f(x))/dx )

-0.3166671628

(I've omitted all of Yacas's output except for the _nal result.) Line 1 de_nes the function
we want to di_erentiate. Lines 2 and 3 give values to the variables x and dx. Line 4
computes the derivative; the N( ) surrounding the whole thing is our way of telling
Yacas that we want an approximate numerical result, rather than an exact symbolic
one.

An interesting thing to try now is to make dx smaller and smaller, and see if we get
better and better accuracy in our approximation to the derivative.
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Example

5 g(x,dx):=

N( (f(x+dx)-f(x))/dx )

6 g(x,.1)

-0.3022356406

7 g(x,.0001)

-0.3166671628

8 g(x,.0000001)

-0.3160458019

9 g(x,.00000000000000001)

0

Line 5 defines the derivative function. It needs to know both and . Line 6
computes the derivative using dx = 0.1, which we expect to be a lousy approximation,
since is really supposed to be infinitesimal, and 0.1 isn't even that small. Line 7
does it with the same value of we used earlier. The two results agree exactly in the
first decimal place, and approximately in the second, so we can be pretty sure that the
derivative is -0.32 to two figures of precision. Line 8 ups the ante, and produces a
result that looks accurate to at least 3 decimal places. Line 9 attempts to produce
fantastic precision by using an extremely small value of dx. Oops - the result isn't
better, it's worse! What's happened here is that Yacas computed and
, but they were the same to within the precision it was using, so
rounded off to zero. 7

Example (Page 51) demonstrates the concept of how a derivative can be defined in
terms of a limit:

The idea of the limit is that we can theoretically make approach as close as
we like to , provided we make sufficiently small. In reality, of course, we
eventually run into the limits of our ability to do the computation, as in the bogus
result generated on line 9 of the example.

2.8 Problems

2.8.1 Problem 2.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Carry out a calculation like the one in Example (Page 27) to show that the derivative of
equals .

7. Yacas can do arithmetic to any precision you like, although you may run into practical limits due to the amount of
memory your computer has and the speed of its CPU. For fun, try N(Pi,1000), which tells Yacas to compute π numerically
to 1000 decimal places.
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Solutions for chapter 2 (Page 196)

2.8.2 Problem 2.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Example (Page 30) gave a tricky argument to show that the derivative of is .
Prove the same result using the method of Example (Page 29) instead.

Solutions for chapter 2 (Page 196)

2.8.3 Problem 2.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose is a big number. Experiment on a calculator to figure out whether
comes out big, normal, or tiny. Try making bigger and

bigger, and see if you observe a trend. Based on these numerical examples, form a
conjecture about what happens to this expression when is infinite.

Solutions for chapter 2 (Page 196)

2.8.4 Problem 2.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose is a small but finite number. Experiment on a calculator to figure out how
compares in size to . Try making smaller and smaller, and see if you

observe a trend. Based on these numerical examples, form a conjecture about what
happens to this expression when is infinitesimal.

Solutions for chapter 2 (Page 196)

2.8.5 Problem 2.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

To which of the following statements can the transfer principle be applied? If you think it
can't be applied to a certain statement, try to prove that the statement is false for the
hyperreals, e.g., by giving a counterexample.

a. For any real numbers and , .
b. The sine of any real number is between -1 and 1.
c. For any real number , there exists another real number that is greater than .
d. For any real numbers , there exists another real number such that

.
e. For any real numbers , there exists a rational number such that .

(A rational number is one that can be expressed as an integer divided by another
integer.)
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f. For any real numbers , , and , .
g. For any real numbers and , either or or
h. For any real number , .

Solutions for chapter 2 (Page 196)

2.8.6 Problem 2.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If we want to pump air or water through a pipe, common sense tells us that it will be
easier to move a larger quantity more quickly through a fatter pipe. Quantitatively, we
can define the resistance, , which is the ratio of the pressure difference produced by
the pump to the rate of flow. A fatter pipe will have a lower resistance. Two pipes can
be used in parallel, for instance when you turn on the water both in the kitchen and in
the bathroom, and in this situation, the two pipes let more water flow than either
would have let flow by itself, which tells us that they act like a single pipe with some
lower resistance. The equation for their combined resistance is

. Analyze the case where one resistance is finite, and the
other infinite, and give a physical interpretation. Likewise, discuss the case where one
is finite, but the other is infinitesimal.

Solutions for chapter 2 (Page 196)

2.8.7 Problem 2.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Naively, we would imagine that if a spaceship traveling at of the speed of
light was to shoot a missile in the forward direction at of the speed of light
(relative to the ship), then the missile would be traveling at of the speed
of light. However, Einstein's theory of relativity tells us that this is too good to be true,
because nothing can go faster than light. In fact, the relativistic equation for combining
velocities in this way is not , but rather . In ordinary,
everyday life, we never travel at speeds anywhere near the speed of light. Show that
the nonrelativistic result is recovered in the case where both and are infinitesimal.

Solutions for chapter 2 (Page 196)

2.8.8 Problem 2.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .

Solutions for chapter 2 (Page 196)
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2.8.9 Problem 2.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

1. Differentiate with respect to .

Solutions for chapter 2 (Page 196)

2.8.10 Problem 2.10
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate the following with respect to : , . (In the latter expression, as in all
exponentials nested inside exponentials, the evaluation proceeds from the top down,
i.e., , not ) .

Solutions for chapter 2 (Page 196)

2.8.11 Problem 2.11
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .
Solutions for chapter 2 (Page 196)

2.8.12 Problem 2.12
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Let , where and are positive integers. By a technique similar to the one
in Example (Page 42), prove that the differentiation rule for holds when

.

Solutions for chapter 2 (Page 196)

2.8.13 Problem 2.13
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find a function whose derivative with respect to equals . That is, find
an integral of the given function.

Solutions for chapter 2 (Page 196)
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2.8.14 Problem 2.14
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Use the chain rule to differentiate , and show that you get the same result
you would have obtained by differentiating .

Solutions for chapter 2 (Page 196) 8

2.8.15 Problem 2.15
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The range of a gun, when elevated to an angle , is given by

Find the angle that will produce the maximum range.

Solutions for chapter 2 (Page 196)

2.8.16 Problem 2.16
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .

2.8.17 Problem 2.17
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The hyperbolic cosine function is defined by

Find any minima and maxima of this function.

Solutions for chapter 2 (Page 196)

2.8.18 Problem 2.18
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Show that the function has maxima and minima at all the same places
where does, and at no other places.

Solutions for chapter 2 (Page 196)

8. [M. Livshits]
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2.8.19 Problem 2.19
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Let and . Find the derivatives of these functions
at in terms of (a) slopes of tangent lines and (b) infinitesimals.

Solutions for chapter 2 (Page 196)

2.8.20 Problem 2.20
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In free fall, the acceleration will not be exactly constant, due to air resistance. For example,
a skydiver does not speed up indefinitely until opening her chute, but rather approaches a
certain maximum velocity at which the upward force of air resistance cancels out the force
of gravity. The expression for the distance dropped by of a free-falling object, with air
resistance, is 9

where is the acceleration the object would have without air resistance, the function cosh
has been defined in Problem 2.17 (Page 55), and is a constant that depends on the
size, shape, and mass of the object, and the density of the air. (For a sphere of mass
and diameter dropping in air, . Cf. Problem 2.10 (Page 54))

1. (a) Differentiate this expression to find the velocity. Hint: In order to simplify the

writing, start by defining some other symbol to stand for the constant .
2. (b) Show that your answer can be reexpressed in terms of the function tanh defined

by tanh .
3. (c) Show that your result for the velocity approaches a constant for large values of .
4. (d) Check that your answers to parts b and c have units of velocity.

Solutions for chapter 2 (Page 196)

2.8.21 Problem 2.21
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .

Solutions for chapter 2 (Page 196)

9. Jan Benacka and Igor Stubna, The Physics Teacher, 43 (2005) 432.
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2.8.22 Problem 2.22
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .

Solutions for chapter 2 (Page 196)

2.8.23 Problem 2.23
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate the following with respect to :

a.
b.
c.
d. .

Solutions for chapter 2 (Page 196)

2.8.24 Problem 2.24
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Differentiate with respect to .

Solutions for chapter 2 (Page 196)

2.8.25 Problem 2.25
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If you know the derivative of , it's not necessary to use the product rule in order
to differentiate , but show that using the product rule gives the right result
anyway.

Solutions for chapter 2 (Page 196)

2.8.26 Problem 2.26
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The function (capital Greek letter gamma) is a continuous mathematical function
that has the property for n an integer. is also well
defined for values of that are not integers, e.g., happens to be . Use
computer software that is capable of evaluating the function to determine
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numerically the derivative of with respect to , at . (In Yacas, the function
is called Gamma.)

Solutions for chapter 2 (Page 196)

2.8.27 Problem 2.27
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

For a cylinder of fixed surface area, what proportion of length to radius will give the
maximum volume?

Solutions for chapter 2 (Page 196)

2.8.28 Problem 2.28
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This problem is a variation on Problem 2.11 (Page 54). Einstein found that the equation
for kinetic energy was only a good approximation for speeds much less

than the speed of light, . At speeds comparable to the speed of light, the correct equation
is

a. As in the earlier, simpler problem, find the power for an object accelerating at
a steady rate, with .

b. Check that your answer has the right units.
c. Verify that the power required becomes infinite in the limit as approaches , the

speed of light. This means that no material object can go as fast as the speed of light.

Solutions for chapter 2 (Page 196)

2.8.29 Problem 2.29
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove, as claimed in The logarithm (Page 45), that the derivative of equals ,
for both positive and negative .

Solutions for chapter 2 (Page 196)

2.8.30 Problem 2.30
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

On even function is one with the property . For example, is an
even function, and is an even function if is even. An odd function has

. Prove that the derivative of an even function is odd.
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Solutions for chapter 2 (Page 196)

2.8.31 Problem 2.31
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose we have a list of numbers , and we wish to find some number that
is as close as possible to as many of the as possible. To make this a mathematically
precise goal, we need to define some numerical measure of this closeness. Suppose

we let , which can also be notated using ,

uppercase Greek sigma, as . Then minimizing can be used as
a definition of optimal closeness. (Why would we not want to use

?) Prove that the value of that minimizes is the average of
the .

2.8.32 Problem 2.32
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Use a trick similar to the one used in Example (Page 39) to prove that the power rule
applies to cases where k is an integer less than 0.

Solutions for chapter 2 (Page 196)

2.8.33 Problem 2.33
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The plane of Euclidean geometry is today often described as the set of all coordinate
pairs , where and are real. We could instead imagine the plane F that is
defined in the same way, but with and taken from the set of hyperreal numbers.
As a third alternative, there is the plane G in which the finite hyperreals are used. In E,
Euclid's parallel postulate holds: given a line and a point not on the line, there exists
exactly one line passing through the point that does not intersect the line. Does the
parallel postulate hold in F? In G? Is it valid to associate only E with the plane described
by Euclid's axioms? .

Solutions for chapter 2 (Page 196)

2.8.34 Problem 2.34
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Discuss the following statement: The repeating decimal 0.999... is infinitesimally less than
one.

Solutions for chapter 2 (Page 196)
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2.8.35 Problem 2.35
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Example (Page 42) expressed the chain rule without the Leibniz notation, writing a
function defined by . Suppose that you're trying to remember the
rule, and two of the possibilities that come to mind are and

. Show that neither of these can possibly be right, by
considering the case where has units. You may _nd it helpful to convert both
expressions back into the Leibniz notation.

Solutions for chapter 2 (Page 196)

2.8.36 Problem 2.36
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 2.13: The function of Problem 2.36, with

When you tune in a radio station using an old-fashioned rotating dial you don't have to be
exactly tuned in to the right frequency in order to get the station. If you did, the tuning
would be infinitely sensitive, and you'd never be able to receive any signal at all! Instead,
the tuning has a certain amount of "slop" intentionally designed into it. The strength of the
received signal can be expressed in terms of the dial's setting by a function of the form

where , , and are constants. This functional form is in fact very general, and is
encountered in many other physical contexts. The graph below shows the resulting bell-
shaped curve. Find the frequency at which the maximum response occurs, and show
that if is small, the maximum occurs close to, but not exactly at, .

Solutions for chapter 2 (Page 196)
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2.8.37 Problem 2.37
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 2.14: A set of light rays is emitted from the tip of the glamorous movie star’s nose on the film,

and reunited to form a spot on the screen which is the image of the same point on his nose. The

distances have been distorted for clarity. The distance y represents the entire length of the theater

from front to back.

In a movie theater, the image on the screen is formed by a lens in the projector, and
originates from one of the frames on the strip of celluloid film (or, in the newer digital
projection systems, from a liquid crystal chip). Let the distance from the film to the
lens be , and let the distance from the lens to the screen be . The projectionist
needs to adjust so that it is properly matched with , or else the image will be out of
focus. There is therefore a fixed relationship between and , and this relationship is
of the form

where is a property of the lens, called its focal length. A stronger lens has a shorter
focal length. Since the theater is large, and the projector is relatively small, is much
less than . We can see from the equation that if is sufficiently large, the left-hand
side of the equation is dominated by the term, and we have . Since the

term doesn't completely vanish, we must have slightly greater than , so that
the term is slightly less than . Let , and approximate as being
infinitesimally small. Find a simple expression for in terms of and .

Solutions for chapter 2 (Page 196)

2.8.38 Problem 2.38
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Why might the expression 1 be considered an indeterminate form? .

Solutions for chapter 2 (Page 196)
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Chapter  3 Limits and continuity

3.1 Continuity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Intuitively, a continuous function is one whose graph has no sudden jumps in it; the
graph is all a single connected piece. Such a function can be drawn without picking the
pen up off of the paper. Formally, a function is defined to be continuous if for
any real and any infinitesimal , is infinitesimal.

Example
Let the function be defined by for , and
for . Then f (x ) is discontinuous, since for dx > 0, f (0 + dx ) − f
(0) = 1, which isn’t infinitesimal.

Fig. 3.1: Caption The black dot indicates that the endpoint of the lower ray is part of the

ray, while the white one shows the contrary for the ray on the top

If a function is discontinuous at a given point, then it is not differentiable at that point.
On the other hand, the example shows that a function can be continuous
without being differentiable.

In most cases, there is no need to invoke the definition explicitly in order to check
whether a function is continuous. Most of the functions we work with are de- fined by
putting together simpler functions as building blocks. For example, let’s say we’re
already convinced that the functions defined by and are
both continuous. Then if we encounter the function , we can tell that
it’s continuous because its definition corresponds to . The functions

and have been set up like a bucket brigade, so that takes the input, calculates
the output, and then hands it off to for the final step of the calculation. This method
of combining functions is called composition. The composition of two continuous
functions is also continuous. Just watch out for division. The function is
continuous everywhere except at , so for example is continuous
everywhere except at multiples of , where the sine has zeroes.
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3.1.1 The intermediate value theorem
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Another way of thinking about continuous functions is given by the intermediate value
theorem. Intuitively, it says that if you are moving continuously along a road, and you
get from point A to point B, then you must also visit every other point along the road;
only by teleporting (by moving discontinuously) could you avoid doing so. More
formally, the theorem states that if is a continuous real-valued function on the real
interval from a to , and if takes on values and at certain points within this
interval, then for any between and , there is some real in the interval for
which .

Fig. 3.2: The intermediate value theorem states that if the function is continuous, it must pass through

The intermediate value theorem seems so intuitively appealing that if we want to set
out to prove it, we may feel as though we’re being asked to prove a proposition such
as, “a number greater than 10 exists.” If a friend wanted to bet you a six-pack that you
couldn’t prove this with complete mathematical rigor, you would have to get your
friend to spell out very explicitly what she thought were the facts about integers that
you were allowed to start with as initial assumptions. Are you allowed to assume that
1 exists? Will she grant you that if a number n exists, so does ? The intermediate
value theorem is similar. It’s stated as a theorem about certain types of functions, but
its truth isn’t so much a matter of the properties of functions as the properties of the
underlying number system. For the reader with a interest in pure mathematics, I’ve
discussed this in more detail in The intermediate value theorem (Page 63) and given
an abbreviated proof. (Most introductory calculus texts do not prove it at all.)
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Example
Show that there is a solution to the equation .

We expect there to be a solution near , where the function
is just a little too big. On the other hand,

is much too small. Since has values above and below
1000 on the interval from 2 to 3, and is continuous, the
intermediate value theorem proves that a solution exists between 2
and 3. If we wanted to find a better numerical approximation to the
solution, we could do it using Newton’s method, which is introduced
in Newton’s method (Page 101).

Example
Show that there is at least one solution to the equation , and give
bounds on its location.

This is a transcendental equation, and no amount of fiddling with algebra and
trig identities will ever give a closed-form solution, i.e., one that can be written
down with a finite number of arithmetic operations to give an exact result.
However, we can easily prove that at least one solution exists, by applying the
intermediate value theorem to the function . The cosine function is
bounded between −1 and 1, so this function must be negative for
and positive for . By the intermediate value theorem, there must be a
solution in the interval . The graph, c, verifies this, and shows
that there is only one solution.

Fig. 3.3:

constructed in Example (Page 64).
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Example
Prove that every odd-order polynomial with real coefficients has at
least one real root , i.e., a point at which .

Example (Page 64) might have given the impression that there was
nothing to be learned from the intermediate value theorem that
couldn’t be deter- mined by graphing, but this example clearly can’t
be solved by graphing, because we’re trying to prove a general result
for all polynomials.

To see that the restriction to odd orders is necessary, consider the
polynomial , which has no real roots because for any
real number .

To fix our minds on a concrete example for the odd case, consider the
polynomial . For large values of , the linear
and constant terms will be negligible compared to the term, and
since is positive for large values of and negative for large
negative ones, it follows that is sometimes positive and sometimes
negative.

Making this argument more general and rigorous, suppose we had a
polynomial of odd order that always had the same sign for real .
Then by the transfer principle the same would hold for any hyperreal
value of . Now if is infinite then the lower-order terms are
infinitesimal compared to the term, and the sign of the result is
determined entirely by the term, but and have opposite
signs, and therefore and have opposite signs. This is a
contradiction, so we have disproved the assumption that always
had the same sign for real . Since is sometimes negative and
sometimes positive, we conclude by the intermediate value
theorem that it is zero somewhere.
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Example
Show that the equation has infinitely many solutions.

This is another example that can’t be solved by graphing; there is
clearly no way to prove, just by looking at a graph like d, that it
crosses the x axis infinitely many times. The graph does, however,
help us to gain intuition for what’s going on. As gets smaller and
smaller, blows up, and oscillates more and more rapidly.
The function is undefined at 0, but it’s continuous everywhere else,
so we can apply the intermediate value theorem to any interval that
doesn’t include 0.

We want to prove that for any positive , there exists an with
for which has either desired sign. Suppose that this

fails for some real . Then by the transfer principle the nonexistence
of any real with the desired property also implies the nonexistence
of any such hyperreal . But for an infinitesimal the sign of is
determined entirely by the sine term, since the sine term is finite and
the linear term infinitesimal. Clearly can’t have a single sign
for all values of less than , so this is a contradiction, and the
proposition succeeds for any u. It follows from the intermediate value
theorem that there are infinitely many solutions to the equation.

Fig. 3.4: The function
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3.1.2 The extreme value theorem
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In chapter 1, we saw that locating maxima and minima of functions may in general be
fairly difficult, because there are so many different ways in which a function can attain
an extremum: e.g., at an endpoint, at a place where its derivative is zero, or at a non-
differentiable kink. The following theorem allows us to make a very general statement
about all these possible cases, assuming only continuity.

The extreme value theorem states that if is a continuous real-valued function on the
real-number interval defined by , then has maximum and minimum
values on that interval, which are attained at specific points in the interval.

Let’s first see why the assumptions are necessary. If we weren’t confined to a finite
interval, then would be a counterexample, because it’s continuous and doesn’t
have any maximum or minimum value. If we didn’t assume continuity, then we could
have a function defined as for , and for ; this function
never gets bigger than 1, but it never attains a value of 1 for any specific value of .

The extreme value theorem is proved, in a somewhat more general form,in Proof of
the extreme value theorem (Page 185).

Example
Find the maximum value of the polynomial
for .

Polynomials are continuous, so the extreme value theorem
guarantees that such a maximum exists. Suppose we try to find it by
looking for a place where the derivative is zero. The derivative is

, and setting it equal to zero gives a quadratic equation,
but application of the quadratic formula shows that it has no real
solutions. It appears that the function doesn’t have a maximum
anywhere (even outside the interval of interest) that looks like a
smooth peak. Since it doesn’t have kinks or discontinuities, there is
only one other type of maxi- mum it could have, which is a maxi-
mum at one of its endpoints. Plugging in the limits, we find

and , so we conclude that the maximum
value on this interval is 156.

3.2 Limits
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Historically, the calculus of infinitesimals as created by Newton and Leibniz was
reinterpreted in the nineteenth century by Cauchy, Bolzano, and Weierstrass in terms
of limits. All mathematicians learned both languages, and switched back and forth
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between them effortlessly, like the lady I overheard in a Southern California
supermarket telling her mother, “Let’s get that one, con los nuts.” Those who had been
trained in infinitesimals might hear a statement using the language of limits, but
translate it mentally into infinitesimals; to them, every statement about limits was
really a statement about infinitesimals. To their younger colleagues, trained using
limits, every statement about infinitesimals was really to be under- stood as shorthand
for a limiting process. When Robinson laid the rigorous foundations for the hyper- real
number system in the 1960’s, a common objection was that it was really nothing new,
because every statement about infinitesimals was really just a different way of
expressing a corresponding statement about limits; of course the same could have
been said about Weierstrass’s work of the preceding century! In reality, all
practitioners of calculus had realized all along that different approaches worked
better for different problems; Problem 4.13 (Page 100) is an example of a result that is
much easier to prove with infinitesimals than with limits.

The Weierstrass definition of a limit is this:

Definition of the limit
We say that is the limit of the function as approaches ,
written

if the following is true: for any real number , there exists another
real number such that for all in the interval ,
the value of lies within the range from to .

Intuitively, the idea is that if I want you to make close to ,just have to tell you
how close, and you can tell me that it will be that close as long as x is within a certain
distance of a.

In terms of infinitesimals, we have:

Definition of the limit
We say that is the limit of the function as approaches ,
written

if the following is true: for any infinitesimal number dx, the value of
is finite, and the standard part of equals .

The two definitions are equivalent. As remarked previously, the derivative can
be defined as the limit , and if we use the Weierstrass definition of
the limit, this means that the derivative can be defined entirely in terms of the real
number sys- tem, without the user of hyperreal numbers.

Sometimes a limit can be evaluated simply by plugging in numbers:
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Example
Evaluate

Plugging in , we find that the limit is 1.

In some examples, plugging in fails if we try to do it directly, but can be made to work
if we massage the expression into a different form:

Example
Evaluate

Plugging in fails because division by zero is undefined.

Intuitively, however, we expect that the limit will be well defined,
and will equal 2, because for very small values of , the numerator is
dominated by the term, and the denominator by the term, so
the 7 and 8686 terms will matter less and less as gets smaller and
smaller.

To demonstrate this more rigorously, a trick that works is to multiply
both the top and the bottom by , giving

which equals 2 when we plug in , so we find that the limit is
zero.

This example is a little subtle, because when equals zero, the
function is not defined, and moreover it would not be valid to
multiply both the top and the bottom by . In general, it’s not valid
algebra to multiply both the top and the bottom of a fraction by 0,
because the result is 0/0, which is undefined. But we didn’t actually
multiply both the top and the bottom by zero, because we never let
equal zero. Both the Weierstrass definition and the definition in
terms of infinitesimals only refer to the properties of the function in
a region very close to the limiting point, not at the limiting point
itself.

This is an example in which the function was not well defined at a
certain point, and yet the limit of the function was well defined as we
approached that point. In a case like this, where there is only one
point missing from the domain of the function, it is natural to extend
the definition of the function by filling in the “gap tooth.” Example
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(Page 71) below shows that this kind of filling- in procedure is not
always possible.

Example
Investigate the limiting behavior of as approaches 0, and 1.

At , plugging in works, and we find that the limit is 1.

Fig. 3.5: Example 40 the function

At , plugging in doesn’t work, because division by zero is
undefined. Applying the definition in terms of infinitesimals to the

limit as approaches 0, we need to find out whether is
finite for infinitesimal dx , and if so, whether it al- ways has the

same standard part. But clearly is always
infinite, and we conclude that this limit is undefined.
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Example

Fig. 3.6:

Investigate the limiting behavior of as
approaches 0.

Plugging in doesn’t work, because division by zero is undefined.

In the definition of the limit in terms of infinitesimals, the first
requirement is that be finite for infinitesimal values of
. The graph makes this look plausible, and indeed we can prove that it
is true by the transfer principle. For any real we have

, and by the transfer principle this holds for the
hyperreals as well, and therefore is finite.

The second requirement is that the standard part of have a
uniquely defined value. The graph shows that we really have two
cases to consider, one on the right side of the graph, and one on the
left. Intuitively, we expect that the standard part of will
equal for positive , and for negative, and thus the
second part of the definition will not be satisfied. For a more formal
proof, we can use the transfer principle. For real with ,
for example, is always positive and greater than 1, so we conclude
based on the transfer principle that for positive
infinitesimal . But on similar grounds we can be sure that

when is negative and infinitesimal. Thus the
standard part of can have different values for
different infinitesimal values of , and we conclude that the limit is
undefined.

In examples like this, we can define a kind of one-sided limit,
notated like this:
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where the notations and are to be read “as
approaches zero from below,” and “as x approaches zero from
above.”

3.3 L’Hopital’s rule
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Consider the limit

Plugging in doesn’t work, because we get 0/0. Division by zero is undefined, both in
the real number system and in the hyperreals. A nonzero number divided by a small
number gives a big number; a nonzero number divided by a very small number gives
a very big number; and a nonzero number divided by an infinitesimal number gives an
infinite number. On the other hand, dividing zero by zero means looking for a solution
to the equation , where q is the result of the division. But any is a solution of
this equation, so even speaking casually, it’s not correct to say that 0/0 is infinite; it’s
not infinite, it’s anything we like.

Since plugging in zero didn’t work, let’s try estimating the limit by plugging in a number
for that’s small, but not zero. On a calcula- tor,

It looks like the limit is 1. We can confirm our conjecture to higher precision using
Yacas’s ability to do high-precision arithmetic:

N(Sin(10^-20)/10^-20,50)

0.99999999999999999

9999999999999999999

99998333333333

It’s looking pretty one-ish. This is the idea of the Weierstrass definition of a limit: it
seems like we can get an answer as close to 1 as we like, if we’re willing to make as
close to 0 as necessary. The graph helps to make this plausible.

Fig. 3.7: The graph of
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The general idea here is that for small values of , the small-angle approximation sin
obtains, and as gets smaller and smaller, the approximation gets better and

better, so gets closer and closer to 1.

But we still haven’t proved rigorously that the limit is exactly 1. Let’s try using the
definition of the limit in terms of infinitesimals.

where we’ve used the identity , and . . .
stands for terms of order . So

In fact, this limit is the same one we would use if we were evaluating the derivative of
the sine function, applying the definition of the derivative as a limit.

We can check our work using Inf:

: (sin d)/d

1+(-0.16667)d^2+...

(The ... is where I've snipped trailing terms from the output.)

Our example involving the limit of sin is a special case of the following rule for
calculating limits involving :

L'Hopital's rule (simplest form)
If and are functions with and , the derivatives
and are defined, and the derivative , then

Proof: Since , and the derivative is defined at , is
infinitesimal, and likewise for . By the definition of the limit, the limit is the standard
part of

where by assumption the numerator and denominator are both defined (and finite,
because the derivative is defined in terms of the standard part). The standard part of a
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quotient like equals the quotient of the standard parts, provided that both and
are finite (which we've established), and (which is true by assumption). But

the standard part of is the definition of the derivative , and likewise for
, so this establishes the result.

We will generalize L'Hopital's rule in Generalizations of l’Hoˆpital’s rule (Page 78).

By the way, the housetop accent on the “o” in l’Hopital means that in Old French it
used to be spelled and pronounced “l’Hospital,” but the “s” later became silent, so they
stopped writing it. So yes, it is the same word as “hospital.”

Example
As remarked above, the example of is in some
sense circular, since the limit is equivalent to the definition of the
derivative of the sine function, so we already need to know the limit
in order to evaluate the limit! As an example that isn’t circular, let’s
evaluate

The derivative of the top is cos x , and the derivative of the bottom is
1. Evaluating these at gives 1 and 1, so the answer is 1/1 = 1.

Example
Evaluate

Taking the derivatives of the top and bottom, we find , which
equals 1 when evaluated at .

Example
Evaluate

Plugging in fails, because both the top and the bottom are zero.
Taking the derivatives of the top and bottom, we find ,
which blows up to infinity when . To symbolize the fact that the
limit is undefined, and undefined because it blows up to infinity, we
write
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3.4 Another perspective on indeterminate forms
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

An expression like 0/0, called an indeterminate form, can be thought of in a different
way in terms of infinitesimals. Suppose I tell you I have two infinitesimal numbers
and in my pocket, and I ask you whether is finite, infinite, or infinitesimal. You
can't tell, because and might not be infinitesimals of the same order of magnitude.
For instance, if , then is finite; but if , then is
infinite; and if , then d/e is infinitesimal. Acting this out with numbers that are
small but not infinitesimal,

On the other hand, suppose I tell you I have an infinitesimal number and a finite
number , and I ask you to speculate about . You know for sure that it's going to
be infinitesimal. Likewise, you can be sure that is infinite. These aren't
indeterminate forms.

We can do something similar with infinite numbers. If and are both infinite, then
is indeterminate. It could be infinite, for example, if was positive infinite

and . On the other hand, it could be finite if . Acting this out
with big but finite numbers,
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Example
If is a positive infinite number, is finite,
infinite, infinitesimal, or indeterminate?

Trying it with a finite, big number, we have

: H=1/d

d^-1

: sqrt(H+1)-sqrt(H-1)

d^1/2+0.125d^5/2+...

For convenience, the first line of input defines an infinite number
in terms of the calculator’s built-in infinitesimal . The result has
only positive powers of , so it’s clearly infinitesimal.

More rigorously, we can rewrite the expression as

. Since the derivative of the square
root function evaluated at is , we can approximate this
as

which is infinitesimal.

3.5 Limits at infinity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The definition of the limit in terms of infinitesimals extends immediately to limiting
processes where x gets bigger and bigger, rather than closer and closer to some finite
value. For example, the function clearly gets closer and closer to 3 as gets
bigger and bigger. If is an infinite number, then the definition says that evaluating
this expression at , where is infinitesimal, gives a result whose standard
part is 3. It doesn’t matter that happens to be infinite, the definition still works. We
also note that in this example, it doesn’t matter what infinite number is; the limit
equals 3 for any infinite . We can write this fact as
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where the symbol is to be interpreted as “nyeah nyeah, I don’t even care what
infinite number you put in here, I claim it will work out to 3 no matter what.” The
symbol is not to be interpreted as standing for any specific infinite number. That
would be the type of fallacy that lay behind the bogus proof in Safe use of
infinitesimals (Page 32) that 1 = 1/2, which assumed that all infinities had to be the
same size.

A somewhat different example is the arctangent function. The arctangent of 1000
equals approximately 1.5698, and inputting bigger and bigger numbers gives answers
that appear to get closer and closer to . But the arctangent of -1000 is
approximately -1.5698, i.e., very close to . From these numerical observations,
we conjecture that

equals for positive infinite , but for negative infinite . It would not be
correct to write

because it does matter what infinite number we pick. Instead we write

Some expressions don't have this kind of limit at all. For example, if you take the sines
of big numbers like a thousand, a million, etc., on your calculator, the results are
essentially random numbers lying between 1 and 1. They don't settle down to any
particular value, because the sine function oscillates back and forth forever. To prove
formally that is undefined, consider that the sine function, defined
on the real numbers, has the property that you can always change its result by at least
0.1 if you add either 1.5 or 1.5 to its input. For example, , and

. Applying the transfer principle to this statement, we find
that the same is true on the hyperreals. Therefore there cannot be any value l that
differs infinitesimally from for all positive infinite values of .

Often we're interested in finding the limit as approaches infinity of an expression
that is written as an indeterminate form like , where both and are infinite.
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Example
Evaluate the limit

Intuitively, if gets large enough the constant terms will be
negligible, and the top and bottom will be dominated by the and
terms, respectively, giving an answer that approaches 2.

One way to verify this is to divide both the top and the bottom by ,
giving

If x is infinite, then the standard part of the top is 2, the standard
part of the bottom is 1, and the standard part of the whole thing is
therefore 2.

Another approach is to use l’Hopital’s rule. The derivative of the top
is 2, and the derivative of the bottom is 1, so the limit is .

3.6 Generalizations of l’Hoˆpital’s rule
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Mathematical theorems are some- times like cars. I own a Honda Fit that is about as
bare-bones as you can get these days, but persuading a dealer to sell me that car was
like pulling teeth. The sales- man was absolutely certain that any sane customer would
want to pay an extra $1,800 for such crucial amenities as floor mats and a chrome
tailpipe. L’Hˆopital’s rule in its most general form is a much fancier piece of machinery
than the stripped down model described in L’Hopital’s rule (Page 72). The price you
pay for the deluxe model is that the proof becomes much more complicated than the
one-liner that sufficed for the simple version.

3.6.1 Multiple applications of the rule
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the following example, we have to use l'H^opital's rule twice before we get an
answer.

Chapter 3 78

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Example
Evaluate

Applying l’Hopital’s rule gives

which still produces 0/0 when we plug in . Going again, we get

The reason that this always works is outlined in Proofs of the generalizations of l’Hoˆ
pital’s rule (Page 179).

3.6.2 The indeterminate form ∞/∞
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Consider an example like this:

This is an indeterminate form like / rather than the 0/0 form for which we’ve
already proved l’Hopital’s rule. As proved in Proofs of the generalizations of l’Hoˆ
pital’s rule (Page 179), l’Hopital’s rule applies to examples like this as well.

Example
Evaluate

Both the numerator and the denominator go to infinity.

Differentiation of the top and bottom gives
. We can see that the reason the rule worked was that (1) the constant
terms were irrelevant because they become negligible as the
terms blow up; and (2) differentiating the blowing-up terms
makes them into the same on top and bottom, which cancel.

Note that we could also have gotten this result without l’Hopital’s
rule, simply by multiplying both the top and the bottom of the
original expression by in order to rewrite it as .
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3.6.3 Limits at infinity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

It is straightforward to prove a variant of l'Hopital's rule that allows us to do limits at
infinity. The general proof is left as an exercise (Problem 3.8 (Page 82)). The result is
that l'H^opital's rule is equally valid when the limit is at rather than at some real
number .

Example
Evaluate

We could use a change of variable to make this into Example (Page
69), which was solved using an ad hoc and multiple-step procedure.
But having established the more general form of l’Hoˆ pital’s rule, we
can do it in one step. Differentiation of the top and bot- tom
produces

3.7 Problems

3.8 Problem 3.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

(a) Prove, using the Weier- strass definition of the limit, that if limx→a f (x) = F and limx→a
g(x) = G both exist, them exactly, and check your result by numerical approximation.

Solutions for chapter 3 (Page 206)

3.9 Problem 3.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Sketch the graph of the function , and evaluate the following four limits:
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Solutions for chapter 3 (Page 206)

3.10 Problem 3.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Verify the following limits.

Solutions for chapter 3 (Page 206)

3.11 Problem 3.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

exactly, and check your result by numerical approximation.

Solutions for chapter 3 (Page 206)

3.12 Problem 3.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Amy is asked to evaluate

She applies l'Hopital's rule, differentiating top and bottom to find , which equals 1
when she plugs in . What is wrong with her reasoning?

Solutions for chapter 3 (Page 206)
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3.13 Problem 3.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

exactly, and check your result by numerical approximation.

Solutions for chapter 3 (Page 206)

3.14 Problem 3.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

exactly, and check your result by numerical approximation.

Solutions for chapter 3 (Page 206)

3.15 Problem 3.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove a form of l'Hopital's rule stating that

is equal to the limit of at infinity. Hint: change to some new variable such that
corresponds to .

Solutions for chapter 3 (Page 206)

3.16 Problem 3.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove that the linear function , where and are real, is continuous, first
using the definition of continuity in terms of infinitesimals, and then using the definition in
terms of the Weier- strass limit.

Solutions for chapter 3 (Page 206)
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Chapter  4 Integration

4.1 Definite and indefinite integrals
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Because any formula can be differentiated symbolically to find an- other formula, the
main motivation for doing derivatives numerically would be if the function to be
differentiated wasn’t known in symbolic form. A typical example might be a two-
person network computer game, in which player A’s computer needs to figure out
player B’s velocity based on knowledge of how her position changes over time. But in
most cases, it’s numerical integration that’s interesting, not numerical differentiation.

As a warm-up, let’s see how to do a running sum of a discrete function using Yacas.
The following program computes the sum discussed to in Change
in discrete steps (Page 1). Now that we’re writing real computer programs with Yacas,
it would be a good idea to enter each program into a file before trying to run it. In fact,
some of these examples won’t run properly if you just start up Yacas and type them in
one line at a time. If you’re using Adobe Reader to read this book, you can do

, select the program, copy it into a file, and then edit out the
line numbers.

Example

1 n := 1;

2 sum := 0;

3 While (n<=100) [

4 sum := sum+n;

5 n := n+1;

6 ];

7 Echo(sum)

The semicolons are to separate one instruction from the next, and they become
necessary now that we’re doing real programming. Line 1 of this program defines the
variable n, which will take on all the values from 1 to 100. Line 2 says that we haven’t
added anything up yet, so our running sum is zero so far. Line 3 says to keep on
repeating the instructions inside the square brackets until n goes past 100. Line 4
updates the running sum, and line 5 updates the value of n. If you’ve never done any
programming before, a statement like might seem like nonsense — how can
a number equal itself plus one? But that’s why we use the := symbol; it says that we’re
redefining , not stating an equation. If was previously 37, then after this statement
is executed, n will be redefined as 38. To run the program on a Linux computer, do
this (assuming you saved the pro- gram in a file named ):

83

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


yacas -pc sum.yacas

5050

Here the % symbol is the computer’s prompt. The result is 5,050, as expected. 　 One
way of stating this result is

The capital Greek letter , sigma, is used because it makes the “s” sound, and that’s the
first sound in the word “sum.” The below the sigma says the sum starts at 1, and the
100 on top says it ends at 100. The is what’s known as a dummy variable: it has no
meaning outside the context of the sum. Figure 4.1 shows the graphical interpretation of
the sum: we’re adding up the areas of a series of rectangular strips. (For clarity, the figure
only shows the sum going up to 7, rather than 100.)

Fig. 4.1: Graphical interpretation of the sum 1+2+...+7

Now how about an integral? Figure 4.2 shows the graphical interpretation of what
we’re trying to do: find the area of the shaded triangle. This is an example we know
how to do symbolically, so we can do it numerically as well, and check the answers
against each other. Symbolically, the area is given by the integral. To integrate the
function , we know we need some function with a in it, since we want
something whose derivative is , and differentiation reduces the power by one. The
derivative of would be rather than , so what we want is . Let’s
compute the area of the triangle that stretches along the axis from 0 to 100:

.

Fig. 4.2: Graphical interpretation of the integral of the function
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Figure 4.3 shows how to accomplish the same thing numerically. We break up the area
into a whole bunch of very skinny rectangles. Ideally, we’d like to make the width of
each rectangle be an infinitesimal number , so that we’d be adding up an infinite
number of infinitesimal areas. In reality, a computer can’t do that, so we divide up the
interval from to into rectangles, each with finite width

. Instead of making H infinite, we make it the largest number we can
without making the computer take too long to add up the areas of the rectangles.

Fig. 4.3: Approximating the integral numerically.

Example

1 tmax := 100;

H := 1000;

dt := tmax/H;

sum := 0;

t := 0;

While (t<=tmax) [

sum := N(sum+t*dt);

t := N(t+dt);

];

Echo(sum);

In Example (Page 85), we split the interval from to 100 into
small intervals, each with width . The result is 5,005, which agrees

with the symbolic result to three digits of precision. Changing to 10,000
gives 5, 000.5, which is one more digit. Clearly as we make the number of
rectangles greater and greater, we're converging to the correct result of
5,000.

In the Leibniz notation, the thing we've just calculated, by two different
techniques, is written like this:

It looks a lot like the notation, with the replaces by a flattened out letter “S.” The
is a dummy variable. What I’ve been casually referring to as an integral is re- ally two
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different but closely related things, known as the definite integral and the indefinite
integral.

Definition of the indefinite integral
If is a function, then a function is an indefinite integral of if, as
implied by the notation, .

Interpretation: Doing an indefinite integral means doing the opposite
of differentiation. All the possible indefinite integrals are the same
function except for an additive constant.

Example
Find the indefinite integral of the function .

Any function of the form

where is a constant, is an indefinite integral of this function, since
its derivative is .

Definition of the definite integral
If is a function, then the definite integral of from a to b is defined
as

where

Interpretation: What we’re calculating is the area under the graph of
, from to . (If the graph dips below the axis, we interpret the

area between it and the axis as a negative area.) The thing inside the
limit is a calculation like the one done in Example (Page 85), but
generalized to . If was infinite, then would be an
infinitesimal number .
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4.2 The fundamental theorem of calculus
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The fundamental theorem of calculus
Let be an indefinite integral of , and let be a continuous
function (one whose graph is a single connected curve). Then

The fundamental theorem is proved in Proof of the fundamental theorem of calculus
(Page 182). The idea it expresses is that integration and differentiation are inverse
operations. That is, integration undoes differentiation, and differentiation undoes
integration.

Example
Interpret the definite integral

graphically; then evaluate it it both symbolically and numerically,
and check that the two results are consistent.

Fig. 4.4: The definite integral

Figure 4.4 shows the graphical interpretation. The numerical
calculation requires a trivial variation on the program from Example
(Page 85):
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a := 1;

b := 2;

H := 1000;

dt := (b-a)/H;

sum := 0;

t := a;

While (t<=b) [

sum := N(sum+(1/t)*dt);

t := N(t+dt);

];

Echo(sum);

The result is 0.693897243, and increasing to 10,000 gives
0.6932221811, so we can be fairly confident that the result equals
0.693, to 3 decimal places.

Symbolically, the indefinite integral is . Using the
fundamental theorem of calculus, the area is

.

Judging from the graph, it looks plausible that the shaded area is
about 0.7.

This is an interesting example, be- cause the natural log blows up to
negative infinity as approaches 0, so it’s not possible to add a
constant onto the indefinite integral and force it to be equal to 0 at

. Nevertheless, the fundamental theorem of calculus still
works.

4.3 Properties of the integral
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Let and be two functions of , and let be a constant. We already know that for
derivatives,

and

But since the indefinite integral is just the operation of undoing a derivative, the same kind
of rules must hold true for indefinite integrals as well:
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and

And since a definite integral can be found by plugging in the upper and lower limits of
integration into the indefinite integral, the same properties must be true of definite integrals
as well.

Example
Evaluate the indefinite integral

Using the additive property, the integral becomes

Then the property of scaling by a constant lets us change this to

We need a function whose derivative is , which would be , and
one whose derivative is , which must be , so the result
is

4.4 Applications Averages
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the story of Gauss’s problem of adding up the numbers from 1 to100, one
interpretation of the result, 5,050, is that the average of all the numbers from 1 to 100
is 50.5. This is the ordinary definition of an average: add up all the things you have,
and divide by the number of things. (The result in this example makes sense, because
half the numbers are from 1 to 50, and half are from 51 to 100, so the average is half-
way between 50 and 51.)

Similarly, a definite integral can also be thought of as a kind of aver- age. In general, if
is a function of , then the average, or mean, value of on the interval from

to can be defined as

In the continuous case, dividing by b − a accomplishes the same thing as dividing by the
number of things in the discrete case.
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Example
Show that the definition of the average makes sense in the case
where the function is a constant.If is a constant, then we can take it
outside of the integral, so

Example
Find the average value of the function for values of ranging
from 0 to 1.

The mean value theorem
If the continuous function has the average value on the
interval from to , then attains its average value at least once
in that interval, i.e., there exists with such that

.

The mean value theorem is proved in Proof of the mean value theorem (Page 187).
The special case in which is known as Rolle’s theorem.

Example
Verify the mean value theorem for on the interval from 0 to 1.

The mean value is 1/3, as shown in Example (Page 90). This value is

achieved at , which lies between 0 and 1.
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4.4.1 Work
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In physics, work is a measure of the amount of energy transferred by a force; for
example, if a horse sets a wagon in motion, the horse’s force on the wagon is putting
some energy of motion into the wagon. When a force acts on an object that moves
in the direction of the force by an infinitesimal distance , the infinitesimal work

done is . Integrating both sides, we have , where the
force may depend on , and and represent the initial and final positions of the
object.

Example
A spring compressed by an amount relative to its relaxed length
provides a force . Find the amount of work that must be
done in order to compress the spring from to . (This is
the amount of energy stored in the spring, and that energy will later
be released into the toy bullet.)

The reason grows like , not just like , is that as the spring is
com- pressed more, more and more effort is required in order to
compress it.

4.4.2 Probability
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Mathematically, the probability that something will happen can be specified with a
number ranging from 0 to 1, with 0 representing impossibility and 1 representing
certainty. If you flip a coin, heads and tails both have probabilities of 1/2. The sum of
the probabilities of all the possible outcomes has to have probability 1. This is called
normalization.
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Fig. 4.5: Normalization the probability of picking land plus the probability of picking water adds up to 1.

So far we’ve discussed random processes having only two possible outcomes: yes or
no, win or lose, on or off. More generally, a random process could have a result that is
a number. Some processes yield integers, as when you roll a die and get a result from
one to six, but some are not restricted to whole numbers, e.g., the height of a human
being, or the amount of time that a uranium-238 atom will exist before undergoing
radioactive decay. The key to handling these continuous random variables is the
concept of the area under a curve, i.e., an integral.

Fig. 4.6: Probability distribution for the result of rolling a single die.

Consider a throw of a die. If the die is “honest,” then we expect all six values to be
equally likely. Since all six probabilities must add up to 1, then probability of any
particular value coming up must be 1/6. We can summarize this in a graph, f. Areas
under the curve can be interpreted as total probabilities. For instance, the area under
the curve from 1 to 3 is 1/6+1/6+1/6 = 1/2, so the probability of getting a result from 1
to 3 is 1/2. The function shown on the graph is called the probability distribution.
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Fig. 4.7: Rolling two dice and adding them up.

Figure 4.7 shows the probabilities of various results obtained by rolling two dice and
adding them together, as in the game of craps. The probabilities are not all the same.
There is a small probability of getting a two, for example, be- cause there is only one way
to do it, by rolling a one and then another one. The probability of rolling a seven is high
because there are six different ways to do it: 1+6, 2+5, etc.

If the number of possible outcomes is large but finite, for example the number of
hairs on a dog, the graph would start to look like a smooth curve rather than a
ziggurat.

What about probability distributions for random numbers that are not integers? We
can no longer make a graph with probability on the y axis, because the probability of
getting a given exact number is typically zero. For instance, there is zero probability
that a per- son will be exactly 200 cm tall, since there are infinitely many possible
results that are close to 200 but not exactly two, for example
199.99999999687687658766. It doesn’t usually make sense, therefore, to talk about
the probability of a single numerical result, but it does make sense to talk about the
probability of a certain range of results. For instance, the probability that a randomly
chosen person will be more than 170 cm and less than 200 cm in height is a perfectly
reasonable thing to discuss. We can still summarize the probability in- formation on a
graph, and we can still interpret areas under the curve as probabilities.

Fig. 4.8: A probability distribution for human height.
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But the axis can no longer be a unitless probability scale. In the example of human
height, we want the axis to have units of meters, and we want areas under the curve
to be unitless probabilities. The area of a single square on the graph paper is then

If the units are to cancel out, then the height of the square must evidently be a
quantity with units of inverse centimeters. In other words, the axis of the graph is to
be interpreted as probability per unit height, not probability.

Another way of looking at it is that the axis on the graph gives a derivative, :
the infinitesimally small probability that will lie in the infinitesimally small range
covered by .

Example
A computer language will typically have a built-in subroutine that
produces a fairly random number that is equally likely to take on any
value in the range from 0 to 1. If you take the absolute value of the
difference between two such numbers, the probability distribution is
of the form . Find the value of the constant that
is required by normalization.

Self-Check.
Compare the number of people with heights in the range of 130-135
cm to the number in the range 135-140.

Answers to self-checks for chapter 4 (Page 189)

Fig. 4.9: The average can be interpreted as the balance point of the probability

distribution.

When one random variable is related to another in some
mathematical way, the chain rule can be used to relate their
probability distributions.
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Example

Fig. 4.10:

A laser is placed one meter away from a wall, and spun on the ground
to give it a random direction, but if the angle

shown in Figure 4.10 doesn’t come out in the range from 0 to ,
the laser is spun again until an angle in the desired range is obtained.
Find the probability distribution of the distance shown in the

figure. The derivative will be required
(see Example (Page 106)).

Since any angle between 0 and is equally likely, the probability
distribution must be a constant, and normalization tells us
that the constant must be .

The laser is one meter from the wall, so the distance , measured in
meters, is given by . For the probability distribution of ,
we have

Note that the range of possible values of theoretically extends from
0 to infinity. Problem 6.7 (Page 126) deals with this.

If the next Martian you meet asks you, “How tall is an adult hu- man?,” you will
probably reply with a statement about the average human height, such as “Oh, about
5 feet 6 inches.” If you wanted to explain a little more, you could say, “But that’s only
an average. Most people are somewhere between 5 feet and 6 feet tall.” Without
bothering to draw the relevant bell curve for your new extraterrestrial acquaintance,
you’ve summarized the relevant information by giving an average and a typical range
of variation. The average of a probability distribution can be defined geometrically as
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the horizontal position at which it could be balanced if it was constructed out of
cardboard, i. This is a different way of working with averages than the one we did
earlier. Before, had a graph of versus , we implicitly assumed that all values of
were equally likely, and we found an average value of . In this new method using

probability distributions, the variable we’re averaging is on the axis, and the axis
tells us the relative probabilities of the various values.

For a discrete-valued variable with possible values, the average would be

and in the case of a continuous variable, this becomes an integral,

Example
For the situation described in Example (Page 94), find the average
value of .

Sometimes we don’t just want to know the average value of a certain variable, we also
want to have some idea of the amount of variation above and below the average. The
most common way of measuring this is the standard deviation, defined by

The idea here is that if there was no variation at all above or below the average, then
the quantity would be zero whenever was nonzero, and the standard
deviation would be zero. The reason for taking the square root of the whole thing is so
that the result will have the same units as .
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Example
For the situation described in exam- ple 59, find the standard
deviation of .

The square of the standard deviation is

　 so the standard deviation is

4.5 Problems

4.6 Problem 4.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Write a computer program similar to the one in Example (Page 87) to evaluate the
definite integral

4.7 Problem 4.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate the integral

and draw a sketch to explain why your result comes out the way it does.

Solutions for chapter 4 (Page 208)
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4.8 Problem 4.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Sketch the graph that represents the definite integral

and estimate the result roughly from the graph. Then evaluate the integral exactly,
and check against your estimate.

Solutions for chapter 4 (Page 208)

4.9 Problem 4.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Make a rough guess as to the average value of for , and then find the
exact result and check it against your guess.

Solutions for chapter 4 (Page 208)

4.10 Problem 4.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Show that the mean value theorem's assumption of continuity is necessary, by exhibiting a
discontinuous function for which the theorem fails.

Solutions for chapter 4 (Page 208)

4.11 Problem 4.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Show that the fundamental theorem of calculus's assumption of continuity for is
necessary, by exhibiting a discontinuous function for which the theorem fails.

Solutions for chapter 4 (Page 208)
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4.12 Problem 4.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Sketch the graphs of and for . Graphically, what relationship

should exist between the integrals and ? Compute both integrals,
and verify that the results are related in the expected way.

4.13 Problem 4.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate , where is a constant.

Solutions for chapter 4 (Page 208)

4.14 Problem 4.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In a gasoline-burning car engine, the exploding air-gas mixture makes a force on the
piston, and the force tapers off as the piston expands, allowing the gas to expand. (a) In
the approximation , where is the position of the piston, find the work done on
the piston as it travels from to , and show that the result only depends on the
ratio . This ratio is known as the compression ratio of the engine. (b) A better
approximation, which takes into account the cooling of the air-gas mixture as it expands, is

. Compute the work done in this case.

Fig. 4.11:
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4.15 Problem 4.10
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A certain variable varies randomly from -1 to 1, with probability distribution
.

a. Determine from the requirement of normalization.

b. Find the average value of x.

c. Find its standard deviation.

4.16 Problem 4.11
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose that we’ve already established that the derivative of an odd function is even, and
vice versa. (See Problem 2.30 (Page 58)) Something similar can be proved for integration.

However, the following is not quite right. Let be even, and let be its

indefinite integral. Then by the fundamental theorem of calculus, is the derivative of .

Since we’ve already established that the derivative of an odd function is even, we conclude

that is odd. Find all errors in the proof.

Solutions for chapter 4 (Page 208)

4.17 Problem 4.12
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A perfectly elastic ball bounces up and down forever, always coming back up to the same
height h. Find its average height.

4.18 Problem 4.13
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The figure shows a curve with a tangent line segment of length 1 that sweeps around it,
forming a new curve that is usually outside the old one. Prove Holditch’s theorem, which
states that the new curve’s area differs from the old one’s by . (This is an example of a
result that is much more difficult to prove without making use of infinitesimals.)
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Chapter  5 Techniques

5.1 Newton’s method
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the 1958 science fiction novel Have Space Suit - Will Travel, by Robert Heinlein, Kip
is a high school student who wants to be an engineer, and his father is trying to
convince him to stretch himself more if he wants to get any- thing out of his
education:

“Why did Van Buren fail of re- election? How do you extract the cube root of eighty-seven?”
Van Buren had been a president; that was all I remembered. But I could answer the other

one. “If you want a cube root, you look in a table in the back of the book.”

Dad sighed. “Kip, do you think that table was brought down from on high by an archangel?”

We no longer use tables to compute roots, but how does a pocket calculator do it? A
technique called Newton’s method allows us to calculate the inverse of any function
efficiently, including cases that aren’t preprogrammed into a calculator. In the
example from the novel, we know how to calculate the function fairly
accurately and quickly for any given value of , but we want to turn the equation
around and find when . We start with a rough mental guess: since
is a little too small, and is much too big, we guess . Testing our
guess, we have . We want to get bigger by 7.5, and we can use calculus
to find approximately how much bigger needs to get in order to accomplish that:

Increasing our value of to 4.3 +0.14 = 4.44, we find that =87.5 is a pretty good
approximation to 87. If we need higher precision, we can go through the process again
with , giving
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This second iteration gives an excellent approximation.

Example

Fig. 5.1:

Figure 5.1 shows the astronomer Johannes Kepler’s analysis of the
motion of the planets. The ellipse is the orbit of the planet around
the sun. At , the planet is at its closest approach to the sun, A.
At some later time, the planet is at point B. The angle x (measured in
radians) is defined with reference to the imaginary circle
encompassing the orbit. Kepler found the equation

where the period, , is the time required for the planet to complete a
full orbit, and the eccentricity of the ellipse, , is a number that
measures how much it differs from a circle. The relationship is
complicated because the planet speeds up as it falls inward toward
the sun, and slows down again as it swings back away from it.

The planet Mercury has . Find the angle when Mercury
has completed 1/4 of a period.

We have

and we want to find when . As a first guess, we
try (90 degrees), since the eccentricity of Mercury’s orbit is
actually much smaller than the example shown in the figure, and
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therefore the planet’s speed doesn’t vary all that much as it goes
around the sun. For this value of we have , which is too
small by 0.21.

(The derivative happens to be 1 at .) This gives a new
value of , 1.57+.21=1.78. Testing it, we have , which is
correct to within rounding errors after only one iteration. (We were
only supplied with a value of e accurate to three significant figures, so
we can’t get a result with precision better than about that level.)

5.2 Implicit differentiation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

We can differentiate any function that is written as a formula, and find a result in
terms of a formula. However, sometimes the original problem can’t be written in any
nice way as a formula. For example, suppose we want to find dy/ dx in a case where
the relationship be- tween x and y is given by the following equation:

There is no equivalent of the quadratic formula for seventh- order polynomials, so we
have no way to solve for one variable in terms of the other in order to differentiate it.
However, we can still find in terms of and . Suppose we let grow to

. Then for example the term will grow to .
The squared infinitesimal is negligible, so the increase in was re- ally just , and
we’ve really just computed the derivative of with respect to and multiplied it by

. In symbols,

That is, the change in is times the change in . Doing this to both sides of the
original equation, we have
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This still doesn’t give us a formula for the derivative in terms of alone, but it’s not
entirely use- less. For instance, if we’re given a numerical value of , we can al- ways
use Newton’s method to find , and then evaluate the derivative.

5.3 Methods of integration Change of variable
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Sometimes an unfamiliar-looking integral can be made into a familiar one by
substituting a new variable for an old one. For example, we know how to integrate

— the answer is — but what about

Let . Differentiating both sides, we have , or ,so

This technique is known as a change of variable or a substitution. (Because the letter u
is of- ten employed, you may also see it called -substitution.)

In the case of a definite integral, we have to remember to change the limits of
integration to reflect the new variable.
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Example

Evaluate .

As before, let .

Here the notation means to evaluate the function at 7 and 9, and
sub- tract the former from the latter. The result is

Sometimes, as in the next example, a clever substitution is the secret
to doing a seemingly impossible integral.

Example
Evaluate

The only hope for reducing this to a form we can do is to let .
Then , so

Example (Page 105) really isn't so tricky, since there was only one
logical choice for the substitution that had any hope of working. The
following is a little more dastardly.
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Example
Evaluate

The substitution that works is . First let’s see what this
does to the expression . The familiar identity

when divided by , gives

so becomes . But differentiating both sides of
gives

so the integral becomes

Integrate(x) 1/(1+x^2)

ArcTan(x)

Another possible answer is that you can usually smell the possibility
of this type of substitution, involving a trig function, when the thing
to be integrated contains something reminiscent of the Pythagorean
theorem, as suggested by Figure 5.2. The looks like what you’d
get if you had a right triangle with legs 1 and , and were using the
Pythagorean theorem to find its hypotenuse.

Fig. 5.2: The substitution x = tan u.
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Example

Evaluate

The looks like what you’d get if you had a right triangle with
hypotenuse 1 and a leg of length , and were using the Pythagorean
theorem to find the other leg, as in Figure 5.3. This motivates us to
try the substitution , which gives and

. The result is

Fig. 5.3: The substitution x = cos u.

5.3.1 Integration by parts
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Figure 5.4 shows a technique called integration by parts. If the integral is

easier than the integral , then we can calculate the easier one, and then by
simple geometry determine the one we wanted. Identifying the large rectangle that
surrounds both shaded areas, and the small white rectangle on the lower left, we have

In the case of an indefinite integral, we have a similar relationship de- rived from the
product rule:

Integrating both sides, we have the following relation.
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Integration by parts

Fig. 5.4: Integration by parts

Since a definite integral can always be done by evaluating an indefinite integral at its
upper and lower limits, one usually uses this form. Integrals don't usually come
prepackaged in a form that makes it obvious that you should use integration by parts.
What the equation for integration by parts tells us is that if we can split up the
integrand into two factors, one of which (the ) we know how to integrate, we have
the option of changing the integral into a new form in which that factor becomes its
integral, and the other factor becomes its derivative. If we choose the right way of
splitting up the integrand into parts, the result can be a simplification.
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Example
Evaluate

There are two obvious possibilities for splitting up the integrand into
factors,

or

The first one is the one that lets us make progress. If , then
, and if , then integration gives .

Of the two possibilities we considered for and , the reason this
one helped was that differentiating gave , which was simpler,
and integrating gave , which was no more complicated
than before. The second possibility would have made things worse

rather than better, because integrating would have given ,
which would have been more complicated rather than less.

Example

Evaluate

This one is a little tricky, because it isn’t explicitly written as a
product, and yet we can attack it using integration by parts. Let

and
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Example

Evaluate

Integration by parts lets us split the integrand into two factors,
integrate one, differentiate the other, and then do that integral.
Integrating or differentiating does nothing. Integrating
increases the exponent, which makes the problem look harder,
whereas differentiating knocks the exponent down a step, which
makes it look easier. Let and , so that
and . We then have

Although we don’t immediately know how to evaluate this new
integral, we can subject it to the same type of inte- gration by parts,
now with and . After the second integra- tion by
parts, we have:

5.3.2 Partial fractions
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Given a function like

we can rewrite it over a common denominator like this:

But note that the original form is easily integrated to give
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While faced with the form , we wouldn’t have known how to integrate it.

Note that the original function was of the form It’s not a
coincidence that the two constants on top, −1 and +1, are opposite in sign but equal in
absolute value. To see why, consider the behavior of this function for large values of x.
Looking at the form , we might naively guess that for a
large value of such as 1000, it would come out to be somewhere on the order
thousandths. But looking at the form , we would expect it to be way
down in the millionths. This seeming paradox is resolved by noting that for large
values of , the two terms in the form very nearly cancel.
This cancellation could only have happened if the constants on top were opposites like
plus and minus one.

The idea of the method of partial fractions is that if we want to do an integral of the
form

where is an nth order polynomial, we rewrite as

where are the roots of the polynomial, i.e., the solutions of the equation
. If the polynomial is second-order, you can find the roots and using

the quadratic formula; I'll assume for the time being that they're real. For higher-order
polynomials, there is no surefire, easy way of finding the roots by hand, and you'd be
smart simply to use computer software to do it. In Yacas, you canfind the real roots of
a polynomial like this:

FindRealRoots(x^4-5*x^3

-25*x^2+65*x+84)

f3.,7.,-4.,-1.g

(I assume it uses Newton's method to nd them.) The constants can then be
determined by algebra, or by the following trick.

5.3.2.1 Numerical method

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose we evaluate for a value of very close to one of the roots. In the
example of the polynomial , let be the roots in
the order in which they were re-turned by Yacas. Then can be found by evaluating

at :

P(x):=x^4-5*x^3-25*x^2

+65*x+84
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N(1/P(3.000001))

-8928.5702094768

We know that for very close to 3, the expression

will be dominated by the term, so

By the same method we can find the other four constants:

dx:=.000001

N(1/P(7+dx),30)*dx

0.2840908276e-2

N(1/P(-4+dx),30)*dx

-0.4329006192e-2

N(1/P(-1+dx),30)*dx

0.1041666664e-1

construct is to tell Yacas to do a numerical calculation rather than an
exact symbolic one, and to use 30 digits of precision, in order to avoid problems with
rounding errors.) Thus,

The desired integral is

As in the simpler example started off with, where was second or- der and we got
, in this example we expect that , for

otherwise the large- behavior of the partial-fraction form would be rather than
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. This is a useful way of checking the result:

5.3.2.2 Complications

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are two possible complications:

First, the same factor may occur more than once, as in
. In this example, we have to look

for an answer of the form , the solution
being .

Second, the roots may be complex. This is no show-stopper if you’re using computer
software that handles complex numbers gracefully. (You can choose a c that makes
the result real.) In fact, as discussed in Partial fractions revisited (Page 151), some
beautiful things can happen with complex roots. But as an alternative, any polynomial
with real coefficients can be factored into linear and quadratic factors with real
coefficients. For each quadratic factor , we then have a partial fraction of the
form , where and can be determined by algebra. In Yacas, this
can be done using the function.

Example
Evaluate the integral

using the method of partial fractions. 　

FindRealRoots(x^4-8*x^3

+8*x^2-8*x+7)

{f1.,7.}

Apart(1/(x^4-8*x^3

+8*x^2-8*x+7))

((2*x)/25+3/50)/(x^2+1)

+1/(300*(x-7))

+(-1)/(12*(x-1))

We can now rewrite the integral like this:
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which we can evaluate as follows:

In fact, Yacas should be able to do the whole integral for us from
scratch, but it’s best to understand how these things work under the
hood, and to avoid being completely dependent on one particular
piece of software. As an illustration of this gem of wisdom, I found
that when I tried to make Yacas evaluate the integral in one gulp, it
choked because the calculation became too complicated! Because I
understood the ideas behind the procedure, I was still able to get a
result through a mixture of computer calculations and working it by
hand. Some- one who didn’t have the knowledge of the technique
might have tried the integral using the software, seen it fail, and
concluded, incorrectly, that the integral was one that simply couldn’t
be done. A computer is no substitute for understanding.

5.3.2.3 Residue method

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In Partial fractions (Page 110) I introduced the trick of carrying out the method of
partial fractions by evaluating numerically at , near where
blows up. Sometimes we would like to have an exact result rather than a numerical
approximation. We can accomplish this by using an infinitesimal number dx rather
than a small but finite . For simplicity, let's assume that all of the roots are
distinct, and that 's highest-order term is . We can then write as the product

. For products like this, there is a notation
(capital Greek letter "pi") that works like does for sums:

Chapter 5 114

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


It’s not necessary that the roots be real, but for now we assume that they are. We
want to find the coefficients such that

We then have

where … represents finite terms that are negligible compared to the infinite ones.
Multiplying on both sides by , we have

where the … now stand for infinitesimals which must in fact cancel out, since both i
and are real numbers.

Example
The partial-fraction decomposition of the function

was found numerically on Partial fractions (Page 110). The coefficient
of the term was found numerically to be

. Determine it exactly using the residue
method.

Differentiation gives . We then
have .

5.3.3 Integrals that can’t be done
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Integral calculus was invented in the age of powdered wigs and harpsichords, so the
original emphasis was on expressing integrals in a form that would allow numbers to
be plugged in for easy numerical evaluation by scribbling on scraps of parchment with
a quill pen. This was an era when you might have to travel to a large city to get access
to a table of logarithms.
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In this computationally impoverished environment, one always wanted to get answers
in what’s known as closed form and in terms of elementary functions.

A closed form expression means one written using a finite number of operations, as
opposed to something like the geometric series , which goes
on forever.

Elementary functions are usually taken to be addition, subtraction, multiplication,
division, logs, and exponentials, as well as other functions derivable from these. For
ex- ample, a cube root is allowed, since , and so are trig functions
and their inverses, since, as we will see in chapter 8, they can be expressed in terms of
logs and exponentials.

In theory, “closed form” doesn’t mean anything unless we state the elementary
functions that are al- lowed. In practice, when people refer to closed form, they usually
have in mind the particular set of elementary functions described above.

A traditional freshman calculus course spends such a vast amount of time teaching
you how to do integrals in closed form that it may be easy to miss the fact that this is
impossible for the vast majority of integrands that you might randomly write down.
Here are some examples of impossible integrals:

The first of these is a form that is extremely important in statistics (it describes the
area under the standard "bell curve"), so you can see that impossible integrals aren't
just obscure things that don't pop up in real life.

People who are proficient at doing integrals in closed form generally seem to work by
a process of pat- tern matching. They recognize certain integrals as being of a form
that can’t be done, so they know not to try.

Example

Students! Stand at attention! You will now evaluate in
closed form.
No sir, I can’t do that. By a change of variables of the form , where

is a constant, we could clearly put this into the form know is
impossible. 　

Sometimes an integral such as is important enough that we want to give it
a name, tabulate it, and write computer subroutines that can evaluate it numerically.
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For example, statisticians define the “error function”
Sometimes if you're not sure whether an integral can be done in closed form, you can put
it into computer software, which will tell you that it reduces to one of these functions. You
then know that it can't be done in closed form. For example, if you ask the popular web site

integrals.com to do , it spits back . This
tells you both that you shouldn't be wasting your time trying to do the integral in closed
form and that if you need to evaluate it numerically, you can do that using the erf function.

As shown in the following example, just because an indefinite integral can’t be done,
that doesn’t mean that we can never do a related definite integral.

Example

Evaluate .

The obvious substitution to try is , and this reduces the
integrand to . This proves that the corre- sponding indefinite
integral is impossible to express in closed form. How- ever, the
definite integral can be expressed in closed form; it turns out to be

. The trick for proving this is given in Example 99 (Page 163).

Sometimes computer software can’t say anything about a particular integral at all.
That doesn’t mean that the integral can’t be done. Computers are stupid, and they
may try brute-force techniques that fail because the computer runs out of memory or

CPU time For example, the integral (Problem 8.5 (Page 154))
can be done in closed form using the techniques of chapter 8, and it’s not too hard for
a proficient human to figure out how to attack it, but every computer program I’ve
tried it on has failed silently.

5.4 Problems

5.4.1 Problem 5.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Graph the function and get an approximate idea of where any of its
zeroes are (i.e., for what values of we have ). Use Newton’s method to find
the zeroes to three significant figures of precision.

5.4.2 Problem 5.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The relationship between and is given by . (a) Use Newton’s
method to find the nonzero solution for when . Answer: (b) Find
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in terms of and , and evaluate the derivative at the point on the curve you
found in part a. Answer: Based on an example by Craig B.
Watkins.

5.4.3 Problem 5.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose you want to evaluate and you've found

in a table of integrals. Use a change of variable to
find the answer to the original problem.

5.4.4 Problem 5.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.5 Problem 5.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.6 Problem 5.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.7 Problem 5.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

where is constant.
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5.4.8 Problem 5.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.9 Problem 5.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.10 Problem 5.10
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Use integration by parts to evaluate the following integrals.

5.4.11 Problem 5.11
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

Hint: Use integration by parts more than once.

5.4.12 Problem 5.12
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate
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5.4.13 Problem 5.13
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.14 Problem 5.14
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

5.4.15 Problem 5.15
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Apply integration by parts twice to

examine what happens, and manipulate the result in order to solve the original
integral. (An approach that doesn’t rely on tricks is given in Example 91 (Page 150))

5.4.16 Problem 5.16
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

1. Plan, but do not actually carry out the steps that would be required in order to
generalize the result of Example (Page 110) in order to evaluate

where and are constants. Which is easier, the generalization from 2 to , or the
one from to ? Do we need to introduce any restrictions on or ?

Solutions for chapter 5 (Page 211)

5.4.17 Problem 5.17
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The integral can't be done in closed form. Knowing this, use a change of
variable to write down a different integral that also can't be done in closed form.
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5.4.18 Problem 5.18
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Consider the integral

where is a constant. There is an obvious substitution. If this is to result in an integral
that can be evaluated in closed form by a series of integrations by parts, what are the
possible values of ? Don’t actually complete the integral; just determine what values
of will work.

Solutions for chapter 5 (Page 211)

5.4.19 Problem 5.19
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate the hundredth derivative of the function using paper and
pencil. [Vladimir Arnol'd] .

Solutions for chapter 5 (Page 211)
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Chapter  6 Improper integrals

6.1 Integrating a function that blows up
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

When we integrate a function that blows up to infinity at some point in the interval
we’re integrating, the result may be either finite or infinite.

Example 75
Integrate the function from x = 0 to x = 1.
The function blows up to infinity at one end of the region of
integration, but let’s just try evaluating it, and see what happens.

The result turns out to be finite. Intuitively, the reason for this is that
the spike at x= 0 is very skinny, and gets skinny fast as we go higher
and higher up.

Fig. 6.1:

a The integral is finite.

Fig. 6.2:

Example 76
Integrate the function from x= 0 to x= 1.
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Division by zero is undefined, so the result is undefined.
Another way of putting it, using the hyperreal number system, is that
if we were to integrate from to 1, where was an infinitesimal
number, then the result would be - 1 + 1= , which is infinite. The
smaller we make , the bigger the infinite result we get out.
Intuitively, the reason that this integral comes out infinite is that the
spike at x= 0 is fat, and doesn’t get skinny fast enough.

Fig. 6.3:

b / The integral is infinite.

These two examples were examples of improper integrals.

6.2 Limits of integration at infinity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Another type of improper integral is one in which one of the limits of integration is
infinite. The notation

means the limit of , where H is made to grow bigger and bigger.
Alternatively, we can think of it as an integral in which the top end of the interval of
integration is an infinite hyper real number. A similar interpretation applies when the
lower limit is −∞, or when both limits are infinite.

Example 77
Evaluate
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As H gets bigger and bigger, the result gets closer and closer to 1, so
the result of the improper integral is 1.
Note that this is the same graph as in example 75, but with the xand y
axes interchanged; this shows that the two different types of
improper integrals really aren’t so different.

Fig. 6.4:

c / The integral is finite.

Example 78
Newton’s law of gravity states that the gravitational force between

two objects is given by , where G is a constant,
and are the objects’ masses, and r is the center-to-center
distance between them. Compute the work that must be done to take
an object from the earth’s surface, at r = a, and remove it to r= ∞.

The answer is inversely proportional to a. In other words, if we were
able to start from higher up, less work would have to be done.
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6.3 Problems

6.3.1 Problem 6.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Integrate

or show that it diverges.

6.3.2 Problem 6.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Integrate

or show that it diverges.

6.3.3 Problem 6.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Integrate

or show that it diverges.

6.3.4 Problem 6.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Integrate

or show that it diverges.
Solutions for chapter 6 (Page 212)

6.3.5 Problem 6.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Integrate
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or show that it diverges. (Problem 5.15 (Page 120) suggests a trick for doing the
indefinite integral.)

6.3.6 Problem 6.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove that

converges, but don’t evaluate it.

6.3.7 Problem 6.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

(a) Verify that the probability distribution dP / dx given in example 60 on page 80 is
properly normalized.
(b) Find the average value of x, or show that it diverges.
(c) Find the standard deviation of x, or show that it diverges.

6.3.8 Problem 6.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Prove

Chapter 6 126

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Chapter  7 Sequences and Series

7.1 Infinite sequences
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Consider an infinite sequence of numbers like 1/2, 2/3, 3/4, 4/5,. . . We want to define
this as approaching 1, or “converging to 1.” The way to do this is to make a function
f(n), which is only well defined for integer values of n. Then f(1) = 1/2, f(2) = 2/3, and in
general f(n) = n/(n+ 1). With just a little tinkering, our definitions of limits can be
applied to this type of function (see Problem 7.1 (Page 138) ).

7.2 Infinite series
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A related question is how to rigorously define the sum of infinitely many numbers,
which is referred to as an infinite series. An example is the geometric series 1 + x+ +

+ ...= 1/(1 −x), which we used casually on page 29. The general concept of an infinite
series goes back to ancient Greek mathematics. Various supposed para- doxes about
infinite series, such as Zeno’s paradox, were exhibited, influencing Euclid to sidestep
the is- sue in his Elements, where in Book IX, Proposition 35 he provides only an
expression for the nth partial sum of the geometric series. The
case where ngets so big that becomes negligible is left to the reader’s imagination,
as in one of those scenes in a romance novel that ends with something like “...and she
surrendered...” For those with modern training, the idea is that an infinite sum like 1 +
1 + 1 + ...would clearly give an infinite result, but this is only because the terms are all
staying the same size. If the terms get smaller and smaller, and get smaller fast
enough, then the result can be finite. For example, consider the geometric series in
the case where x= 1/2, for which we expect the result 1/(1 −1/2) = 2. We have

which at the successive steps of addition equals We’re
getting closer and closer to 2, cutting the distance in half at each step. Clearly we can
get as close as we like to 2, if we’re willing to add enough terms.

Note that we ended up wanting to talk about the partial sums of the series. This is the
right way to get a rigorous definition of the convergence of series in general. In the
case of the geometric series, for ex- ample, we can define a sequence of the partial
sums 1, 1 + x, 1 + x+ . . We can then define convergence and limits of series in terms
of convergence and limits of the partial

It’s instructive to see what happens to the geometric series with x= 0.1. The geometric
series becomes
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1 + 0.1 + 0.01 + 0.001+ ... .

The partial sums are 1, 1.1, 1.11, 1.111, . We can see vividly here that adding another
term will only affect the result in a certain decimal place, without affecting any of the
earlier ones. For instance, if we needed a result that was valid to three digits past the
decimal place, we could stop at 1.111, being assured that we had attained a good
enough approximation. If we wanted an exact result, we could also observe that
multiplying the result by 9 would give 9.999 ..., which is the same as 10, so the result
must be 10/9, which is in agreement with 1/(1 −1/10) = 10/9.

One thing to watch out for with infinite series is that the axioms of the real number
system only talk about finite sums, so it’s easy to get wrong results by attempting to
apply them to infinite ones (see Problem 7.2 (Page 139)).

7.3 Tests for convergence
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are many different tests that can be used to determine whether a sequence or
series converges. I’ll briefly state three of the most useful, with sketches of their
proofs.

　 Bounded and increasing sequences: A sequence that always increases, but never
surpasses a certain value, converges.

This amounts to a restatement of the completeness axiom forThe intermediate value
theorem (Page 183), and is therefore to be interpreted not so much as a statement
about sequences but as one about the real number system. In particular, it fails if
interpreted as a statement about sequences confined entirely to the rational number
system, as we can see from the sequence 1, 1.4, 1.41,1.414, . . . consisting of the
successive decimal approximations to √2, which does not converge to any rational-
number value.

Example 79
Prove that the geometric series 1 +1/2 + 1/4 +...converges.
The sequence of partial sums is in- creasing, since each term is
positive. Each term closes half of the remaining gap separating the
previous partial sum from 2, so the sum never surpasses 2. Since the
partial sums are increasing and bounded, they converge to a limit.
Once we know that a particular series converges, we can also easily
infer the convergence of other series whose terms get smaller faster.
For example, we can be certain that if the geometric series con-
verges, so does the series

whose terms get smaller faster than any base raised to the power n.
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Alternating series with terms approaching zero: If the terms of a series
alternate in sign and approach zero, then the series converges.

Sketch of a proof: The even partial sums form an increasing
sequence, the odd sums a decreasing one. Neither of these sequences
of partial sums can be unbounded, since the difference between
partial sums nand n+ 1 would then have to be unbounded, but this
difference is simply the nth term, and the terms approach zero. Since
the even partial sums are increasing and bounded, they converge to a
limit, and similarly for the odd ones. The two limits must be equal,
since the terms approach zero.

Example 80
Prove that the series 1 −1/2 + 1/3 −1/4 + ...converges.

Its convergence follows because it is an alternating series with
decreasing terms. The sum turns out to be ln 2, although the
convergence of the series is so slow that an extremely large number
of terms is required in order to obtain a decent approximation,

The integral test: If the terms of a series anare positive and decreasing,
and f(x) is a positive and decreasing function on the real number line
such that f(n) = , then the sum of from n= 1 to ∞ converges if and

only if dx does.

Sketch of proof: Since the theorem is supposed to hold for both
convergence and divergence, and is also an “if and only if,” there are
actually four cases to prove, of which we pick the representative one
where the integral is known to converge and we want to prove
convergence of the corresponding sum. The sum and the integral can
be interpreted as the areas under two graphs: one like a smooth ramp
and one like a staircase. Sliding the staircase half a unit to the left, it
lies entirely underneath the ramp, and therefore the area under it is
also finite.

Example 81
Prove that the series 1+1/2+1/3+...diverges.

The integral of 1/xis ln x, which diverges as x approaches infinity, so
the series diverges as well.

Theratio test: If the limit R= limn→∞| +1 / |exists, then the sum of
an converges if R<1 and diverges if R>1.

The proof can be obtained by comparing with a geometric series.
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Example 82
Prove that the series 1+1/22 +1/33 +...converges.

R is easily proved to be 0, so the sum converges by the ratio test.

At this point it will seem like a mystery how anyone could have
proved the exact results claimed for some of the “special” series,
such as 1 −1/2 + 1/3 −1/4 +...= ln 2. Problems like these are not the
main focus of the chapter, and in fact there is no well- defined
toolbox of techniques that will allow any such “nice” series to be
evaluated exactly. Even a relatively innocent-looking example like

defeated some of the best mathematicians of
Europe for years (see problem 16, p. 116). It is currently unknown
whether some apparently simple

series such as converge 1.

7.4 Taylor series
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If you calculate on your calculator, you’ll find that it’s very close to 1.1. This is
because the tangent line at x= 0 on the graph of has a slope of 1 (

at x= 0), and the tangent line is a good approximation to the
exponential curve as long as we don’t get too far away from the point of tangency.

How big is the error? The actual value of is 1.10517091807565 ..., which differs
from 1.1 by about 0.005. If we go farther from the point of tangency, the
approximation gets worse. At x= 0.2, the error

1. 1Alekseyev, \On convergence of the Flint Hills series," arxiv.org/abs/1104. 5100v1
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Fig. 7.1:

a / The function , and the tangent line at x = 0.

is about 0.021, which is about four times bigger. In other words, doubling x seems to
roughly quadruple the error, so the error is proportional to ; it seems to be about

/2. Well, if we want a handy-dandy, super-accurate estimate of for small values of
x, why not just account for this error. Our new and improved estimate is

≈1 + x+

for small values of x.
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Fig. 7.2:

b / The function , and the approximation 1 + x + /2.

Figure b shows that the approximation is now extremely good for sufficiently small
values of x. The difference is that whereas 1 + x matched both the y-intercept and the
slope of the curve, 1 + x+ /2 matches the curvature as well. Recall that the second
derivative is a measure of curvature. The second derivatives of the function and its
approximation are

We can do even better. Suppose
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Fig. 7.3:

c / The function , and the approximation

we want to match the third derivatives. All the derivatives of ex, evaluated at x = 0, are
1, so we just need to add on a term proportional to x3 whose third derivative is one.
Taking the rst derivative will bring down a factor of 3 in front, and taking and the
second derivative will give a 2, so to cancel these out we need the third order term to
be (1=2)(1=3):

≈ 1 + x+
Figure c shows the result. For a significant range of xvalues close to zero, the
approximation is now so good that we can’t even see the difference between the two
functions on the graph.

On the other hand, figure d shows that the cubic approximation for somewhat larger
negative and positive values of xis poor — worse, in fact, than the linear
approximation, or even the constant approximation = 1. This is to be expected,
because any polynomial will blow up to either positive or negative infinity as x
approaches negative infinity, whereas the function is supposed to get very close to
zero for large negative x. The idea here is that derivatives are local things: they only
measure the properties of a function very close to the point at which they’re
evaluated, and they don’t necessarily tell us anything about points far away.

It's a remarkable fact, then, that by taking enough terms in a polynomial
approximation, we can always get as good an approximation to ex as necessary | it's
just that a large number of terms may be required for large values of x. In other
words, the infnite series

133



Fig. 7.4:

d / The function ex , and the approximation , on a wider scale.
always gives exactly . But what is the pattern here that would allows us to gure out,
say, the fourth-order and fth-order terms that were swept under the rug with the
symbol \. . . "? Let's do the fth-order term as an example. The point of adding in a fth-
order term is to make the fth derivative of the approximation equal to the fth
derivative of , which is 1. The rst, second, . . . derivatives of x5 are

The notation for a product like 1 ·2 ·...·n is n!, read “n factorial.” So to get a term for our
polynomial whose fifth derivative is 1, we need /5!. The result for the infinite series
is

where the special case of 0! = 1 is assumed. 2 This infinite series is called the Taylor
series for , evaluated around x= 0, and it’s true, although I haven’t proved it, that this
particular Taylor series always converges to , no matter how far x is from zero.

2. This makes sense, because, for exam- ple, 4!=5!/5, 3!=4!/4, etc., so we should have 0!=1!/1.
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In general, the Taylor series around x= 0 for a function y is

where the condition for equality of the nth order derivative is

Here the notation means that the derivative is to be evaluated at x= 0.

A Taylor series can be used to approximate other functions besides , and when you
ask your calculator to evaluate a function such as a sine or a cosine, it may actually be
using a Taylor series to do it. Taylor series are also the method Inf uses to calculate
most expressions involving infinitesimals. In example 13 on page 29, we saw that
when Inf was asked to calculate 1/(1 −d), where d was infinitesimal, the result was the
geometric series:

: 1/(1-d)

1+d+d^2+d^3+d^4

These are also the the first five terms of the Taylor series for the function y= 1/(1 −x),
evaluated around x= 0. That is, the geo- metric series 1 + x+ + + ... is really just
one special example of a Taylor series, as demonstrated in the following example.

Example 83
Find the Taylor series of y= 1/(1 −x) around x= 0.
Rewriting the function as and applying the chain rule,
we have

The pattern is that the nth derivative is n!. The Taylor series
therefore has = n!/n! = 1:

If you flip back to Tests for convergence (Page 128) and compare the
rate of convergence of the geometric series for x = 0.1 and 0.5, you’ll
see that the sum converged much more quickly for x= 0.1 than for x=
0.5. In general, we expect that any Taylor series will converge more
quickly when xis smaller. Now consider what happens at x= 1. The
series is now 1 + 1 + 1 + ..., which gives an infinite result, and we
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shouldn’t have expected any better behavior, since attempting to
evaluate 1/(1 −x) at x =1 gives division by zero. For x>1, the results
become nonsense. For example, 1/(1 −2) = −1, which is finite, but the
geometric series gives 1 + 2 + 4 + ..., which is infinite.

In general, every function’s Taylor series around x= 0 converges for
all values of xin the range defined by |x|<r, where ris some number,
known as the radius of convergence. Also, if the function is defined
by putting together other functions that are well behaved (in the
sense of converging to their own Taylor series in the relevant region),
then the Taylor series will not only converge but converge to the
correctvalue. For the function ex, the radius happen to be infinite,
whereas for 1/(1 −x) it equals 1. The following example shows a worst-
case scenario.

Example 84
The function , shown in figure e

Fig. 7.5:

e / The function never converges to its Taylor series.

never converges to its Taylor series, except at x = 0. This is because
the Taylor series for this function, evaluated around x = 0 is exactly

zero! At x = 0, we have y = 0, dy / dx = 0, = 0, and so on for
every derivative. The zero function matches the function y (x) and all
its derivatives to all orders, and yet is useless as an approximation to
y (x). The radius of convergence of the Taylor series is infinite, but it
doesn’t give correct results except at x = 0. The reason for this is that
y was built by composing two functions, w (x) = −1/ and y (w) = .
The function w is badly behaved at x = 0 because it blows up there. In
particular, it doesn’t have a well-defined Taylor series at x = 0
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Example 85
Find the Taylor series of y= sin x, evaluated around x= 0.

The first few derivatives are

We can see that there will be a cycle of sin, cos, −sin, and −cos,
repeating indefinitely. Evaluating these derivatives at x= 0, we have
0, 1, 0,−1, . . . . All the even-order terms of the series are zero, and all
the odd- order terms are ±1/n!. The result is

The linear term is the familiar small- angle approximation sin x≈x.

The radius of convergence of this series turns out to be infinite.
Intuitively the reason for this is that the factorials grow extremely
rapidly, so that the successive terms in the series eventually start
diminish quickly, even for large values of x.

Example 86
Suppose that we want to evaluate a limit of the form

where u(0) = v(0) = 0. L’Hoˆ pital’s rule tells us that we can do this by
taking derivatives on the top and bottom to form u'/v', and that, if
necessary, we can do more than one derivative, e.g.,u"/v". This was
proved using the mean value theorem. But if u and vare both
functions that converge to their Taylor series, then it is much easier
to see why this works. For ex- ample, suppose that their Taylor series
both have vanishing constant and linear terms, so that u= a + ...and
v= b + .... Then u"= 2a+ ..., and v" = 2b+ ....

A function’s Taylor series doesn’t have to be evaluated around x=0.
The Taylor series around some other center x= cis given by
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where

To see that this is the right generalization, we can do a change of
variable, defining a new function g(x) = f(x−c). The radius of
convergence is to be measured from the center crather than from 0.

Example 87
Find the Taylor series of ln x, evaluated around x= 1.

Evaluating a few derivatives, we get

Note that evaluating these at x= 0 wouldn’t have worked, since
division by zero is undefined; this is because ln xblows up to negative
infinity at x = 0. Evaluating them at x= 1, we find that the
nthderivative equals ±(n−1)!, so the coefficients of the Taylor series
are ±(n−1)!/n! = ±1/n, except for the n= 0 term, which is zero because
ln 1 = 0. The resulting series is

We can predict that its radius of convergence can’t be any greater
than 1, because ln xblows up at 0, which is at a distance of 1 from 1.

7.5 Problems

7.5.1 Problem 7.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Modify the Weierstrass definition of the limit to apply to infinite sequences. Solutions
for chapter 7 (Page 212)

Chapter 7 138

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


7.5.2 Problem 7.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

(a) Prove that the infinite se ries 1 −1 + 1 −1 + 1 −1 + ...does not converge to any limit,
using the generalization of the Weier- strass limit found in problem 1.
(b) Criticize the following argument. The series given in part a equals zero, because
addition is associative, so we can rewrite it as (1 −1) + (1 −1) + (1 −1) + ...

Solutions for chapter 7 (Page 212)

7.5.3 Problem 7.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Use the integral test to prove the convergence of the geometric series for 0 <x<1...

Solutions for chapter 7 (Page 212)

7.5.4 Problem 7.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Determine the convergence or divergence of the following series.
(a) 1 + 1/22 + 1/32 + ...
(b) 1/ln ln 3−1/ln ln 6+1/ln ln 9−1= ln ln 12 +...
(c)

(d)

Solutions for chapter 7 (Page 212)

7.5.5 Problem 7.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Give an example of a series for which the ratio test is inconclusive.

Solutions for chapter 7 (Page 212)
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7.5.6 Problem 7.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find the Taylor series expansion of cos xaround x= 0. Check your work by combining
the first two terms of this series with the first term of the sine function from example
85 on page 112 to verify that the trig identity holds for terms up
to order .

7.5.7 Problem 7.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In classical physics, the kinetic energy Kof an object of mass m moving at velocity vis

given by K= . For example, if a car is to start from a stoplight and then
accelerate up to v, this is the theoretical minimum amount of energy that would have
to be used up by burning gasoline. (In reality, a car’s engine is not 100% efficient, so
the amount of gas burned is greater.) Einstein’s theory of relativity states that the
correct equation is actually

where c is the speed of light. The fact that it diverges as v→c is interpreted to mean
that no object can be accelerated to the speed of light.2 2 X (4k)!(1103 + 26390k)
Expand K in a Taylor series, and show that the first nonvanishing term is equal to the
classical expression. This means that for velocities that are small compared to the
speed of light, the classical expression is a good approximation, and Einstein’s theory
does not contradict any of the prior empirical evidence from which the classical
expression was inferred.

7.5.8 Problem 7.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Expand in a Taylor series around x = 0. The value x= 28 lies outside this
series’ radius of convergence, but we can nevertheless use it to extract the cube root

of 28 by recognizing that . Calculate the root to four significant
figures of precision, and check it in the obvious way.
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7.5.9 Problem 7.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find the Taylor series expansion of around x= 1, and use it to evaluate
1.0595 to four significant figures of precision. Check your result by using the fact that
1.0595 is approximately the twelfth root of 2. This number is the ratio of the
frequencies of two successive notes of the chromatic scale in music, e.g., C and D-flat.

7.5.10 Problem 7.10
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In free fall, the acceleration will not be exactly constant, due to air resistance. For
example, a skydiver does not speed up indefinitely until opening her chute, but rather
approaches a certain maxi- mum velocity at which the upward force of air resistance
cancels out the force of gravity. If an object is dropped from a height h, and the time it
takes to reach the ground is used to measure the acceleration of gravity, g, then the

relative error in the result due to air resistance is 1 (http://www.opentextbooks.org.hk/
ditatopic/33508#)

where b = h/A, and Ais a constant that depends on the size, shape, and mass of the
object, and the density of the air. (For a sphere of mass mand diameter ddropping in
air, A= 4.11m/ . Cf. problem 20, p. 49.) Evaluate the constant and linear terms of the
Taylor series for the function E(b).

7.5.11 Problem 7.11
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

(a) Prove that the convergence of an infinite series is un- affected by omitting some
initial terms. (b) Similarly, prove that convergence is unaffected by multiplying all the
terms by some constant factor.

7.5.12 Problem 7.12
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The identity
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is known as the “Sophomore’s dream,” because at first glance it looks like the kind of
plausible but false statement that someone would naively dream up. Verify it
numerically by machine computation.

7.5.13 Problem 7.13
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Does sin x+ sin sin x +sin sin sin x+ ...converge? .

Solutions for chapter 7 (Page 212)

7.5.14 Problem 7.14
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

Solutions for chapter 7 (Page 212)

7.5.15 Problem 7.15
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

to six decimal places.

7.5.16 Problem 7.16
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Euler was the first to prove

This problem had defeated other great mathematicians of his time, and was famous
enough to be given a special name, the Basel problem. Here we present an argument
based closely on Euler’s and pose the problem of how to exploit Euler’s technique
further in order to prove

From the Taylor series for the sine function, we nd the related series
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The partial sums of this series are polynomials that approximate f for small values of
x. If such a polynomial were exact rather than approximate, then it would have zeroes
at x = , and we could write it as the product of its linear factors.
Euler assumed, without any more rigorous proof, that this factorization procedure
could be extended to the in nite series, so that f could be represented as the in nite
product

By multiplying this out and equating its linear term to that of the Taylor series, we nd
the claimed result. Extend this procedure to the term and prove the result claimed
for the sum of the inverse fourth powers of the integers. (The sums with odd
exponents 3 are much harder, and relatively little is known about them. The sum of
the inverse cubes is known as Apery's constant.)

7.5.17 Problem 7.17
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Does

converge, or not?

Solutions for chapter 7 (Page 212)

7.5.18 Problem 7.18
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluates

where n is an integer.

7.5.19 Problem 7.19
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Determine the convergence of the series

and if it converges, evaluate it.

Solutions for chapter 7 (Page 212)
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7.5.20 Problem 7.20
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Determine the convergence of the series

and if it converges, evaluate it.

Solutions for chapter 7 (Page 212)

7.5.21 Problem 7.21
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

For what integer values of p should we expect the series

to converge? A rigorous proof is very difficult and may even be an open problem, but
it is relatively straightforward to give a convincing argument.

Solutions for chapter 7 (Page 212)
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Chapter  8 Complex number
techniques

8.1 Review of complex numbers
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

For a more detailed treatment of complex numbers, see ch.3 of James Nearing’s free
book at http://www.physics.miami.edu/ nearing/mathmethods/. (http://www.physics.
miami.edu/%20nearing/mathmethods/.)

Fig. 8.1: a / Visualizing complex numbers as points in a plane.

We assume there is a number, i, such that = −1. The square roots of −1 are then i
and −i. (In electrical engineering work, where istands for current, j is sometimes used
instead.) This gives rise to a number system, called the complex numbers, containing
the real numbers as a subset.

Fig. 8.2: b / Addition of complex numbers is just like addition of vectors, although the real and

imaginary axes don’t actually represent directions in space.

Any complex number zcan be written in the form z= a+ bi, where aand bare real, and
aand b ae then referred to as the real and imaginary parts of z. A number with a zero
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real part is called an imaginary number. The complex numbers can be visualized as a
plane, figure a, with the real number line placed horizontally like the xaxis of the
familiar x−yplane, and the imaginary numbers running along the y axis. The complex
numbers are complete in a way that the real numbers aren’t: every nonzero complex
number has two square roots. For example, 1 is a real number, so it is also a member
of the complex numbers, and its square roots are −1 and 1. Like wise, −1 has square
roots iand −i, and the number ihas square roots

and

Fig. 8.3: c / A complex number and its conjugate.

Complex numbers can be added and subtracted by adding or subtracting their real
and imaginary parts, figure b. Geometrically, this is the same as vector addition.

The complex numbers a+ biand a−bi, lying at equal distances above and below the
real axis, are called complex conjugates. The results of the quadratic formula are
either both real, or complex conjugates of each other. The complex conjugate of a
number zis notated as z¯ or .

The complex numbers obey all the same rules of arithmetic as the reals, except that
they can’t be ordered along a single line. That is, it’s not possible to say whether one
complex number is greater than another. We can compare them in terms of their
magnitudes (their distances from the origin), but two distinct complex numbers may
have the same magnitude, so, for example, we can’t say whether 1 is greater than ior
iis greater than 1.

Example 88
Prove that 1/√2+ i/√2 is a square root of i.

Our proof can use any ordinary rules of arithmetic, except for
ordering.
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Example 88 showed one method of multiplying complex numbers.
However, there is another nice interpretation of complex
multiplication. We define the argument of a complex number, figure
d, as its angle in the complex plane, measured counterclockwise from
the positive real axis. Multiplying two complex numbers then
corresponds to multiplying their magnitudes, and adding their
arguments, figure e.

Self-Check
Using this interpretation of multiplication, how could you find the
square roots of a complex number?

Answers to self-checks for chapter 8 (Page 216)

z

Fig. 8.4: d / A complex number can be de- scribed in terms of its magnitude and

argument.

Example 89
The magnitude |z|of a complex number z obeys the identity =
zz¯. To prove this, we first note that z¯has the same magnitude as z,
since flip- ping it to the other side of the real axis doesn’t change its
distance from the origin. Multiplying zby z¯gives a result whose
magnitude is found by multiplying their magnitudes, so the

magnitudez of zz¯must therefore equal . Now we just have to
prove that zz¯is a positive real number. But if, for example, zlies
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counterclockwise from the real axis, then z¯lies clockwise from it. If
zhas a positive argument, then z¯has a negative one, or vice-versa.
The sum of their arguments is there- fore zero, so the result has an
argument of zero, and is on the positive real axis. 1

Fig. 8.5: e / The argument of uv is the sum of the arguments of u and v .

This whole system was built up in order to make every number have
square roots. What about cube roots, fourth roots, and so on? Does it
get even more weird when you want to do those as well? No. The
complex number system we’ve already discussed is sufficient to
handle all of them. The nicest way of thinking about it is in terms of
roots of polynomials. In the real number system, the polynomial −1
has two roots, i.e., two values of x(plus and minus one) that we can
plug in to the polynomial and get zero. Because it has these two real
roots, we can rewrite the polynomial as (x−1)(x+ 1). However, the
polynomial has no real roots. It’s ugly that in the real number
system, some second order polynomials have two roots, and can be
factored, while others can’t. In the complex number system, they all
can. For instance,x2 + 1 has roots iand −i, and can be factored as
(x−i)(x+ i). In general, the fundamental theorem of algebra states that
in the complex number system, any nth-order polynomial can be
factored completely into nlinear factors, and we can also say that it
has ncomplex roots, with the understanding that some of the roots
may be the same. For instance, the fourth- order polynomial +
can be factored as (x−i)(x+ i)(x−0)(x−0), and we say that it has four
roots, i, −i, 0, and 0, two of which happen to be the same. This is a
sensible way to think about it, because in real life, numbers are al-
ways approximations anyway, and if we make tiny, random changes
to the coefficients of this polynomial, it will have four distinct roots,
of which two just happen to be very close to zero. I’ve given a proof of
the fundamental theorem of algebra on page 162.

1. I cheated a little. If z’s argument is 30 degrees, then we could say z¯’s was -30, but we could also call it 330.
That’s OK, because 330+30 gives 360, and an argument of 360 is the same as an argument of zero.
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8.2 Euler’s formula
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Having expanded our horizons to include the complex numbers, it’s natural to want to
extend functions we knew and loved from the world of real numbers so that they can
also operate on complex numbers. The only really natural way to do this in general is
to use Taylor series. A particularly beautiful thing happens with the functions , sin x,
and cos x:

If x= iφ is an imaginary number, we have

= cos φ+ i sin φ 　 ,

a result known as Euler’s formula. The geometrical interpretation in the complex plane
is shown in figure f.

Fig. 8.6:

Fig. 8.7: f / The complex number ei φ lies on the unit circle.

Although the result may seem like something out of a freak show at first, applying the
definition 2 of the exponential function makes it clear how natural it is:

When x= iφ is imaginary, the quantity (1 + i φ /n) represents a number lying just above
1 in the complex plane. For large n, (1 + i φ /n) becomes very close to the unit circle,
and its argument is the small angle φ / n. Raising this number to the nth power
multiplies its argument by n, giving a number with an argument of φ.

2. See page 151 for an explanation of where this definition comes from and why it makes sense.
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Fig. 8.8:

Fig. 8.9: g / Leonhard Euler (1707-1783)

Euler's formula is used frequently in physics and engineering.

Example 90
Write the sine and cosine functions in terms of exponentials.

Euler’s formula for x= −iφ gives cosφ-i sinφ, since cos(- ) = cos , and
sin(- ) = - sin .

Example 91
Evaluate

Problem 5.15 (Page 120) suggested a special-purpose trick for doing
this integral. An approach that doesn’t rely on tricks is to rewrite the
cosine in terms of exponentials:

　 Since this result is the integral of a real-valued function, we’d like
it to be real, and in fact it is, since the first and second terms are
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complex conjugates of one another. If we wanted to, we could use
Euler’s theorem to convert it back to a manifestly real result. 3

Example 92
Euler found the equation

which allowed the computation of π to high precision in the era
before elec- tronic calculators, since the Taylor series for the inverse
tangent converges rapidly for small inputs. A cute way of proving the
validity of the equation is to calculate

as follows in Yacas:

(7+I)^20*(79+3*I)^8;

-1490116119384765625

00000000000000

The fact that it is purely real, and has a negative real part,
demonstrates that the quantity on the right side of the original
equation equals π + 2πn, where nis an integer. Numerical estimation
shows that n= 0. Although the proof was straightforward, it provides
zero insight into how Euler figured it out in the first place!

8.3 Partial fractions revisited
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Suppose we want to evaluate the integral

by the method of partial fractions. The quadratic formula tells us that the roots are
iand −i, setting

gives A = i/2 and B = -i/2, so

3. In general, the use of complex number techniques to do an integral could result in a complex number, but that
complex number would be a constant, which could be subsumed within the usual constant of integration.
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The attractive thing about this approach, compared with the method used on page 88,
is that it doesn’t require any tricks. If you came across this integral ten years from
now, you could pull out your old calculus book, flip through it, and say, “Oh, here we
go, there’s a way to integrate one over a polynomial — partial fractions.” On the other
hand, it’s odd that we started out trying to evaluate an integral that had nothing but
real numbers, and came out with an answer that isn’t even obviously a real number.

But what about that expression (x+i)/(x−i)? Let’s give it a name, w. The numerator and
denominator are complex conjugates of one another. Since they have the same
magnitude, we must have |w|= 1, i.e., wis a complex number that lies on the unit
circle, the kind of complex number that Euler’s formula refers to. The numerator has
an argument of , and the denominator has the same
argument but with the opposite sign. Division means subtracting arguments, so arg

. That means that the result can be rewritten using Euler’s
formula as

In other words, it’s the same result we found before, but found with- out the need for
trickery.

Example 93

Evaluate dx/sin x.

This can be tackled by rewriting the sine function in terms of
complex exponentials, changing variables to u= , and then using
partial fractions.
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8.4 Problems

8.4.1 Problem 8.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find arg i, arg(−i), and arg 37, where arg zdenotes the argument of the complex
number z.

8.4.2 Problem 8.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Visualize the following multiplications in the complex plane using the interpretation of
multiplication in terms of multiplying magnitudes and adding arguments: (i)(i) = −1,
(i)(−i) = 1, (−i)(−i) = −1.

8.4.3 Problem 8.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If we visualize zas a point in the complex plane, how should we visualize −z?

8.4.4 Problem 8.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find four different complex numbers zsuch that = 1.
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8.4.5 Problem 8.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Compute the following:

|1 + i|,arg(1 + i)

8.4.6 Problem 8.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Write the function tan x in terms of complex exponentials.

8.4.7 Problem 8.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate .

8.4.8 Problem 8.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Use Euler’s theorem to derive the addition theorems that express sin(a+ b) and cos(a+
b) in terms of the sines and cosines of a and b.

Answers to self-checks for chapter 8 (Page 216)

8.4.9 Problem 8.9
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

Answers to self-checks for chapter 8 (Page 216)
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8.4.10 Problem 8.10
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find every complex number z such that .

Answers to self-checks for chapter 8 (Page 216)

8.4.11 Problem 8.11
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Factor the expression into factors of the lowest possible order, using
complex coefficients. (Hint: use the result of problem 10.) Then do the same using real
coefficients.

Answers to self-checks for chapter 8 (Page 216)

8.4.12 Problem 8.12
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

8.4.13 Problem 8.13
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Evaluate

8.4.14 Problem 8.14
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Consider the equationf'(x) = f(f(x)). This is known as a differential equation: an equation
that relates a function to its own derivatives. What is unusual about this differential
equation is that the right-hand side involves the function nested inside itself. Given,
for example, the value of f(0), we expect the solution of this equation to exist and to be
uniquely defined for all values of x. That doesn’t mean, however, that we can write
down such a solution as a closed-form expression. Show that two closed-form
expressions do exist, of the form , and find the two values of b.
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Answers to self-checks for chapter 8 (Page 216)

8.4.15 Problem 8.15
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

(a) Discuss how the integral

could be evaluated, in principle, in closed form.
(b) See what happens when you try to evaluate it using computer software.
(c) Express it as a finite sum.

Answers to self-checks for chapter 8 (Page 216)
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Chapter  9 Iterated integrals

9.1 Integrals inside integrals
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In various applications, you need to do integrals stuck inside other integrals. These are
known as iterated integrals, or double integrals, triple integrals, etc. Similar concepts
crop up all the time even when you’re not doing calculus, so let’s start by imagining
such an example. Suppose you want to count how many squares there are on a chess
board, and you don’t know how to multiply eight times eight. You could start from the
upper left, count eight squares across, then continue with the second row, and so on,
until you how counted every square, giving the result of 64. In slightly more formal
mathematical language, we could write the following recipe: for each row, r, from 1 to
8, con- sider the columns, c, from 1 to 8, and add one to the count for each one of
them. Using the sigma notation, this becomes

　 If you’re familiar with computer programming, then you can think of this as a sum
that could be calculated using a loop nested in- side another loop. To evaluate the
result (again, assuming we don’t know how to multiply, so we have to use brute force),
we can first evaluate the inside sum, which equals 8, giving

Notice how the “dummy” variable chas disappeared. Finally we do the outside sum,
over r, and find the result of 64.

Now imagine doing the same thing with the pixels on a TV screen. The electron beam
sweeps across the screen, painting the pixels in each row, one at a time. This is really
no different than the example of the chess board, but because the pixels are so small,
you normally think of the image on a TV screen as continuous rather than discrete.
This is the idea of an integral in calculus. Suppose we want to find the area of a
rectangle of width a and height b, and we don’t know that we can just multiply to get
the area ab. The brute force way to do this is to break up the rectangle into a grid of
infinitesimally small squares, each having width dxand height dy, and therefore the
infinitesimal area dA= dxdy. For convenience, we’ll imagine that the rectangle’s lower
left corner is at the origin. Then the area is given by this integral:
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Notice how the leftmost integral sign, over y, and the rightmost differential, dy, act like
bookends, or the pieces of bread on a sandwich. Inside them, we have the integral
sign that runs over x, and the differential dxthat matches it on the right. Finally, on the
inner-most layer, we’d normally have the thing we’re integrating, but here’s it’s 1, so
I’ve omitted it. Writing the lower limits of the integrals with x = and y= helps to keep it
straight which integral goes with with differential. The result is

Area of a triangle Example 94
Find the area of a 45-45-90 right triangle having legs a.

Let the triangle’s hypotenuse run from the origin to the point (a, a),
and let its legs run from the origin to (0, a), and then to (a, a). In
other words, the triangle sits on top of its hypotenuse. Then the
integral can be set up the same way as the one before, but for a
particular value of y, values of xonly run from 0 (on the yaxis) to y(on
the hypotenuse). We then have

Note that in this example, because the upper end of the x values
depends on the value of y, it makes a difference which order we do
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the integrals in. The x integral has to be on the inside, and we have to
do it first.

Volume of a cube Example 95
Find the volume of a cube with sides of length a.

This is a three-dimensional example, so we’ll have integrals nested
three deep, and the thing we’re integrating is the volume dV= dxdydz.

Area of a circle Example 96
Find the area of a circle.

To make it easy, let’s find the area of a semicircle and then double it.
Let the circle’s radius be r, and let it be centered on the origin and
bounded below by the xaxis. Then the curved edge is given by the
equation . Since the

y integral’s limit depends on x, the x integral has to be on the outside.
The area is

The definite integral equals π, as you can find using a trig substitution
or simply by looking it up in a table, and the result is, as expected,
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for the area of the semicircle. Doubling it, we find the
expected result of for a full circle.

9.2 Applications
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Up until now, the integrand of the innermost integral has always been 1, so we really
could have done all the double integrals as single integrals. The following example is
one in which you really need to do iterated integrals.

Fig. 9.1: a / The famous tightrope walker Charles Blondin uses a long pole for its large moment of

inertia.

Moments of inertia Example 97
The moment of inertia is a measure of how difficult it is to start an
object rotating (or stop it). For example, tightrope walkers carry long
poles because they want something with a big moment of inertia. The

moment of inertia is defined by I = dm, where dm is the mass of an
infinitesimally small portion of the object, and R is the distance from
the axis of rotation.
To start with, let’s do an example that doesn’t require iterated integrals.
Let’s calculate the moment of inertia of a thin rod of mass M and length
L about a line perpendicular to the rod and passing through its center.

Now let’s do one that requires iterated integrals: the moment of inertia
of a cube of side b, for rotation about an axis that passes through its

Chapter 9 160

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


center and is parallel to four of its faces. Let the origin be at the center
of the cube, and let x be the rotation axi

The fact that the last step is a trivial integral results from the symmetry
of the problem. The integrand of the remaining double integral breaks
down into two terms, each of which depends on only one of the
variables, so we break it into two integrals,

which we know have identical results. We therefore only need to
evaluate one of them and double the result:
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9.3 Polar coordinates
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 9.2: b/ Rene Descartes (1596-1650)

Philosopher and mathematician Ren´e Descartes originated the idea of describing
plane geometry using (x, y) coordinates measured from a pair of perpendicular
coordinate axes. These rectangular coordinates are known as Cartesian co- ordinates,
in his honor.

As a logical extension of Descartes’ idea, one can find different ways of defining
coordinates on the plane, such as the polar coordinates in figure c. In polar
coordinates, the differential of area, figure d can be written as da= RdRdφ. The idea is
that since dRand dφare infinitesimally small, the shaded area in the figure is very
nearly a rectangle, measuring dRis one dimension and Rdφin the other. (The latter
follows from the definition of radian measure.)

Fig. 9.3: c / Polar coordinates.

Fig. 9.4: d / The differential of area in polar coordinates

Fig. 9.5:

Example 98
A disk has mass Mand radius b. Find its moment of inertia for
rotation about the axis passing perpendicularly through its center.
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Fig. 9.6: e / The function e−x , example 99.

Example 99
In statistics, the standard “bell curve” (also known as the normal
distribution or Gaussian) is shaped like . An area under this
curve is proportional to the probability that xlies within a certain
range. To fix the constant ofproportionality, we need to evaluate

163



which corresponds to a probability of

1. As discussed, the corresponding indefinite Integrals that can’t be
done (Page 115) in closed form. The definite integral from −∞ to +∞,
however, can be evaluated by the following devious trick due to
Poisson. We first write as a product of two copies of the integral.

Since the variable of integration xis a “dummy” variable, we can
choose it to be any letter of the alphabet. Let’s change the second one
to y:

This is in principle a pointless and trivial change, but it suggests
visualizing the right-hand side in the Cartesian plane, and
considering it as the integral of a single function that depends on
both x and y:

Switching to polar coordinates, we have

which can be done using the substitution u= , du= 2RdR:

Chapter 9 164



9.4 Spherical and cylindrical coordinates
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In cylindrical coordinates (R, φ, z), zmeasures distance along the axis, Rmeasures
distance from the axis, and φ is an angle that wraps around the axis.

Fig. 9.7: f / Cylindrical coordinates

The differential of volume in cylindrical coordinates can be written as dv = RdRdzdφ.
This follows from adding a third dimension, along the zaxis, to the rectangle in figure
d.

Example 100
Show that the expression for dvhas the right units.

Angles are unitless, since the definition of radian measure involves a
distance divided by a distance. Therefore the only factors in the
expression that have units are R, dR, and dz. If these three factors are
measured, say, in meters, then their product has units of cubic
meters, which is correct for a volume.

Example 101
Find the volume of a cone whose height is hand whose base has
radius b.

Let’s plan on putting the zintegral on the outside of the sandwich.
That means we need to express the radius rmax of the cone in terms
of z. This comes out nice and simple if we imagine the cone upside
down, with its tip at the origin. Then since we have (z= 0) = 0,
and (h) = b, evidently = zb/h.

As a check, we note that the answer has units of volume. This is the
classical result, known by the ancient Egyptians, that a cone has one
third the volume of its enclosing cylinder.
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In spherical coordinates (r, θ, φ), the coordinate rmeasures the
distance from the origin, and θand φ are analogous to latitude and
longitude, except that θis measured down from the pole rather than
from the equator.

Fig. 9.8: g/ Spherical coordinates

The differential of volume in spherical coordinates is dv = sin
θdrdθdφ.

Example 102
Find the volume of a sphere.

9.5 Problems

9.5.1 Problem 9.1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Pascal’s snail (named after E´ tienne Pascal, father of Blaise Pascal) is the shape
shown in the figure, defined by R= b(1 + cos θ) in polar coordinates.

(a) Make a rough visual estimate of its area from the figure.
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(b) Find its area exactly, and check against your result from part a.

(c) Show that your answer has the right units. [Thompson, 1919]

Fig. 9.9: Problem 1: Pascal’s snail with b = 1.

9.5.2 Problem 9.2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A cone with a curved base is r≤b[1 + c(cos2θ−k)] ,defined by r≤b and θ≤π/4 in spherical
coordinates.(a) Find its volume.(b) Show that your answer has the right units.

9.5.3 Problem 9.3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Find the moment of inertia of a sphere for rotation about an axis passing through its
center.

9.5.4 Problem 9.4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A jump-rope swinging in circles has the shape of a sine function. Find the volume
enclosed by the swinging rope, in terms of the radius bof the circle at the rope’s fattest
point, and the straight-line distance `between the ends.

9.5.5 Problem 9.5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A curvy-sided cone is defined in cylindrical coordinates by 0 ≤z≤ h and . (a)
What units are implied for the constant k? (b)Find the volume of the shape. (c) Check
that your answer to b has the right units.
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9.5.6 Problem 9.6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The discovery of nuclear fission was originally explained by modeling the atomic
nucleus as a drop of liquid. Like a water balloon, the drop could spin or vibrate, and if
the motion became sufficiently violent, the drop could split in half — undergo fission.
It was later learned that even the nuclei in matter under ordinary conditions are often
not spherical but deformed, typically with an elongated ellipsoidal shape like an
American football. One simple way of describing such a shape is with the equation

where c= 0 for a sphere, c>0 for an elongated shape, and c<0 for a flattened one.
Usually for nuclei in ordinary matter, cranges from about 0 to +0.2. The constant k is
introduced because without it, a change in cwould entail not just a change in the
shape of the nucleus, but a change in its volume as well. Observations show, on the
contrary, that the nuclear fluid is highly incompressible, just like ordinary water, so the
volume of the nucleus is not expected to change significantly, even in violent
processes like fission. Calculate the volume of the nucleus, throwing away terms of
order or higher, and show that k= 1/3 is required in order to keep the volume
constant.

9.5.7 Problem 9.7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This problem is a continuation of problem 6, and assumes the result of that problem
is already known. The Er has the type of elongated ellipsoidal shape
described in that problem, with c >0. Its mass is kg, it is observed to have
a moment of inertia of kg · for end-over-end rotation, and its shape
is believed to be described by m and c ≈ 0.2. Assuming that it rotated
rigidly, the usual equation for the moment of inertia could be applicable, but it may
rotate more like a water balloon, in which case its moment of inertia would be
significantly less because not all the mass would actually flow. Test which type of
rotation it is by calculating its moment of inertia for end-over-end rotation and
comparing with the observed moment of inertia.

9.5.8 Problem 9.8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Von K´arm´an found empirically that when a fluid flows turbulently through a
cylindrical pipe, the velocity of flow vvaries according to the “1/7 power law,”

, where is the velocity at the center of the pipe, Ris the
radius of the pipe, and ris the distance from the axis. Find the average velocity at
which water is transported through the pipe.
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Detours

Formal definition of the tangent line
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Given a function x(t), consider any point P = (a, x(a)) on its graph. Let the function`(t) be
a line passing through P. We say that `cuts through xat P if there exists some real
number d>0 such that the graph of `is on one side of the graph of xfor all a−d<t<a,
and is on the other side for all a<t<a+ d.

Definition (Marsden 1 ): A line `through P is said to be the line tangent to xat P if all
lines through P with slopes less than that of ` cut through xin one direction, while all
lines with slopes greater than P’s cut through it in the opposite direction.

The reason for the complication in the definition is that there are cases in which the
function is smooth and well-behaved throughout a certain region, but for a certain
point P in that region, all lines through P cut through P. For example, the function x(t)
= is blessed everywhere with lines that don’t cut through it — everywhere, that is,
except at t= 0, which is an inflection point (p. 17). Our definition fills in the “gap tooth”
in the derivative function in the obvious way.

Example 103
As an example, we demonstrate that the derivative of is zero where
it passes through the origin. Define the line `(t) = btwith slope b,
passing through the origin. For b<0, `cuts the graph of once at the
origin, going down and to the right. For b>0, `cuts the graph of in
three places, at t= 0 and ±√b.

Picking any positive value of dless than √b, we find that `cuts the
graph at the origin, going up and to the right. Therefore b= 0 gives
the tangent line at the origin.

Derivatives of polynomials
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Some ideas in this proof are due to Tom Goodwillie. Theorem: For n= 0, 1, 2, . . . ,the
derivative of the function xdefined by x(t) = is x˙ = .

The results for n= 0 and 1 hold by direct application of the definition of the derivative.

1. Calculus 　 Unlimited, 　 by 　 Jerrold 　 Marsden 　 and 　 Alan 　 Weinstein, http://resolver.caltech.edu/
CaltechBOOK:1981.001

169

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


For n>1, it suffices to prove (0) = 0 and (1) = n, since the result for other nonzero
values of tthen follows by the kind of scaling argument used on page 13 for the n= 2
case.

We use the following properties of the derivative, all of which follow immediately from
its definition as the slope of the tangent line:

Shift. Shifting a function x(t) horizontally to form a new function x(t+c) gives a derivative
at any newly shifted point that is the same as the derivative at the corresponding
point on the unshifted graph.

Flip. Flipping the function x(t) to form a new function x(−t) negates its derivative at t= 0.

Add. The derivative of the sum or difference of two functions is the sum or difference
of their derivatives.

For even n, (0) = 0 follows from the flip property, since x(−t) is the same function as
x(t). For n= 3, 5, . . . , we apply the definition of the derivative in the same manner as
was done in the preceding section for

n= 3.

We now need to show that (1) = n. Define the function uas

u(t) = x(t+ 1) −x(t)

= 1 + nt+ ... 　 ,

where the second line follows from the binomial theorem, and. . . represents terms
involving and higher powers. Since we’ve already established the results for n= 0
and 1, differentiation gives

u˙ (t) = n+ ... 　 .

Now let’s evaluate this at t= 0, where, as shown earlier, the terms represented by . . .
all vanish. Applying the add and shift properties, we have

(1) − (0) = n 　 .

But since (0) = 0, this completes the proof.

Although this proof was for integer exponents n≥1, the result is also true for any real
value of n; see example 24 on p. 41.

Details of the proof of the derivative of the sine
function

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Some ideas in this proof are due to Jerome Keisler (see references, p.201).

On page 28, I computed the derivative of sin tto be cos tas follows:

dx= sin(t+ dt) −sin t 　 ,

= sin tcos dt
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+ cos tsin dt−sin t

= cos tdt+ ... 　 .

We want to prove prove that the error “. . . ” introduced by the small- angle
approximations really is of order .

A quick and dirty way to check whether this is likely to be true is to use Inf to calculate
sin(t+ dt) at some specific value of t. For example, at t= 1 we have this result:

: sin(1+d)

(0.84147)+(0.54030)d

+(-0.42074)d^2+(-0.09006)d^3

+(0.03506)d^4

The small-angle approximations give sin(1 + d) ≈sin 1 + (cos 1)d. The coefficients of the
first two terms of the exact result are, as expected sin(1) = 0.84147 and cos(1) = 0.5403
..., so although the small-angle approximations have introduced some errors, they
involve only higher powers of dt, as claimed.

The demonstration with Inf has two shortcomings. One is that it only works for t= 1,
but we need to prove that the result for all values of t. That doesn’t mean that the
check for t= 1 was useless. Even though a general mathematical statement about all
numbers can never be proved by demonstrating specific examples for which it
succeeds, a single counterexample suffices to disproveit. The check for t= 1 was worth
doing, because if the first term had come out to be 0.88888, it would have
immediately disproved our claim, thereby saving us from wasting hours attempting to
prove something that wasn’t true.

The other problem is that I’ve never explained how Inf calculates this kind of thing.
The answer is that it uses something called a Taylor series, discussed in section 7.4.
Using Inf here without knowing yet how Taylor series work is like using your calculator
as a “black box” to extract the square root of √2 without knowing how it does it. Not
knowing the inner workings of the black box makes the demonstration less than
satisfying.

In any case, this preliminary check makes it sound like it’s reasonable to go on and try
to produce a real proof. We have

sin(t+ dt) = sin t+ cos tdt−E 　 ,

where the error Eintroduced by the approximations is

E= sin t(1 −cos dt)

+ cos t(dt−sin dt) 　 .

Let the radius of the circle in figure a be one, so AD is cos dtand CD is sin dt. The area
of the shaded pie slice is dt/2, and the area of triangle ABC is sin dt/2, so the error
made in the approximation sin dt≈dtequals twice the area of the dish shape formed by
line BC and arc BC. Therefore dt−sin dtis less than the area of rectangle CEBD. But
CEBD has both an infinitesimal width and an infinitesimal height, so this error is of no
more than order dt2 .
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Fig. 9.10: a / Geometrical interpretation of the error term.

For the approximation cos dt≈1, the error (represented by BD) is

, which is less than , since

sin dt<dt. Therefore this error is of order .

Formal statement of the transfer principle
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

I gave Safe use of infinitesimals (Page 32). The idea being expressed was that the
phrases “for any” and “there exists” can only be used in phrases like “for any real
number x” and “there exists a real number ysuch that. . . ” The transfer principle does
not apply to statements like “there exists an integer x such that. . . ” or even “there
exists a subset of the real numbers such that. . . ”

The way to state the transfer principle more rigorously is to get rid of the ambiguities
of the English language by restricting ourselves to a well- defined language of
mathematical symbols. This language has symbols ? and ?, meaning” for all” and” there
exists,” and these are called quantifiers. A quantifier is always immediately followed by
a variable, and then by a statement involving that variable. For example, suppose we
want to say that a number greater than 1 exists. We can write the statement ?xx>1,
read as “there exists a number xsuch that xis greater than 1.” We don’t actually need
to say “there exists a number x in the set of real numbers such that . . . ,” because our
intention here is to make statements that can be translated back and forth between
the reals and the hyper reals. In fact, we forbid this type of explicit reference to the
domain to which the quantifiers apply. This restriction is described technically by
saying that we’re only allowing first-order logic.

Quantifiers can be nested. For example, I can state the commutativity of addition as
?x?yx+ y= y+ x, and the existence of additive inverses as ?x?yx+ y= 0.

After the quantifier and the variable, we have some mathematical assertion, in which
we’re allowed to use the symbols =, >, ×and + for the basic operations of arithmetic,
and also parentheses and the logical operators ¬, ?and ?for “not,” “and,” and “or.”
Although we will often find it convenient to use other symbols, such as 0, 1, −, /, ≤, =,
etc., these are not strictly necessary. We use them only as a way of making the
formulas more readable, with the understanding that they could be translated into
the more basic symbols. For instance, I can restate ?xx>1 as ?x?y?zyz= z?x>y. The
number yends up just being a name for 1, because it’s the only number that will
always satisfy yz= z.
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Finally, these statements need to satisfy certain syntactic rules. For example, we can’t
have a string of symbols like x+ ×y, because the operators + and ×are supposed to
have numbers on both sides.

A finite string of symbols satisfying all the above rules is called a well- formed formula
(wff ) in first-order logic.

The transfer principle states that a wff is true on the real numbers if and only if it is
true on the hyperreal numbers.

If you look in an elementary algebra textbook at the statement of all the elementary
axioms of the real number system, such as commutativity of multiplication,
associativity of addition, and so on, you’ll see that they can all be expressed in terms
of first-order logic, and therefore you can use them when manipulating hyperreal
numbers. However, it’s not possible to fully characterize the real number system
without giving at least some further axioms that cannot be expressed in first order.
There is more than one way to set up these additional axioms, but for example one
common axiom to use is the Archimedean principle, which states that there is no
number that is greater than 1, greater than 1 + 1, greater than 1 + 1 + 1, and so on. If
we try to express this as a well-formed formula in first order logic, one attempt would
be ¬?xx>1 ? x >1 + 1 ? x >1 + 1 + 1 ..., where the ...indicates that the string of symbols
would have to go on forever. This doesn’t work because a well-formed formula has to
be a finite string of symbols. Another attempt would be ?x?n?N x >n, where N means
the set of integers. This one also fails to be a wff in first-order logic, because in first-
order logic we’re not allowed to explicitly refer to the domain of a quantifier. We
conclude that the transfer principle does not necessarily apply to the Archimedean
principle, and in fact the Archimedean principle is not true on the hyperreals, because
they include numbers that are infinite.

Now that we have a thorough and rigorous understanding of what the transfer
principle says, the next obvious question is why we should believe that it’s true. This is
discussed in the following section.

Is the transfer principle true?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The preceding section stated the transfer principle in rigorous language. But why
should we believe that it’s true?

One approach would be to begin deducing things about the hyperreals, and see if we
can deduce a contradiction. As a starting point, we can use the axioms of elementary
algebra, because the transfer principle tells us that those apply to the hyperreals as
well. Since we also assume that the Archimedean principle does nothold for the
hyperreals, we can also base our reasoning on that, and therefore many of the things
we can prove will be things that are true for the hyperreals, but false for the reals. This
is essentially what mathematicians started doing immediately after Newton and
Leibniz invented the calculus, and they were immediately successful in producing
contradictions. However, they weren’t using formally defined logical systems, and they
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hadn’t stated anything as specific and rigorous as the transfer principle. In particular,
they didn’t understand the need for anything like our restriction of the transfer
principle to first-order logic. If we could reach a contradiction based on the more
modern, rigorous statement of the transfer principle, that would be a different matter.
It would tell us that one of two things was true: either (1) the hyperreal number
system lacks logical self- consistency, or (2) both the hyperreals and the reals lack self-
consistency.

Abraham Robinson proved, however, around 1960 that the reals and the hyperreals
have the same level of consistency: one is self-consistent if and only if the other is. In
other words, if the hyperreals harbor a ticking logical time bomb, so do the reals. Since
most mathematicians don’t lose much sleep worrying about a lack of self-consistency
in the real number system, this is generally taken as meaning that infinitesimals have
been rehabilitated. In fact, it gives them an even higher level of respectability than
they had in the era of Gauss and Euler, when they were widely used, but
mathematicians knew a valid style of proof involving infinitesimals only because they’d
slowly developed the right “Spidey sense.”

But how in the world could Robinson have proved such a thing? It seems like a
daunting task. There is an infinite number of possible logical trains of argument in
mathematics. How could he have demonstrated, with a stroke of a pen, that noneof
them could ever lead to a contradiction (unless it indicated a contradiction lurking in
the real number system as well)? Obviously it’s not possible to check them all
explicitly.

The way modern logicians prove such things is usually by using models. For an easy
example of a model, consider Euclidean geometry. Euclid believed that the following
four postulates 2 were all self-evident:

1. Let the following be postulated: to draw a straight line from any point to any
point.

2. To extend a finite straight line continuously in a straight line.

3. To describe a circle with any center and radius.

4. That all right angles are equal to one another.

These postulates, which today we would call “axioms,” played the same role with
respect to Euclidean geometry that the elementary axioms of arithmetic play for the
real number system.

Euclid also found that he needed a fifth postulate in order to prove many of his most
important theorems, such as the Pythagorean theorem. I’ll state a different axiom that
turns out to be equivalent to it:

5. Playfair’s version of the parallel postulate: Given any infinite line L, and any point P not
on that line, there exists a unique infinite line through P that never crosses L.

The ancients believed this to be less obviously self-evident than the first four, partly
because if you were given the two lines, it could theoretically take an infinite amount

2. 2 modified slightly by me from a translation by T.L. Heath, 1925
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of time to inspect them and verify that they never crossed, even at some very distant
point. Euclid avoided even mentioning infinite lines in postulates 1-4, and he
considered postulate 5 to be so much less intuitively appealing in comparison that he
organized the Elements so that the first 28 propositions were those that could be
proved without resorting to it. Continuing the analogy with the reals and hyperreals,
the parallel postulate plays the role of the Archimedean principle: a statement about
infinity that we don’t feel quite so sure about.

For centuries, geometers tried to prove the parallel postulate from the first five. The
trouble with this kind of thing was that it could be difficult to tell what was a valid
proof and what wasn’t. The postulates were written in an ambiguous human
language, not a formal logical system. As an example of the kind of confusion that
could result, suppose we assume the following postulate, 5', in place of 5:

5': Given any infinite line L, and any point P not on that line, every infinite line through
P crosses L.

Postulate 5'plays the role for noneuclidean geometry that the negation of the
Archimedean principle plays for the hyperreals. It tells us we’re not in Kansas
anymore. If a geometer can start from postulates 1-4 and 5'and arrive at a
contradiction, then he’s made significant progress toward proving that postulate 5 has
to be true based on postulates 1-4. (He would also have to disprove another version of
the postulate, in which there is more than one parallel through P.) For centuries, there
have been reasonable-sounding arguments that seemed to give such a contradiction.
For instance, it was proved that a geometry with 5'in it was one in which distances
were limited to some finite maximum. This would appear to contradict postulate 3,
since there would be a limit on the radius of a circle. But there’s plenty of room for
disagreement here, because the ancient Greeks didn’t have any notion of a set of real
numbers. For them, the thing we would call a number was simply a finite straight line
(line segment) with a certain length. If postulate 3 says that we can make a circle given
any radius, it’s reasonable to interpret that as a statement that given any finite
straightlineas the specification of the radius, we can make the circle. There is then no
contradiction, because the too-long radius can’t be specified in the first place. This
muddle is similar to the kind of confusion that reigned for centuries after Newton: did
infinitesimals lead to contradictions?

In the 19th century, Lobachevsky and Bolyai came up with a version of Euclid’s axioms
that was more rigorously defined, and that was care- fully engineered to avoid the
kinds of contradictions that had previously been discovered in noneuclidean
geometry. This is analogous to the in- vention of the transfer principle and the
realization that the restriction to first-order logic was necessary. Lobachevsky and
Bolyai slaved away for year after year proving new results in noneuclidean geometry,
won- dering whether they would ever reach a contradiction. Eventually they started to
doubt that there were ever going to be contradictions, and finally they proved that the
contradictions didn’t exist.

The technique for proving consistency was to make a modelof the noneuclidean
system. Consider geometry done on the surface of a sphere. The word “line” in the
axioms now has to be understood as referring to a great circle, i.e., one with the same
radius as the sphere. The parallel postulate fails, because parallels don’t exist: every
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great circle intersects every other great circle. One modification has to be made to the
model in order to make it consistent with the first postulate. The constructions
described in Euclid’s postulates are tacitly assumed to be unique (and in more
rigorous formulations are explicitly stated to be so). We want there to be a unique line
defined by any two distinct points. This works fine on the sphere as long as the points
aren’t too far apart, but it fails if the points are antipodes, i.e., they lie at opposite sides
of the sphere. For example, every line of longitude on the Earth’s surface passes
through both poles. The solution to this problem is to modify what we mean by
“point.” Points at each other’s antipodes are considered to be the same point. (Or,
equivalently, we can do geometry on a hemisphere, but agree that when we go off
one edge, we “wrap around” to the opposite side.)

This spherical model obeys all the postulates of this particular system of noneuclidean
geometry. But consider now that we constructed it inside a surrounding three-
dimensional space in which the parallel postulate does hold. Now suppose we keep
on proving theorems in this system of noneuclidean geometry, filling up page after
page with proofs using words like “line,” which we mentally associate with great circles
on a certain sphere — and eventually we reach a contradiction. But now we can go
back through our proofs, and in every place where the word “line” occurs we can cross
it out with a red pencil and put in “great circle on this particular sphere.” It would now
be a proof about Euclideangeometry, and the contradiction would prove that
Euclideangeometry lacked self-consistency. We therefore arrive at the result that if
noneuclidean geometry is inconsistent, so is Euclidean geometry. Since nobody
believes that Euclidean geometry is inconsistent, this is considered the moral
equivalent of proving noneuclidean geometry to be consistent.

If you’ve been keeping the system of analogies in mind as you read this story, it should
be clear what’s coming next. If we want to prove that the hyperreals have the same
consistency as the reals, we just have to construct a modelof the hyperreals using the
reals. This is done in detail elsewhere (see Stroyan and Mathforum.org in the
references, p. 201). I’ll just sketch the general idea. A hyperreal number is represented
by an infinite sequence of real numbers. For example, the sequence

7, 7, 7, 7, ...

would be the hyperreal version of the number 7. A sequence like

1, 2, 3, ...

represents an infinite number, while

is infinitesimal. All the arithmetic operations are defined by applying them to the
corresponding members of the sequences. For example, the sum of the 7, 7, 7, . . .
sequence and the 1, 2, 3, . . . sequence would be 8, 9, 10, . . . , which we interpret as a
somewhat larger infinite number.

The big problem in this approach is how to compare hyperreals, because a
comparison like <is supposed to give an answer that is either true or false. It’s not
supposed to give a hyperreal number as the result.
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It’s clear that 8, 9, 10, . . . is greater than 1, 1, 1, . . . , because every member of the first
sequence is greater than every member of the sec- ond one. But is 8, 9, 10, . . . greater
than 9, 9, 9, . . . ? We want the answer to be “yes,” because we’re thinking of the first
one as an infinite number and the second one as the ordinary finite number 9. The
first sequence is indeed greater than the second at almost every one of the infinite
number of places at which they could be compared. The only place where it loses the
contest is at the very first position, and the only spot where we get a tie is the second
one. Essentially the idea is that we want to define a concept of what happens “almost
everywhere” on some infinite list. If one thing happens in an infinite number of places
and something else only happens at some finite number of spots, then the definition
of “almost everywhere” is clear. What’s harder is a comparison of something like these
two sequences:

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...

and

1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 3, ...

where the second sequence has longer and longer runs of ones interspersed between
the threes. The two sequences are never equal at any position, so clearly they can’t be
considered to be equal as hyperreal numbers. But there is an infinite number of spots
in which the first sequence is greater than the second, and likewise an infinite number
in which it’s less. It seems as though there are more in which it’s greater, so we
probably want to define the second sequence as being a hyperreal number that’s less
than 2. The problem is that it can be very difficult to write down an acceptable
definition of this “almost everywhere” notion. The answer is very technical, and I won’t
go into it here, but it can be done. Because two sequences could be equal almost
everywhere, we end up having to define a hyperreal number not as a particular
sequence but as a set of sequences that are equal to each other almost everywhere.

With the construction of this model, it is possible to prove that the hyperreals have the
same level of consistency as the reals.

The transfer principle applied to functions
Available under Creative Commons-ShareAlike 4.0 International License (http://
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I told you not to worry about Safe use of infinitesimals (Page 32). But since you’re
reading this, you’re obviously in need of more reassurance.

For some of these functions, the transfer principle straightforwardly guarantees that
they work for hyperreals, have all the familiar proper- ties, and can be computed in
the same way. For example, the following statement is in a suitable form to have the
transfer principle applied to it: For any real number x,x·x≥0.Changing “real” to
“hyperreal,” we find out that the square of a hyperreal number is greater than or
equal to zero, just like the square of a real number. Writing it as or calling it a
square is just a matter of notation and terminology. The same applies to this
statement: For any real number x≥0, there exists a real number y such that = x.
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Applying the transfer function to it tells us that square roots can be defined for the
hyperreals as well.

There’s a problem, however, when we get to functions like sin x and . If you look up
the definition of the sine function in a trigonometry textbook, it will be defined
geometrically, as the ratio of the lengths of two sides of a certain triangle. The transfer
principle doesn’t apply to geometry, only to arithmetic. It’s not even obvious intuitively
that it makes sense to define a sine function on the hyperreals. In an application like
the differentiation of the sine function on page 28, we only had to take sines of
hyperreal numbers that were infinitesimally close to real numbers, but if the sine is
going to be a full-fledged function defined on the hyperreals, then we should be
allowed, for example, to take the sine of an infinite number. What would that mean? If
you take the sine of a number like a million or a billion on your calculator, you just get
some apparently random result between −1 and 1. The sine function wiggles back and
forth indefinitely as xgets bigger and bigger, never settling down to any specific
limiting value. Apparently we could have sin H= 1 for a particular infinite H, and then
sin(H + π/2) = 0, sin(H + π) = −1,

. . .

It turns out that the moral equivalent of the transfer function can indeed be applied to
any function on the reals, yielding a function that is in some sense its natural “big
brother” on the the hyperreals, but the consequences can be either disturbing or
exhilirating depending on your tastes. For example, consider the function [x] that
takes a real number xand rounds it down to the greatest integer that is less than or
equal to to x, e.g., [3] = 3, and [π] = 3. This function, like any other real function, can be
extended to the hyperreals, and that means that we can define the hyperintegers, the
set of hyperreals that satisfy [x] = x. The hyperintegers include the integers as a
subset, but they also include infinite numbers. This is likely to seem magical, or even
unreasonable, if we come at the hyperreals from a purely axiomatic point of view. The
extension of functions to the hyperreals seems much more natural in view of the
construction of the hyperreals in terms of sequences given in the preceding section.
For example, the sequence 1.3, 2.3, 3.3, 4.3, 5.3, ...represents an infinite number. If we
apply the [x] function to it, we get 1, 2, 3, 4, 5, ..., which is an infinite integer.

Proof of the chain rule
Available under Creative Commons-ShareAlike 4.0 International License (http://
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In the statement of the chain rule on page 37, I followed my usual custom of writing
derivatives as dy/dx, when actually the derivative is the standard part, st(dy/dx). In
more rigorous notation, the chain rule should be stated like this:

The transfer principle allows us to rewrite the left-hand side as st[(dz/dy)(dy/dx)], and
then we can get the desired result using the identity st(ab) = st(a)st(b).

178

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Derivative of ex
Available under Creative Commons-ShareAlike 4.0 International License (http://
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All of the reasoning on page 39 would have applied equally well to any other
exponential function with a different base, such as or . Those functions would
have different values of c, so if we want to deter- mine the value of cfor the
base-ecase, we need to bring in the definition of e, or of the exponential function ,
somehow.

We can take the definition of to be

The idea behind this relation is similar to the idea of compound interest. If the interest
rate is 10%, compounded annually, then x= 0.1, and the balance grows by a factor (1 +
x) = 1.1 in one year. If, instead, we want to compound the interest monthly, we can set
the monthly interest rate to 0.1/12, and then the growth of the balance over a year is

= 1.1047, which is slightly larger because the interest from the earlier
months itself accrues interest in the later months. Continuing this limiting process, we
find = 1.1052.

If n is large, then we have a good approximation to the base-e exponential, so let’s
differentiate this finite-napproximation and try to find an approximation to the
derivative of . The chain rule tells is that the derivative of is the
derivative of the raising-to- the-nth-power function, multiplied by the derivative of the
inside stuff,

d(1 + x/n)/dx= 1/n. We then have

But evaluating this at x= 0 simply gives 1, so at x= 0, the approximation to the
derivative is exactly 1 for all values of n— it’s not even necessary to imagine going to
larger and larger values of n. This establishes that c= 1, so we have for all values of x.

Proofs of the generalizations of l’Hoˆ pital’s rule

Multiple applications of the rule
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Here we prove, as claimed, that the form of Generalizations of l’Hoˆpital’s rule (Page
78) can be generalized to the case where more than one application of the rule is
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required. The proof requires material from (Integration (Page 83)), and, as discussed in
Example 86 (Page 137) , the motivation for the result becomes much more
transparent once has read and knows about Sequences and Series (Page 127). The
reader who has arrived here while reading Limits and continuity (Page 62) will need to
defer reading this section of the proof until after Integration (Page 83), and may wish
to wait until after Sequences and Series (Page 127).

The proof can be broken down into two steps.

Step 1: We first have to establish a stronger form of l’Hˆopital’s rule that states that
lim u/v= lim / rather than lim u/v = / . This form is stronger, because in a case
like Example (Page 79) , / isn’t defined, but lim / is.

We prove the stronger form using the The mean value theorem (Page 90). For
simplicity of notation, let’s assume that the limit is being taken at x= 0.

By the fundamental theorem of calculus, we have u(x) = R x (x0) dx0

, and the mean value theorem then tells us that for some
pbetween 0 and x, u(x) = x (p). Likewise for a qin this interval, v(x) = x (q). So

but since both pand q are closer to zero than xis, the limit as they simultaneously
approach zero is the same as the limit as xapproaches zero.

Step 2: If we need to take nderivatives, the proof follows by applying the extra-
strength rule ntimes. 3

Change of variable
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

We will build up the rest of the features of l’Hˆopital’s rule using the technique of a
change of variable. To demonstrate how this works, let’s imagine that we were starting
from an even more stripped-down version of l’Hˆopital’s rule than the one on p. 61.
Say we only knew how to do limits of the form x→0 rather than x→afor an arbitrary
real number a. We could then evaluate simply by defining t = x−a and
reexpressing u and v in terms of t.

3. There is a logical subtlety here, which is that although we’ve given a clearcut recipe for cooking up a proof for any given
n, that isn’t quite the same thing as proving it for any positive integer n. This is an example where what we really need is
a technique called proof by induction. In general, proof by induction works like this. Suppose we prove some statement
about the integer 1, e.g., that l’Hˆopital’s rule is valid when you take 1 derivative. Now say that we can also prove that if
that statement holds for a given n, it also holds for n+ 1. Proof by induction means that we can then consider the
statement as having been proved for all positive integers. For suppose the contrary. Then there would be some least
nfor which it failed, but this would be a contradiction, since it would hold for n−1.
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Example 104
Reduce

to a form involving a limit at 0.

x→π x−π

.Define t= x−π. Solving for xgives x= t+ π. We substitute into the above
expression to find

If all we knew was the →0 form of l’Hoˆ pital’s rule, then this would
suffice to reduce the problem to one we knew how to solve. In fact,
this kind of change of variable works in all cases, not just for a limit
at π, so rather then going through a laborious change of variable
every time, we could simply establish the more general form on p. 61,
with→a.

The indeterminate form ∞/∞
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

To prove that l’Hˆopital’s rule works in general for ∞/∞forms, we do a change of
variable on the outputs of the functions uand vrather than their inputs. Suppose that
our original problem is of the form

where both functions blow up. 4 We then de ne U = 1=u and V = 1=v. We now have

and since Uand V both approach zero, we have reduced the problem to one that can
be solved using the version of l’Hˆopital’s rule already proved for indeterminate forms
like 0/0. Differentiating and applying the chain rule, we have

Since lim ab= lim a lim b provided that lim aand lim bare both defined, we can
rearrange factors to produce the desired result.

This change of variable is a specific example of a much more general method of
problem-solving in which we look for a way to reduce a hard problem to an easier

4. Think about what happens when only ublows up, or only v.
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one. We will encounter changes of variable again on p. 87 as a technique for
integration, which means undoing the operation of differentiation.

Proof of the fundamental theorem of calculus
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are three parts to the proof: (1) Take the equation that states the fundamental
theorem, differentiate both sides with respect to b, and show that they’re equal. (2)
Show that continuous functions with equal derivatives must be essentially the same
function, except for an additive constant. (3) Show that the constant in question is
zero.

1. By the definition of the indefinite integral, the derivative of x(b)−x(a) with respect to
bequals (b). We have to establish that this equals the following:

Since is continuous, all the values of occurring inside the sum can differ only
infinitesimally from (b). Therefore the quantity inside the limit differs only
infinitesimally from (b), and the standard part of its limit must be (b). 5

2. Suppose f and g are two continuous functions whose derivatives are equal. Then d=
f−g is a continuous function whose derivative is zero. But the only continuous function
with a derivative of zero is a constant, so f and g differ by at most an additive constant.

3. I’ve established that the derivatives with respect to bof x(b) −x(a) and are the
same, so they differ by at most an additive constant.

But at b= a, they’re both zero, so the constant must be zero.

5. If you don’t want to use infinitesimals, then you can express the derivative as a limit, and in the final step of the
argument use the mean value theorem, introduced later in the chapter.
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The intermediate value theorem
Available under Creative Commons-ShareAlike 4.0 International License (http://
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I asserted that the The intermediate value theorem (Page 63) was really more a
statement about the (real or hyperreal) number system than about functions. For
insight, consider figure b, which is a geometrical construction that constitutes the
proof of the very first proposition in Euclid’s celebrated Elements. The proposition to
be proved is that given a line segment AB, it is possible to construct an equilateral
triangle with AB as its base. The proof is by construction; that is, Euclid doesn’t just
give a logical argument that convinces us the triangle must exist, he actually
demonstrates how to construct it. First we draw a circle with center A and radius AB,
which his third postulate says we can do. Then we draw another circle with the same
radius, but centered at B. Pick one of the intersections of the circles and call it C.
Construct the line segments AC and BC (postulate 1). Then AC equals AB by the
definition of the circle, and likewise BC equals AB. Euclid also has an axiom that things
equal to the same thing are equal to one another, so it follows that AC equals BC, and
therefore the triangle is equilateral.

Fig. 9.11: b / A proof from Euclid’s Elements.

It seems like a model of mathematical rigor, but there’s a flaw in the reasoning, which
is that he assumes without justififcation that the circles do have a point in common.
To see that this is not as secure an assumption as it seems, consider the usual
Cartesian representation of plane geometry in terms of coordinates (x, y). Usually we
assume that x and yare real numbers. What if we instead do our Cartesian geometry
using rational numbers as coordinates? Euclid’s five postulates are all consistent with
this. For example, circles do exist. Let A = (0, 0) and B = (1, 0). Then there are infinitely
many pairs of rational numbers in the set that satisfies the definition of the circle
centered at A. Examples include (3/5, 4/5) and (−7/25, 24/25). The circle is also
continuous in the sense that if I specify a point on it such as (−7/25, 24/25), and a
distance that I’m allowed to make as small as I please, say , then other points
exist on the circle within that distance of the given point. However, the intersection
assumed by Euclid’s proof doesn’t exist. It would lie at (1/2, ), but doesn’t
exist in the rational number system.

In exactly the same way, we can construct counterexamples to the intermediate value
theorem if the underlying system of numbers doesn’t have the same properties as the
real numbers. For example, let y = . Then y is a continuous function, on the interval
from 0 to 1, but if we take the rational numbers as our foundation, then there is no x
for√ which y = 1/2. The solution would be x = 1 , which doesn’t exist in the rational
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number system. Notice the similarity between this problem and the one in Euclid’s
proof. In both cases we have curves that cut one another without having an
intersection. In the present example, the curves are the graphs of the functions y =
and y = 1/2.

The interpretation is that the real numbers are in some sense more densely packed
than the rationals, and with two thousand years worth of hindsight, we can see that
Euclid should have included a sixth postulate that expressed this density property.
One possible way of stating such a postulate is the following. Let L be a ray, and O its
endpoint. We think of O as the origin of the positive number line. Let P and Q be sets
of points on L such that every point in P is closer to O than every point in Q. Then
there exists some point Z on L such that Z lies at least as far from O as every point in
P, but no farther than any point in Q. Technically this property is known as
completeness. As an example, let P = {x| <2} and Q = {x| ≥2}. Then the point Z
would have to be , which shows that the rationals are not complete. The reals are
complete, and the completeness axiom can serve as one of the fundamental axioms
of the real numbers.

Note that the axiom refers to sets P and Q, and says that a certain fact is true for any
choice of those sets; it therefore isn’t the type of proposition that is covered by the
transfer principle, and in fact it fails for the hyperreals, as we can see if P is the set of
all infinitesimals and Q the positive real numbers.

Here is a skeletal proof of the intermediate value theorem, in which I’ll make some
simplifying assumptions and leave out some cases. We want to prove that if y is a
continuous real-valued function on the real interval from a to b, and if ytakes on
values and at certain points within this interval, then for any between and

, there is some real x in the interval for which y(x) = . I’ll assume the case in
which < and < .Define sets of real numbers P = {x|y≤ }, and let Q = {x|y≥

}. For simplicity, I’ll assume that every member of P is less than or equal to every
member of Q, which happens, for example, if the function y(x) is always increasing on
the interval [a, b]. If P and Q intersect, then the theorem holds. Suppose instead that P
and Q do not intersect. Using the completeness axiom, there exists some real x which
is greater than or equal to every element of P and less than or equal to every element
of Q. Suppose xbelongs to P. Then the following statement is in the right form for the
transfer principle to apply to it: for any number x'>x, y(x') > . We can conclude that
the statement is also true for the hyperreals, so that if dxis a positive infinitesimal and
x'= x+ dx, we have y(x) < , but y(x+ dx) > . Then by continuity, y(x) −y(x+ dx) is
infinitesimal. But y(x) < and y(x+ dx) > , so the standard part of y(x) must equal
. By assumption ytakes on real values for real arguments, so y(x) = . The same
reasoning applies if xbelongs to Q, and since xmust belong either to P or to Q, the
result is proved.

For an alternative proof of the intermediate value theorem by an entirely different
technique, see Keisler (References (Page 219)).

As a side issue, we could ask whether there is anything like the interme- diate value
theorem that can be applied to functions on the hyperreals. Our definition of
Continuity (Page 62) explicitly states that it only applies to real functions. Even if we
could apply the definition to a function on the hyperreals, the proof given above
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would fail, since the hyperreals lack the completeness property. As a counterexample,
let be some positive infinitesimal, and define a function y such that y = −when st(x) ≤0
and y = everywhere else. If we insist on applying the definition of continuity to this
function, it appears to be continuous, so it violates the intermediate value theorem.
Note, however, that the way this function is defined is different from the way we
usually define functions on the hyperreals. Usually we define a function on the reals,
say y = , in language to which the transfer principle applies, and then we use the
transfer principle to reason about the function’s analog on the hyperreals. For
instance, the function y = has the property that y≥0 everywhere, and the transfer
principle guarantees that that’s also true if we take y = as the definition of a
function on the hyperreals.

For functions defined in this way, the intermediate value theorem makes a statement
that the transfer principle applies to, and it is therefore true for the hyperreal version
of the function as well.

Proof of the extreme value theorem
Available under Creative Commons-ShareAlike 4.0 International License (http://
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The The extreme value theorem (Page 67) was stated. Before we can prove it, we need
to establish some preliminaries, which turn out to be interesting for their own sake.

Definition: Let C be a subset of the real numbers whose definition can be expressed in
the type of language to which the transfer principle applies. Then C is compact if for
every hyperreal number x satisfying the definition of C, the standard part of x exists
and is a member of C.

To understand the content of this definition, we need to look at the two ways in which
a set could fail to satisfy it.

First, suppose U is defined by x≥0. Then there are positive infinite hyperreal numbers
that satisfy the definition, and their standard part is not defined, so U is not compact.
The reason U is not compact is that it is unbounded.

Second, let V be defined by 0 ≤x<1. Then if dxis a positive infinites-imal, 1 −dx satisfies
the definition of V, but its standard part is 1, which is not in V, so Vis not compact. The
set Vhas boundary points at 0 and 1, and the reason it is not compact is that it doesn’t
contain its right-hand boundary point. A boundary point is a real number which is
infinitesimally close to some points inside the set, and also to some other points that
are on the outside.

We therefore arrive at the following alternative characterization of the notion of a
compact set, whose proof is straightforward.

Theorem: A set is compact if and only if it is bounded and contains all of its boundary
points.

Intuitively, the reason compact sets are interesting is that if you’re standing inside a
compact set and start taking steps in a certain direction, without ever turning around,
you’re guaranteed to approach some point in the set as a limit. (You might step over

185

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


some gaps that aren’t included in the set.) If the set was unbounded, you could just
walk forever at a constant speed. If the set didn’t contain its boundary point, then you
could asymptotically approach the boundary, but the goal you were approaching
wouldn’t be a member of the set.

The following theorem turns out to be the most difficult part of the discussion.

Theorem: A compact set contains its maximum and minimum.

Proof: Let Cbe a compact set. We know it’s bounded, so let Mbe the set of all real
numbers that are greater than any member of C. By the completeness property of the
real numbers, there is some real number x between Cand M. Let ?Cbe the set of
hyperreal numbers that satisfies the same definition that Cdoes.

Every real x' greater than x fails to satisfy the condition that defines C, and by the
transfer principle the same must be true if x' is any hyperreal, so if dx is a positive
infinitesimal, x+ dx must be outside of?C.

But now consider x−dx. The following statement holds for the reals: there is no
number x' <x that is greater than every member of C. By the transfer principle, we find
that there is some hyperreal number q in ?C that is greater than x−dx. But the
standard part of q must equal x, for otherwise stq would be a member of Cthat was
greater than x. Therefore xis a boundary point of C, and since C is compact, x is a
member of C. We conclude Ccontains its maximum. A similar argument shows that C
contains its minimum, so the theorem is proved.

There were two subtle things about this proof. The first was that we ended up
constructing the set of hyperreals ?C, which was the hyperreal “big brother” of the real
set C. This is exactly the sort of thing that the transfer principle does notguarantee we
can do. However, if you look back through the proof, you can see that ?C is used only
as a notational convenience. Rather than talking about whether a certain number was
a member of ?C, we could have referred, more cumbersomely, to whether or not it
satisfied the condition that had originally been used to define C. The price we paid for
this was a slight loss of generality. There are so many different sets of real numbers
that they can’t possibly all have explicit definitions that can be written down on a piece
of paper. However, there is very little reason to be interested in studying the
properties of a set that we were never able to define in the first place. The other
subtlety was that we had to construct the auxiliary point x−dx, but there was not much
we could actually say about x−dx itself. In particular, it might or might not have been a
member of C.

For example, if C is defined by the condition x= 0, then ?C likewise contains only the
single element 0, and x−dxis not a member of ?C. But if C is defined by 0 ≤x≤1, then
x−dx is a member of ?C.

The original goal was to prove the extreme value theorem, which is a statement about
continuous functions, but so far we haven’t said anything about functions.

Lemma: Let f be a real function defined on a set of points C. Let D be the image of C,
i.e., the set of all values f(x) that occur for some xin C. Then if fis continous and C is
compact, D is compact as well. In other words, continuous functions take compact sets
to compact sets. Proof: Let y= f(x) be any hyperreal output corresponding to a
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hyperreal input xin ?C. We need to prove that the standard part of y exists, and is a
member of D. Since C is compact, the standard part of x exists and is a member of C.
But then by continuity y differs only infinitesimally from f(stx), which is real, so sty=
f(stx) is defined and is a member of D.

We are now ready to prove the extreme value theorem, in a version slightly more
general than the one originally given on page 56.

The extreme value theorem: Any continuous function on a compact set achieves a
maximum and minimum value, and does so at specific points in the set.

Proof: Let f be continuous, and let C be the compact set on which we seek its
maximum and minimum. Then the image D as defined in the lemma above is
compact. Therefore D contains its maximum and minimum values.

Proof of the mean value theorem
Available under Creative Commons-ShareAlike 4.0 International License (http://
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Suppose that the mean value theorem is violated. Let Lbe the set of all xin the interval
from ato bsuch that y(x) < , and likewise let Mbe the set with y(x) > . If the theorem
is violated, then the union of these two sets covers the entire interval from ato b.
Neither one can be empty; if, for example, M was empty, then we would have y<

everywhere and also , but it follows directly from the definition of the
definite integral that when one function is less than another, its integral is also less
than the other’s. Since y takes on values less than and greater than , it follows from
the intermediate value theorem that y takes on the value somewhere (intuitively, at
a boundary between L and M).

Proof of the fundamental theorem of algebra
Available under Creative Commons-ShareAlike 4.0 International License (http://
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We start with the following lemma, which is intuitively obvious, because polynomials
don’t have asymptotes. Its proof is given after the proof of the main theorem.

Lemma: For any polynomial P(z) in the complex plane, its magnitude |P(z)| achieves its
minimum value at some specific point .

The fundamental theorem of algebra: In the complex number system, a nonzero nth-
order polynomial has exactly nroots, i.e., it can be factored into the form P(z) = (z−
)(z− ) ...(z− ), where the ai are complex numbers.

Proof: The proofs in the cases of n= 0 and 1 are trivial, so our strategy is to reduce
higher-ncases to lower ones. If an nth-degree polynomial P has at least one root, a,
then we can always reduce it to a polynomial of degree n−1 by dividing it by (z−a).
Therefore the theorem is proved by induction provided that we can show that every
polynomial of degree greater than zero has at least one root.
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Suppose, on the contrary, that there is an nth order polynomial P(z), with n>0, that has
no roots at all. Then by the lemma |P| achieves its minimum value at some point .
To make things more simple and concrete, we can construct another polynomial Q(z) =
P(z+ )/P( ), so that |Q| has a minimum value of 1, achieved at Q(0) = 1. This means
that Q’s constant term is 1. What about its other terms? Let Q(z) = 1+ + ...+ .
Suppose was nonzero. Then for infinitesimally small values of z, the terms of order
z2 and higher would be negligible, and we could make Q(z) be a real number less than
one by an appropriate choice of z’s argument. Therefore c1 must be zero. But that
means that if is nonzero, then for infinitesimally small z, the term dominates the

and higher terms, and again this would allow us to make Q(z) be real and less than
one for appropriately chosen values of z. Continuing this process, we find that Q(z) has
no terms at all beyond the constant term, i.e., Q(z) = 1. This contradicts the assumption
that nwas greater than zero, so we’ve proved by contradiction that there is no P with
the properties claimed.

Uninteresting proof of the lemma: Let M(r) be the minimum value of |P(z)|on the disk
defined by |z|≤r. We first prove that M(r) can’t asymptotically approach a minimum as
rapproaches infinity. Suppose to the contrary: for every r, there is some r'>rwith M(r')
<M(r).

Then by the transfer principle, the same would have to be true for hyperreal values of
r. But it’s clear that if ris infinite, the lower-order terms of Pwill be infinitesimally small
compared to the highest-order term, and therefore M(r) is infinite for infinite values of
r, which is a contradiction, since by construction M is decreasing, and finite for finite r.
We can therefore conclude by the extreme value theorem that M achieves its
minimum for some specific value of r. The least such rdescribes a circle |z|= rin the
complex plane, and the minimum of |P|on this circle must be the same as its global
minimum. Applying the extreme value function to |P(z)|as a function of arg zon the
interval 0 ≤argz≤2π, we establish the desired result.
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Answers and solutions

Answers to Self-Checks

Answers to self-checks for chapter 4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Self-Check. (Page 94):

The area under the curve from 130 to 135 cm is about 3/4 of a rectangle. The area
from 135 to 140 cm is about 1.5 rectangles. The number of people in the second range
is about twice as much. We could have converted these to actual probabilities (1
rectangle = 5 cm ×0.005 = 0.025), but that would have been pointless, because
we were just going to compare the two areas.

Answers to self-checks for chapter 6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Self-Check (Page 147):

Say we’re looking for u= √z, i.e., we want a number uthat, multiplied by itself, equals z.
Multiplication multiplies the magnitudes, so the magnitude of ucan be found by taking
the square root of the magnitude of z. Since multiplication also adds the arguments of
the numbers, squaring a number doubles its argument. Therefore we can simply
divide the argument of zby two to find the argument of u. This results in one of the
square roots of z. There is another one, which is −u, since is the same as .
This may seem a little odd:

if u was chosen so that doubling its argument gave the argument of z, then how can
the same be true for −u? Well for example, suppose the argument of zis 4 ◦. Then arg
u= 2 ◦, and arg(−u) = 182 ◦. Doubling 182 gives 364, which is actually a synonym for 4
degrees.

Solutions to homework problems

Solutions for chapter 1
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 1.1 (Page 20):
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The tangent line has to pass through the point (3,9), and it also seems, at least
approximately, to pass through (1.5,0). This gives it a slope of (9 −0)/(3 −1.5) = 9/1.5 = 6,
and that’s exactly what 2t is at t= 3.

Fig. 9.12:

Problem 1.2 (Page 20):

The tangent line has to pass through the point (0, sin( )) = (0, 0.84), and it also seems,
at least approximately, to pass through (-1.6,0). This gives it a slope of (0.84 −0)/(0
−(−1.6)) = 0.84/1.6 = 0.53. The more accurate result given in the problem can be found
using the methods of To infinity — and beyond! (Page 25).

Fig. 9.13: b / Problem 2.

Problem 1.3 (Page 20):

The derivative is a rate of change, so the derivatives of the constants
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1 and 7, which don’t change, are clearly zero. The derivative can be interpreted
geometrically as the slope of the tangent line, and since the functions tand 7tarelines,
their derivatives are simply their slopes, 1, and 7. All of these could also have been
found using the formula that says the derivative of is , but it wasn’t really
necessary to get that fancy. To find the derivative of , we can use the formula, which
gives 2t. One of the properties of the derivative is that multiplying a function by a
constant multiplies its derivative by the same constant, so the derivative of 7 must
be (7)(2t) = 14t. By similar reasoning, the derivatives of and 7 are 3 and 21 ,
respectively.

Problem 1.4 (Page 20):

One of the properties of the derivative is that the derivative of a sum is the sum of the
derivatives, so we can get this by adding up the derivatives of 3 , −4 , and 6. The
derivatives of the three terms are 21 , −8t, and 0, so the derivative of the whole thing
is 21 −8t.

Problem 1.5 (Page 21):

This is exactly like problem 4, except that instead of explicit numerical constants like 3
and −4, this problem involves symbolic constants a, b, and c. The result is 2at+ b.

Problem 1.6 (Page 21):

The first thing that comes to mind is 3t. Its graph would be a line with a slope of 3,
passing through the origin. Any other line with a slope of3 would work too, e.g., 3t+ 1.

Problem 1.7 (Page 21):

Differentiation lowers the power of a monomial by one, so to get something with an
exponent of 7, we need to differentiate something with an exponent of 8. The
derivative of would be 8 , which is eight times too big, so we really need ( /8). As
in problem 6, any other function that differed by an additive constant would also
work, e.g., ( / 8) + 1.

Problem 1.8 (Page 21):

This is just like problem 7, but we need something whose derivative is three times
bigger. Since multiplying by a constant multiplies the derivative by the same constant,
the way to accomplish this is to take the answer to problem 7, and multiply by three. A
possible answer is (3/8) , or that function plus any constant.

Problem 1.9 (Page 21):

This is just a slight generalization of problem 8. Since the derivative of a sum is the
sum of the derivatives, we just need to handle each term individually, and then add up
the results. The answer is (3/8) −(4/3) + 6t, or that function plus any constant.

Problem 1.10 (Page 22):

The function v = (4/3)π looks scary and complicated, but it’s nothing more than a
constant multiplied by , if we rewrite it as v= (4/3)π . The whole thing in square
brackets is simply one big constant, which just comes along for the ride when we
differentiate. The result is v˙ = (4/3)π (3 ), or, simplifying, v˙ = 4π . (For
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further physical insight, we can factor this as 4π c, where ct is the radius of the
expanding sphere, and the part in brackets is the sphere’s surface area.)

For purposes of checking the units, we can ignore the unit- less constant 4π, which
just leaves . This has units of

, which works out to be cubic meters per second. That makes sense,
because it tells us how quickly a volume is increasing over time.

Problem 1.11 (Page 22):

This is similar to problem 10, in that it looks scary, but we can rewrite it as a simple
monomial, . The derivative is

. The car needs more and more power to accelerate as its
speed increases.

To check the units, we just need to show that the expression has units that are
like those of the original expression for K, but divided by seconds, since it’s a rate of
change of K over time. This indeed works out, since the only change in the factors that
aren’t unitless is the reduction of the powet of t from 2 to 1.

Problem 1.12 (Page 22):

The area is To make this into something we know how to
differentiate, we need to square out the expression involving T, and make it into
something that is expressed explicitly as a polynomial:

Now this is just like problem 5, except that the constants superficially look more
complicated. The result is

We expect the units of the result to be area per unit temperature, e.g., degrees per
square meter. This is a little tricky, because we have to figure out what units are
implied for the constant α. Since the question talks about 1 + αT, apparently the
quantity αTis unitless. (The 1 is unitless, and you can’t add things that have different
units.) Therefore the units of α must be “per degree,” or inverse degrees. It wouldn’t
make sense to add α and unless they had the same units (and you can check for
yourself that they do), so the whole thing inside the parentheses must have units of
inverse degrees. Multiplying by the in front, we have units of area per degree, which
is what we expected.

Problem 1.13 (Page 22):

The first derivative is 6 −1. Going again, the answer is 12t.

Problem 1.14 (Page 23):

The first derivative is 3 +2t, and the second is 6t+2. Setting this equal to zero and
solving for t, we find t= −1/3. Looking at the graph, it does look like the concavity is
down for t<−1/3, and up for t>−1/3.
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Problem 1.15 (Page 23):

I chose k = −1, and t = 1. In other words, I’m going to check the slope of the function x =
= 1/r at t = 1, and see whether it really equals

Fig. 9.14: c /

= −1. Before even doing the graph, I note that the sign makes sense: the
function 1/tis decreasing for t>0, so its slope should indeed be negative.

Fig. 9.15: d / Problem 15.

The tangent line seems to connect the points (0,2) and (2,0), so its slope does indeed
look like it’s −1.

The problem asked us to consider the logical meaning of the two possible outcomes. If
the slope had been significantly different from−1 given the accuracy of our result, the
conclusion would have been that it was incorrect to extend the rule to negative values
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of k. Although our example did come out consistent with the rule, that doesn’t prove
the rule in general. An example can disprove a conjecture, but can’t prove it. Of
course, if we tried lots and lots of examples, and they all worked, our confidence in the
conjecture would be increased.

Problem 1.16 (Page 23):

A minimum would occur where the derivative was zero. First we rewrite the function
in a form that we know how to differentiate:

We’re told to have faith that the derivative of is even for k<0, so

To simplify, we divide both sides by 12k. The left side was already zero, so it keeps
being zero.

To check that this is a minimum, not a maximum or a point of inflection, one method
is to construct a graph. The constants aand kare irrelevant to this issue. Changing
ajust rescales the horizontal raxis, and changing kdoes the same for the vertical Eaxis.
That means we can arbitrarily set a= 1 and k= 1, and construct the graph shown in the
figure. The points r= ±aare now simply r= ±1. From the graph, we can see that they’re
clearly minima. Physically, the minimum at r= −acan be interpreted as the same
physical configuration of the molecule, but with the positions of the atoms reversed. It
makes sense that r= −abehaves the same as r= a, since physically the behavior of the
system has to be symmetric, regardless of whether we view it from in front or from
behind.

The other method of checking that r= ais a minimum is to take the second derivative.
As before, the values of aand kare irrelevant, and can be set to 1. We then have
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Fig. 9.16: e / Problem 16.

Plugging in r= ±1, we get a positive result, which confirms that the concavity is upward.

Problem 1.17 (Page 23):

Since polynomials don’t have kinks or endpoints in their graphs, the maxima and
minima must be points where the derivative is zero. Differentiation bumps down all
the powers of a polynomial by one, so the derivative of a third-order polynomial is a
second-order polynomial. A second-order polynomial can have at most two real roots
(values of tfor which it equals zero), which are given by the quadratic formula. (If the
number inside the square root in the quadratic formula is zero or negative, there
could be less than two real roots.) That means a third-order polynomial can have at
most two maxima or minima.

Problem 1.18 (Page 24):

Since f, g, and sare smooth and defined everywhere, any extrema they possess occur
at places where their derivatives are zero. The converse is not necessarily true,
however; a place where the derivative is zero could be a point of inflection. The
derivative is additive, so if both f and g have zero derivatives at a certain point, sdoes
as well. Therefore in most cases, if fand gboth have an extremum at a point, so will s.
However, it could happen that this is only a point of inflection for s, so in general, we
can’t conclude anything about the extrema of ssimply from knowing where the
extrema of f and go ccur.

Going the other direction, we certainly can’t infer anything about extrema of f and g
from knowledge of s alone. For example, if s(x) = , with a minimum at x= 0, that tells
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us very little about fand g. We could have, for example, and
neither of which has an extremum at x = 0.

Problem 1.19 (Page 24):

Considering Vas a function of h, with btreated as a constant, we have for the slope of
its graph

so

Problem 1.20 (Page 24):

Thinking of the rocket’s height as a function of time, we can see that goal is to
measure the function at its maximum. The derivative is zero at the maximum, so the
error incurred due to timing is approximately zero. She should not worry about the
timing error too much. Other factors are likely to be more important, e.g., the rocket
may not rise exactly vertically above the launch pad.

Problem 1.21 (Page 24):

If , and xis a polynomial in n, then

we must have (n) = x(n) −x(n−1) = . If xis a polynomial of order k, then x(n) and
x(n−1) both have terms with coefficients of 1, so has no term. We want x˙ to
have a nonvanishing term, so we must have k≥3. For k>3, it’s easy to show that the

term in x(n) −x(n−1) is nonzero, so we must have k= 3. Let x(n) = a + b + ...,
where ais the coefficient that we want to prove is 1/3, and ...represents lower-order
terms. By the binomial theorem, we have x(n−1) = an3 −3a + b + ..., and
subtracting this from x(n) gives (n) = 3a + .... Since 3a= 1, we have a= 1/3.

Solutions for chapter 2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 2.1 (Page 51):
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where . . . indicates infinitesimal terms. The derivative is the standard part of this,
which is .

Problem 2.2 (Page 52):

The identity cos(α+ β) = cos αcos β−sin αsin βthen gives

The small-angle approximations cos dt≈1 and sin dt≈dtresult in

Problem 2.3 (Page 52):

H

1000 .032

1000,000 0.0010

1000,000,000 0.00032

The result is getting smaller and smaller, so it seems reasonable to guess that if His
infinite, the expression gives an infinitesimal result.

Problem 2.4 (Page 52):

dx

.1 .23

.001 .032

.00001 0..32

The square root is getting smaller, but is not getting smaller as fast as the number
itself. In proportion to the original number, the square root is actually getting bigger. It
looks like is infinitesimal, but it’s still infinitely big compared to dx. This makes
sense, because equals . we already knew that , which equals 1, was
infinitely big compared to dx^{1} , which equals dx. In the hierarchy of infinitesimals,

fits in between and .

Problem 2.5 (Page 52):
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Statements (a)-(d), and (f )-(g) are all valid for the hyperreals, because they meet the
test of being directly translatable, without having to interpret the meaning of things
like particular subsets of the reals in the context of the hyperreals.

Statement (e), however, refers to the rational numbers, a particular subset of the
reals, and that means that it can’t be mindlessly translated into a statement about the
hyperreals, unless we had figured out a way to translate the set of rational numbers
into some corresponding subset of the hyperreal numbers like the hyperrationals!
This is not the type of statement that the transfer principle deals with. The statement
is not true if we try to change “real” to “hyperreal” while leaving “rational” alone; for
example, it’s not true that there’s a rational number that lies between the hyperreal
numbers 0 and 0 + dx, where dxis infinitesimal.

Problem 2.6 (Page 53):

If is finite and infinite, then 1/ is infinitesimal, 1/ + 1/ differs
infinitesimally from 1/ , and the combined resistance R differs infinitesimally from

. Physically, the second pipe is blocked or too thin to carry any significant flow, so
it’s as though it weren’t present.

If is finite and is infinitesimal, then 1/ is infinite, 1/ + 1/ is also infinite,
and the combined resistance Ris infinitesimal. It’s so easy for water to flow through
that might as well not be present. In the context of electrical circuits rather than
water pipes, this is known as a short circuit.

Problem 2.7 (Page 53):

The velocity addition is only interesting if the infinitesimal velocities uand vare
comparable to one another, i.e., their ratio is finite. Let’s writefor the size of these
infinitesimals, so that both uand vcan be written asmultiplied by some finite number.
Then 1 + uv differs from 1 by an amount that is on the order of , which is
infinitesimally small compared to . The same then holds true for 1/(1 + uv) as well. The
result of velocity addition (u+ v)/(1 + uv) is then u+ v+ ..., where ...represents quantities
of order , which are amount to a correction that is infinitesimally small compared to
the nonrelativistic result u+ v.

Problem 2.8 (Page 53):

This would be a horrible problem if we had to expand this as a polynomial with 101
terms, as in chapter 1! But now we know the chain rule, so it’s easy. The derivative is

where the first factor in brackets is the derivative of the function on the outside, and
the second one is the derivative of the “inside stuff.” Simplifying a little, the answer is

.

Problem 2.9 (Page 54):

Applying the product rule, we get

(The chain rule was also required, but in a trivial way — for both of the factors, the
derivative of the “inside stuff ” was one.)
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Problem 2.10 (Page 54):

The derivative of is ·7, where the first factor is the derivative of the outside stuff
(the derivative of a base-eexponential is just the same thing), and the second factor is
the derivative of the inside stuff. This would normally be written as 7 .

The derivative of the second function is , with the second exponential factor
coming from the chain rule.

Problem 2.11 (Page 54):

We need to put together three different ideas here: (1) When a function to be
differentiated is multiplied by a constant, the constant just comes along for the ride.
(2) The derivative of the sine is the cosine. (3) We need to use the chain rule. The result
is −abcos(bx+ c).

Problem 2.13 (Page 54):

If we just wanted to fine the integral of sin x, the answer would be −cos x(or −cos xplus
an arbitrary constant), since the derivative would be −(−sin x), which would take us
back to the original function. The obvious thing to guess for the integral of asin(bx+ c)
would therefore be −acos(bx+ c), which almost works, but not quite. The derivative of
this function would be absin(bx+ c), with the pesky factor of bcoming from the chain
rule. Therefore what we really wanted was the function −(a/b) cos(bx+ c).

Problem 2.14 (Page 55):

The chain rule gives

which is the same as the result we would have gotten by differentiating .

Problem 2.15 (Page 55):

To find a maximum, we take the derivative and set it equal to zero. The whole factor of
/ gin front is just one big constant, so it comes along for the ride. To differentiate

the factor of sin θcos θ, we need to use the chain rule, plus the fact that the derivative
of sin is cos, and the derivative of cos is −sin.

We’re interested in angles between, 0 and 90 degrees, for which both the sine and the
cosine are positive, so
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To check that this is really a maximum, not a minimum or an inflection point, we could
resort to the second derivative test, but we know the graph of R(θ) is zero at θ= 0 and
θ= 90 ◦, and positive in between, so this must be a maximum.

Problem 2.17 (Page 55):

Taking the derivative and setting it equal to zero, we have , so
= , which occurs only at x = 0. The second derivative is ( + ) /2 (the same

as the original function), which is positive for all x, so the function is everywhere
concave up, and this is a minimum.

Problem 2.18 (Page 55):

There are no kinks, endpoints, etc., so extrema will occur only in places where the
derivative is zero. Applying the chain rule, we find the derivative to be cos(sin(sin x))
cos(sin x) cos x. This will be zero if any of the three factors is zero. We have cos u= 0
only when |u|≥π/2, and π/2 is greater than 1, so it’s not possible for either of the first
two factors to equal zero. The derivative will therefore equal zero if and only if cos x=
0, which happens in the same places where the derivative of sin xis zero, at x= π/2 +
πn, where nis an integer.

Fig. 9.17: Problem 18.

This essentially completes the required demonstration, but there is one more
technical issue, which is that it’s conceivable that some of these could be points of
inflection. Constructing a graph of sin (sin (sin x)) gives us the necessary insight to see
that this can’t be the case. The function essentially looks like the sine function, but its
extrema have been “shaved down” a little, giving them slightly flatter tips that don’t
quite extend out to ±1. It’s therefore fairly clear that these aren’t points of inflection.
To prove this more rigorously, we could take the second derivative and show that it
was nonzero at the places where the first derivative is zero. That would be messy. A
less tedious argument is as follows. We can tell from its formula that the function is
periodic, i.e., it has the property that f(x+ `) = f(x), for `= 2π. This follows because the
innermost sine function is periodic, and the outer layers only depend on the result of
the inner layer. Therefore all the points of the form π/2 + 2πnhave the same behavior.
Either they’re all maxima or they’re all points of inflection. But clearly a function can’t
oscillate back and forth without having any maxima at all, so they must all be maxima.
A similar argument applies to the minima.

Problem 2.19 (Page 56):

The function fhas a kink at x= 0, so it has no uniquely defined tangent line there, and
its derivative at that point is undefined. In terms of infinitesimals, positive values of
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dxgive df/dx= (dx+ dx)/dx= 2, while negative ones give df/dx = (−dx+ dx)/dx= 0. Since the
standard part of the quotient dy/dxdepends on the specific value of dx, the derivative
is undefined.

The function ghas no kink at x= 0. The graph of x|x|looks like two half-parabolas glued
together, and since both of them have slopes of 0 at x= 0, the slope of the tangent line
is well defined, and is zero. In terms of infinitesimals, dg/dyis the standard part of
|dx|+ 1, which is 1.

Problem 2.20 (Page 56):

(a) As suggested, let , so that d = Aln cosh ct= A ln .
Applying the chain rule, the velocity is

(b) The expression can be rewritten as Actanh ct.

(c) For large t, the terms become negligible, so the velocity is = Ac.
(d) From the original expression, Amust have units of distance, since the logarithm is
unitless. Also, since ctoccurs inside a function, ctmust be unitless, which means that
chas units of inverse time. The answers to parts b and c get their units from the
factors of Ac, which have units of distance multiplied by inverse time, or velocity.

Problem 2.21 (Page 56):

Since I’ve advocated not memorizing the quotient rule, I’ll do this one from first
principles, using the product rule.

(Using a trig identity, this can also be rewritten as )

Problem 2.22 (Page 57):

Reexpressing as , the derivative is .

Problem 2.23 (Page 57):

(a) Using the chain rule, the derivative of is (1/2)

(b) This is the same as a, except that the 1 is replaced with an a2 , so the answer is

. The idea would be that ahas the same units as x.
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(c) This can be rewritten as , giving a derivative of

(d) This is similar to c, but we pick up a factor of −2xfrom the chain rule, making the

result .

Problem 2.24 (Page 57):

By the chain rule, the result is 2/(2t+ 1).

Problem 2.25 (Page 57):

Using the product rule, we have

but the derivative of a constant is zero, so the first term goes away, and we get 3 cos x,
which is what we would have had just from the usual method of treating multiplicative
constants.

Problem 2.26 (Page 57):

N(Gamma(2))
1

N(Gamma(2.00001))
1.0000042278

N( (1.0000042278-1)/(.00001) )
0.4227799998

Probably only the first few digits of this are reliable.

Problem 2.27 (Page 58):

The area and volume are

and

　 .

The strategy is to use the equation for A, which is a constant, to eliminate the variable
`, and then maximize Vin terms of r.

Substituting this expression for `back into the equation for V,

To maximize this with respect to r, we take the derivative and set it equal to zero.
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In other words, the length should be the same as the diameter.

Problem 2.28 (Page 58):

(a) We can break the expression down into three factors: the constant m/2 in front, the
nonrelativistic velocity dependence , and the relativistic correction factor

. Rather than substituting in at for v, it’s a little less messy to
calculate dK/dt= (dK/dv)(dv/dt) = adK/dv. Using the product rule, we have

(b) The expression is the nonrelativistic (classical) result, and has the correct
units of kinetic energy divided by time. The factor in square brackets is the relativistic
correction, which is unitless.

(c) As vgets closer and closer to c, the expression 1 − approaches zero, so both
the terms in the relativistic correction blow up to positive infinity.

Problem 2.29 (Page 58):

We already know it works for positive x, so we only need to check it for negative x. For
negative values of x, the chain rule tells us that the derivative is 1/|x|, multiplied by −1,
since d|x|/dx= −1. This gives −1/|x|, which is the same as 1/x, since xis assumed
negative.

Problem 2.30 (Page 58):

Since f(x) = f(−x),

But by the chain rule, the right-hand side equals −f'(x), as claimed.

Problem 2.32 (Page 59):

Let f = /dx be the unknown function. Then
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where we can use the ordinary rule for derivatives of powers on , since −k+ 1
is positive. Solving for f, we have the desired result.

Problem 2.33 (Page 59):

Since the parallel postulate can be expressed in terms of algebra through Cartesian
geometry, the transfer principle tells us that it holds for F as well. But G is defined in
terms of the finite hyperreals, so statements about E don’t carry over to statements
about G simply by replacing “real” with “hyperreal,” and the transfer principle does not
guarantee that the parallel postulate applies to G.

In fact, it is easy to find a counterexample in G. Letbe an infinitesimal number.
Consider the lines with equations y= 1 and y= 1+x. Neither of these intersects the x
axis.

No, it is not valid to associate only E with the plane described by Eu-clid’s axioms. All of
Euclid’s axioms hold equally well in F. F is referred to as a nonstandard model of
Euclid’s axioms. It has the same relation to standard Euclidean geometry as the
hyperreals have to the reals. If we want to make up a set of axioms that describes E
and can’t describe F, then we need to add an additional axiom to Euclid’s set. An
example of such an axiom would be an axiom stating that given any two line segments
with lengths and , there exists some integer nsuch that n > . Note that
although this axiom holds in E, the transfer principle cannot be used to show that it
holds in F — it is false in F. The transfer principle doesn’t apply because the transfer
principle doesn’t apply to statements that include phrases such as “for any integer.”

Problem 2.34 (Page 59):

The normal definition of a repeating decimal such as 0.999 ...is that it is the limit of the
sequence 0.9, 0.99, ..., and the limit is a real number, by definition. 0.999 ...equals 1.
However, there is an intuition that the limiting process 0.9, 0.99, ...“never quite gets
there.” This intuition can, in fact, be formalized in the construction described
beginning on page 144; we can define a hyperreal number based on the sequence 0.9,
0.99, ..., and it is a number infinitesimally less than one. This is not, however, the
normal way of defining the symbol 0.999 ..., and we probably wouldn’t want to change
the definition so that it was. If it was, then 0.333 ...would not equal 1/3.

Problem 2.35 (Page 60):

Converting these into Leibniz notation, we find
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and

To prove something is not true in general, it suffices to find one counterexample.
Suppose that gand hare both unitless, and xhas units of seconds. The value of fis
defined by the output of g, so fmust also be unitless. Since f is unitless, df / dx has
units of inverse seconds (“per second”). But this doesn’t match the units of either of
the proposed expressions, because they’re both unitless. The correct chain rule,
however, works. In the equation

the right-hand side consists of a unitless factor multiplied by a factor with units of
inverse seconds, so its units are inverse seconds, matching the left-hand side.

Problem 2.36 (Page 60):

We can make life a lot easier by observing that the function s(f) will be maximized
when the expression inside the square root is minimized. Also, since fis squared every

time it occurs, we can change to a variable x= , and then once the optimal value of
xis found we can take its square root in order to find the optimal f. The function to be
optimized is then

Differentiating this and setting the derivative equal to zero, we find

which results in , or

(choosing the positive root, since frepresents a frequencies, and frequencies are
positive by definition). Note that the quantity inside the square root involves the
square of a frequency, but then we take its square root, so the units of the result turn
out to be frequency, which makes sense. We can see that if bis small, the second term
is small, and the maximum occurs very nearly at fo .

There is one subtle issue that was glossed over above, which is that the graph on page
51 shows two extrema: a minimum at f= 0 and a maximum at f>0. What happened to
the f= 0 minimum? The issue is that I was a little sloppy with the change of variables.
Let Istand for the quantity inside the square root in the original expression for s. Then
by the chain rule,

We looked for the place where dI/dxwas zero, but ds/dfcould also be zero if one of the
other factors was zero. This is what happens at f= 0, where dx/df= 0.
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Problem 2.37 (Page 61):

Applying the geometric series 1/(1 + r) = 1 + r+ + ...,

As checks on our result, we note that the units work out correctly (meters squared
divided by meters give meters), and that the result is indeed large, since we divide by
the small quantity dx.

Problem 2.38 (Page 61):

One way to evaluate an expression like is by using the identity = . If we try
to substitute a= 1 and b= ∞, we get , which has an indeterminate form inside
the exponential.

One way to express the idea is that if there is even the tiniest error in the value of a,
the value of a∞ can have any positive value.

Solutions for chapter 3
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 3.1 (Page 80)

(a) The Weierstrass definition requires that if we’re given a particular, and we be able
to find a δso small that f(x) + g(x) differs from F+ G by at mostfor |x− a|<δ. But the
Weierstrass definition also tells us that given/2, we can find a δsuch that f differs from
Fby at most /2, and likewise for gand G. The amount by which f+ gdiffers from F+ Gis
then at most/2 +/2, which completes the proof.

(b) Let dxbe infinitesimal. Then the definition of the limit in terms of infinitesimals says
that the standard part of f(a + dx) differs at most infinitesimally from F, and likewise
for gand G. This means that f+ g differs from F+ Gby the sum of two infinitesimals,
which is itself an infinitesimal, and therefore the standard part of f+gevaluated at
x+dxequals F+ G, satisfying the definition.

Problem 3.2 (Page 80):
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The shape of the graph can be found by considering four cases: large negative x, small
negative x, small positive x, and large positive x. In these four cases, the function is
respectively close to 1, large, small, and close to 1.

The four limits correspond to the four cases described above.

Problem 3.3 (Page 81)

All five of these can be done using l’Hˆopital’s rule:

Fig. 9.18:

In examples 2, 4, and 5, we differentiate more than once in order to get an expression
that can be evaluated by substitution. In 4 and 5, . . . represents terms that we
anticipate will go away after the second differentiation. Most people probably would
not bother with l’Hˆopital’s rule for 3, 4, or 5, being content merely to observe the
behavior of the highest-order term, which makes the limiting behavior obvious.
Examples 3, 4, and 5 can also be done rigorously without l’Hˆopit rule, by algebraic
manipulation; we divide on the top and bottom by the highest power of the variable,
giving an expression that is no longer an indeterminate form ∞/∞.

Problem 3.4 (Page 81)

Both numerator and denominator go to zero, so we can apply l’Hˆopital’s rule.
Differentiating top and bottom gives (cos x−xsin x)/(−ln 2 · ), which equals −1/ln2 at
x= 0. To check this numerically, we plug x= into the original expression. The
result is −1.44219, which is very close to −1/ln2 = −1.44269 ....

Problem 3.5 (Page 81)
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L’Hˆopital’s rule only works when both the numerator and the denominator go to
zero.

Problem 3.6 (Page 82)

Applying l’Hˆopital’s rule once gives

which is still an indeterminate form. Applying the rule a second time, we get

As a numerical check, plugging u= 0.01 into the original expression results in
0.9999917.

Problem 3.7 (Page 82)

L’Hˆopital’s rule gives cos t/1 →−1. Plugging in t= 3.1 gives -0.9997.

Problem 3.8 (Page 82)

Let u= 1/x. Then

simply by algebraic manipulation of the infinitesimals. (If we want to interpret these
quantities as derivatives, then our notational convention is that they stand for the
standard parts of the quotients of the infinitesimals, in which case the equality is only
for the standard parts.) This equality holds not just in the limit but everywhere that the
functions are differentiable. The expression on the left is the thing whose limit we’re
trying to prove equals lim f/g. The right-hand side is equal to lim f/gby the previously
established form of l’Hˆopital’s rule.

Problem 3.9 (Page 82)

By the definition of continuity in terms of infinitesimals, the function is continuous,
because an infinitesimal change dxleads to a change dy= a dxi n the output of the
function which is likewise infinitesimals. (This depends on the fact that ais assumed to
be real, which implies that it is finite.)

Continuity in terms of the Weierstrass limit holds because we can take

δ= /a.

Solutions for chapter 4
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 4.1 (Page 97):

a := 0;

b := 1;
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H := 1000;

dt := (b-a)/H;

sum := 0;

t := a;

While (t<=b) [

sum := N(sum+Exp(x^2)*dt);

t := N(t+dt);

]; Echo(sum);

The result is 1.46.

Fig. 9.19: h / Problem 2.

Problem 4.2 (Page 97):

The derivative of the cosine is minus the sine, so to get a function whose

derivative is the sine, we need minus the cosine.

As shown in figure h, the graph has equal amounts of area above and below the xaxis.
The area below the axis counts as negative area, so the total is zero.

Problem 4.3 (Page 98):

209



Fig. 9.20: i / Problem 3.

The rectangular area of the graph is 2, and the area under the curve fills a little more
than half of that, so let’s guess 1.4.

This is roughly what we were expecting from our visual estimate.

Problem 4.4 (Page 98):

Over this interval, the value of the sin function varies from 0 to 1, and it spends more
time above 1/2 than below it, so we expect the average to be somewhat greater than
1/2. The exact result is
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which is, as expected, somewhat more than 1/2.

Problem 4.5 (Page 98):

Consider a function y(x) defined on the interval from x= 0 to 2 like this:

The mean value of yis zero, but y never equals zero.

Problem 4.6 (Page 98):

Let be defined as

Integrating this function up to t gives

The derivative of x at t= 0 is undefined, and therefore integration followed by
differentiation doesn’t recover the original function .

Problem 4.8 (Page 99):

First we put the integrand into the more familiar and convenient form , whose

integral is Applying the general rule, the

result is .

Problem 4.11 (Page 100):

The claim is false for indefinite integrals, since indefinite integrals can have a constant
of integration. So, for example, a possible indefinite integral of is , which
is neither even nor odd. The fundamental theorem doesn’t even refer to indefinite
integrals, which are simply defined through inverse differentiation.

Let’s fix the claim by changing gto a definite integral, . The claim
is now true. However, the proof still doesn’t quite work. We’ve established that all odd
functions have even derivatives, but we haven’t ruled out possibilities such as
functions that are neither even nor odd, but that have even derivatives.

Solutions for chapter 5
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 5.16 (Page 120)
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It’s pretty trivial to generalize from e to b. If we write as , then we can
substitute u = x ln b and reduce the b= e case to b = e.

The generalization of the exponent of xfrom 2 to ais less straightforward. To do it with
a= 2, we needed two integrations by parts, so clearly if we wanted to do a case with a=
37, we could do it with 37 integrations by parts. However, we would have no easy way
to write down the complete answer without going through the whole tedious
calculation. Furthermore, this is only going to work if ais a positive integer.

Problem 5.18 (Page 121)

The obvious substitution is , which leads to the form . If the
exponent 1/p−1 equals a nonnegative integer n, then through nintegrations by parts,

we can reduce this to the form . This requires p= 1, 1/2, 1/3, . . .

Problem 5.19 (Page 121)

This is a mess if attacked by brute force. The trick is to reexpress the function using
partial fractions:

Writing u= x+ 1 and v= x−1, this becomes

where . . . represents terms that will not survive multiple differentiations. Since du/dx=
dv/dx= 1, the chain rule tells us that differentiation with respect to uor vis the same as
differentiation with respect to x.

The result is 100! , where the notation 100! means

1 ×2 ×...100.

Solutions for chapter 6
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The method of nding the inde nite integral is discussed in example 70 on p. 91 and
problem 16 on p. 99. The result is , where u = -x In 2.
Plugging in the limits of integration, we obtain .

Solutions for chapter 7
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 7.1 (Page 138)
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We can define the sequence f(n) as converging to `if the following is true: for any real
number, there exists an integer Nsuch that for all n greater than N, the value of flies
within the range from to .

Problem 7.2 (Page 139)

(a) The convergence of the series is defined in terms of the convergence of its partial
sums, which are 1, 0, 1, 0, . . . In the notation used in the definition given in the
solution to problem 1 above, suppose we pick= 1/4. Then there is clearly no way to
choose any numbers `and N that would satisfy the definition, for regardless of N,
`would have to be both greater than 3/4 and less than 1/4 in order to agree with the
zeroes and ones that occur beyond the Nth member of the sequence.

(b) As remarked on page 106, the axioms of the real number system, such as
associativity, only deal with finite sums, not infinite ones. To see that absurd
conclusions result from attempting to apply them to infinite sums, consider that by
the same type of argument we could group the sum as 1 + (−1 + 1) + (−1 + 1) + ...,
which would equal 1.

Problem 7.3 (Page 139)

The quantity can be reexpressed as , where ln xis negative by hypothesis.
The integral of this exponential with respect to n is a similar exponential with a
constant factor in front, and this converges as napproaches infinity.

Problem 7.4 (Page 139)

(a) Applying the integral test, we find that the integral of is -1/x, which converges
as xapproaches infinity, so the series converges as well.

(b) This is an alternating series whose terms approach zero, so it con-verges. However,
the terms get small extremely slowly, so an extraordinarily large number of terms
would be required in order to get any kind of decent approximation to the sum. In
fact, it is impossible to carry out a straightforward numerical evaluation of this sum
because it would require such an enormous number of terms that the rounding errors
would overwhelm the result.

(c) This converges by the ratio test, because the ratio of successive terms approaches
0.

(d) Split the sum into two sums, one for the 1103 term and one for the 26390k. The
ratio of the two factorials is always less than 44k, so discarding constant factors, the
first sum is less than a geometric series with , and must therefore
converge. The second sum is less than a series of the form . This one also
converges, by the integral test. (It has to be integrated with respect to k, not x, and the
integration can be done by parts.) Since both separate sums converge, the entire sum
converges. This bizarre-looking expression was formulated and shown to equal 1/πby
the self-taught genius Srinivasa Ramanujan (1887-1920).

Problem 7.5 (Page 139)
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E.g., diverges, but the ratio test won’t establish that, because the limit
| does not exist.

Problem 7.14 (Page 142)

The n th term can be rewritten as 2/[n(n+1)], and using partial fractions this can be

changed into 2/n−2/(n+ 1). Let the partial sums be . For insight, let’s write
out s3 :

This is called a telescoping series. The second part of one term cancels out with the
first part of the next. Therefore we have

and in general

Letting n→∞, we find that the series sums to 2.

Problem 7.17 (Page 143)

Yes, it converges. To see this, consider that its graph consists of a series of peaks and
valleys, each of which is narrower than the last and therefore has less area. In fact, the
width of these humps approaches zero, so that the area approaches zero. This means
that the integral can be represented as a decreasing, alternating series that
approaches zero, which must converge.

Problem 7.13 (Page 142)

There are certainly some special values of x for which it does converge, such as 0 and
π. For a general value of x, however, things become more complicated. Let the nth
term be given by the function t(n). |t|converges to a limit, since the first application of
the sine function brings us into the range 0 ≤|t|≤1, and from then on, |t|is decreasing
and bounded below by 0. It can’t approach a nonzero limit, for given such a limit t*,
there would always be values of t slightly greater than t*such that sin twas less than
t*. Therefore the terms in the sum approach zero. This is necessary but not sufficient
for the series to converge.

Once t gets small enough, we can approximate the sine using a Taylor series.
Approximating the discrete function tby a continuous one, we have

, which can be rewritten as . This is known as
separation of variables. Integrating, we find that at large values of n, where the

constant of integration becomes negligible, . The sum diverges by the
integral test. Therefore the sum diverges for all values of xexcept for multiples of π,
which cause t to hit zero immediately without passing through the region where the
Taylor series is a good approximation.
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Problem 7.20 (Page 144)

Our first impression is that it must converge, since the factor shrinks much more
rapidly than the factor. To prove this rigorously, we can apply the integral test. The
relevant improper integral was carried out in problem 4 on p. 104.

Finding the sum is far more difficult, and there is no obvious technique that is
guaranteed to work. However, the integral test suggests an ap- proach that does lead
to a solution. The fact that the indefinite integral can be evaluated suggests that
perhaps the partial sum

can also be evaluated. Furthermore, the fact that the integral was of the form
, for some polynomial x, suggests that perhaps is of the same form.

Based on this conjecture, we try to determine the unknown coefficients in

Solving for a, b, and c results in P(n) = −4n−6. This gives the correct value for the
difference , but doesn’t give as it should. But this is easy to fix
simply by changing the form of our conjectured partial sum slightly to

, where k= 6. Evaluating , we get 6.

Problem 7.21 (Page 144)

The function averages to 1/2, so we might naively expect that cosnwould average
to about , in which case the sum would converge for any value of p whatsoever.
But the average is misleading, because there are some “lucky” values of nfor which
cos2 n≈1, and these will have a disproportionate effect on the sum. We know by the

integral test that diverges, but converges, so clearly if p≥2, then
even these occasional “lucky” terms will not cause divergence.

What about p= 1? Suppose we have some value of n for which , where
is some small number. If this is to happen, then we must have n= kπ+ δ, where kis an
integer and δis small, so that , i.e., . This occurs with a
probability proportional to δ, and the resulting contribution to the sum is about

, which by the binomial theorem is roughly of order of 1/n if .
This happens with probabilityI , so the expected value of the nth term is

. Since converges by the integral test, this suggests, but does not
prove rigorously, that we also get convergence for

p= 1.

A similar argument suggests that the sum diverges for p= 0.
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Answers to self-checks for chapter 8
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Problem 8.9 (Page 154)
First we rewrite the integrand as

The indefinite integral is

Evaluating this at 0 gives 0, while at =2 we nd 1/3. The result is 1/3.

Problem 8.8 (Page 154)

By a similar computation, we nd cos(a + b) = cos a cos b - sin a sin b.

Problem 8.10 (Page 155)
If , then we know that |z|= 1, since cubing zcubes its magnitude. Cubing
ztriples its argument, so the argument of zmust be a number that, when tripled, is
equivalent to an angle of zero. There are three possibilities: 0 ×3 = 0, (2π/3) ×3 = 2π,
and (4π/3)×3 = 4π. (Other possibilities, such as (32π/3), are equivalent to one of these.)
The solutions are:

Problem 8.11 (Page 155)

We can think of this as a polynomial in xor a polynomial in y— their roles are
symmetric. Let’s call xthe variable. By the fundamental theorem of algebra, it must be
possible to factor it into a product of three linear factors, if the coefficients are allowed
to be complex. Each of these factors causes the product to be zero for a certain value
of x. But the condition for the expression to be zero is x3 = y3 , which basically means
that the ratio of xto ymust be a third root of 1. The problem, then, boils down to
finding the three third roots of 1, as in problem 10. Using the result of that problem,
we find that there are zeroes when x/y equals 1, , and . This tells us that
the factorization is .

The second part of the problem asks us to factorize as much as possible using real
coefficients. Our only hope of doing this is to multiply out the two factors that involve
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complex coefficients, and see if they produce something real. In fact, we can anticipate
that it will work, because the coefficients are complex conjugates of one another, and
when a quadratic has two complex roots, they are conjugates. The result is

.

Problem 8.14 (Page 155)

Applying the differential equation to the form suggested gives .
The exponents must be equal on both sides, so b must be a solution of .
The solutions are . For a more detailed discussion of this cute
problem, see mathoverflow.net/questions/111066.

Problem 8.15 (Page 156)

(a) Let m= 10, 000. We know that integrals of this form can be done, at least in theory,
using partial fractions. The ten thousand roots of the polynomial will be ten thousand
points evenly spaced around the unit circle in the complex plane. They can be
expressed as for k= 0 to m−1. Since all the roots are unequal, the partial-
fraction form of the integrand contains only terms of the form .
Integrating, we would get a sum of ten thousand terms of the form .

(b) I tried inputting the integral into three different pieces of symbolic math software:
the open-source packages Yacas and Maxima, and the web-based interface to
Wolfram’s proprietary Mathematica software at integrals.com. Maxima gave a partially
integrated result after a couple of minutes of computation. Yacas crashed.
Mathematica’s web interface timed out and suggested buying a stand-alone copy of
Mathematica. All three programs probably embarked on the computation of the Ak by
attempting to solve 10,000 equations in the 10,000 unknowns Ak, and then ran out of
resources (either memory or CPU time).

(c) The expressions look nicer if we let , so that . The residue
method gives

Integration gives

(Thanks to math.stackexchage.com user zulon for suggesting the residue mathod, and
to Robert Israel for pointing out that for|x|<1 this can also be expressed as a
hypergeometric function:
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all the illustrations in this book are under my own copyright, and are copyleft licensed
under the same license as the rest of the book.

In some cases it’s clear from the date that the figure is public domain, but I don’t know
the name of the artist or photographer; I would be grateful to anyone who could help
me to give proper credit. I have assumed that images that come from U.S. government
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Robinson: public-domain 1951 passport photo.38 Gears:Jared C. Benedict, CC-BY-SA
licensed. 122 Euler:Emanuel Hand- mann, 1753. 131 tightrope walker:public domain,
since Blondin died in 1897.

218

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


References and Further Reading

Further Reading
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The amount of high-quality material on elementary calculus available for free online
these days is an embarrassment of riches, so most of my suggestions for reading are
online. I’ll refer to books in this section only by the surname of the first author; the
references section below tells you where to find the book online or in print.

The reader who wants to learn more about the hyperreal system might want to start
with Stroyan and the Mathforum.org article. For more depth, one could next read the
relevant parts of Keisler. The standard (difficult) treatise on the subject is Robinson.

Given sufficient ingenuity, it’s possible to develop a surprisingly large amount of the
machinery of calculus without using limits orinfinitesimals. Two examples of such
treatments that are freely available online are Marsden and Livshits. Marsden gives a
geometrical definition of the derivative similar to the one used in ch. 1 of this book,
but in my opinion his efforts to develop a sufficient body of techniques without limits
or infinitesimals end up bogging down in complicated formulations that have the
same flavor as the Weierstrass definition of the limit and are just as complicated.
Livshits treats differentiation of rational functions as division of functions.

Tall gives an interesting construction of a number system that is smaller than the
hyperreals, but easier to construct explicitly, and sufficient to handle calculus involving
analytic functions.
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