
Intro to Logic

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

© Matthias Felleisen, John Grenier, Moshe Vardi, Phokion Kolaitis and Ian Barland

This work is licensed under a Creative Commons-ShareAlike 4.0 International License

Original source: CONNEXIONS
http://cnx.org/content/col10154/1.20/

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/col10154/1.20/

Contents

Chapter 1 Introduction ..1
1.1 90 = 100: A Proof ..1

Exercise 1.1.1 ..5

1.2 The need for proofs ..6
1.2.1 WaterWorld ..6

1.2.1.1 Type Checking ..7
1.2.1.2 Circuit Verification ...9

1.3 Defining a proof ...10
1.3.1 What are proofs? (informal) ..10

Example 1.1 ..10

1.3.1.1 An argument by form ..11
Example 1.2 ..11
Example 1.3 ..11
Example 1.4 ..12

1.3.1.2 Some non-proofs ...12
Example 1.5 ..13
Exercise 1.3.1 ..14
Example 1.6 ..14
Example 1.7 ..14
Example 1.8 ..15
Exercise 1.3.2 ..15

1.3.1.3 Other Inference Rules..15
1.3.1.4 The need for a precise language ..17

1.3.2 Solutions to Exercifes in Chapter 1 ...18

Chapter 2 Propositional Logic ..21
2.1 A formal vocabulary ..21

2.1.1 Propositions ..21
2.1.1.1 A formal vocabulary...21

2.1.1.1.1 A particular vocabulary for WaterWorld22
2.1.1.1.2 Connectives ...23

Exercise 2.1.1.1 ..23
Exercise 2.1.1.2 ..23
Exercise 2.1.1.3 ..24
Example ..24
Example ..24
Example ..24
Example 2.1 ..25
Exercise 2.1.1.4 ..25
Exercise 2.1.1.5 ..26

2.1.2 Formulas ..26
2.1.2.1 Well-Formed Formulas ..26

Example ..26
Example ..26

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example ..26
Example ..27
Example ..27
Example 2.2 ..27
Example 2.3 ..27

2.1.2.2 Some formulas are truer than others ...28
Example ..29
Example ..29
Example ..29
Example ..29
Example ..29
Exercise 2.1.2.1 ..30
Exercise 2.1.2.2 ..30
Exercise 2.1.2.3 ..30
Exercise 2.1.2.4 ..30
Exercise 2.1.2.5 ..30

2.1.2.3 Finding Truth ..31
2.1.2.4 Game-specific rules..31

2.2 Reasoning with truth tables ...31
2.2.1 Using truth tables..31

2.2.1.1 Using Truth Tables ...32
Tip ..32
Exercise 2.2.1.2 ..33

2.2.2 The limitations of truth tables ..34
2.2.2.1 Are we done yet? ..34

Exercise 2.2.2.1 ..34
Exercise 2.2.2.2 ..35

2.3 Reasoning with equivalences ...36
2.3.1 Propositional equivalences ...36

2.3.1.1 Propositional Equivalences ...36
Example 2.4 ..37
Example 2.5 ..39
Example 2.6 ..39
Exercise 2.3.1.1 ..40
Exercise 2.3.1.2 ..40

2.3.1.1.1 Duals (optional) ...40

2.3.2 Normal forms ..41
2.3.2.1 CNF, DNF, ... (ENufF already!) ..41

Example 2.7 ..41
Example 2.8 ..41
Example 2.9 ..41
Example 2.10 ..42
Exercise 2.3.2.1 ..43

2.3.2.1.1 Notation for DNF, CNF..43

2.3.3 Soundness and completeness ..44

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.3.3.1 Are we done yet? ..44
Exercise 2.3.3.1 ..44
Exercise 2.3.3.2 ..45

2.4 Reasoning with inference rules ...45
2.4.1 Propositional inference rules ..45

2.4.1.1 Inference ...45
Example 2.11 ..46
Exercise 2.4.1.1 ..47
Exercise 2.4.1.2 ..47

2.4.1.1.1 Formal inference rules and proofs ...48
Example 2.12 ..48
Example 2.13 ..49
Example 2.14 ..50
Example 2.15 ..50
Exercise 2.4.1.3 ..51
Example 2.16 ..51
Exercise 2.4.1.4 ..52

2.4.2 Using subproofs ...52
2.4.2.1 Subproofs..52

Example 2.17 ..53
Example 2.18 ..54
Exercise 2.4.2.1 ..54
Example 2.19 ..55

2.4.2.2 More examples...57
Example 2.20 ..57
Example 2.21 ..59
Example 2.22 ..61

2.4.3 The soundness and completeness of inference rules66
Exercise 2.4.3.1 ...66

2.4.4 Proofs and programming ..66
2.4.4.1 Proofs and programming..66

2.4.5 Conclusions ...67
2.4.5.1 Are we done yet? ...67
2.4.5.2 Distinctness of the approaches (optional) ..68

2.5 Exercises for Propositional Logic I ...68
2.5.1 Propositional Logic..69

Exercise 2.5.1 ..69
Exercise 2.5.2 ..69
Exercise 2.5.3 ..69
Exercise 2.5.4 ..70
Exercise 2.5.5 ..70
Exercise 2.5.6 ..71
Exercise 2.5.7 ..71
Exercise 2.5.8 ..71
Exercise 2.5.9 ..72

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.10 ..73
Exercise 2.5.11 ..74
Exercise 2.5.12 ..74
Exercise 2.5.13 ..74
Exercise 2.5.14 ..74

2.5.2 Reasoning with Truth Tables..74
Exercise 2.5.15 ..75
Exercise 2.5.16 ..75
Exercise 2.5.17 ..75
Exercise 2.5.18 ..76
Exercise 2.5.19 ..76
Exercise 2.5.20 ..76
Exercise 2.5.21 ..77
Exercise 2.5.22 ..77
Exercise 2.5.23 ..78
Exercise 2.5.24 ..79

2.5.3 Reasoning with Equivalences...79
Exercise 2.5.25 ..79
Exercise 2.5.26 ..80
Exercise 2.5.27 ..80
Exercise 2.5.28 ..80
Exercise 2.5.29 ..80

2.6 Exercises for Propositional Logic II ..81
2.6.1 Reasoning with Inference Rules ..81

Exercise 2.6.1 ..81
Exercise 2.6.2 ..82
Exercise 2.6.3 ..82
Exercise 2.6.4 ..82
Exercise 2.6.5 ..82
Exercise 2.6.6 ..82
Exercise 2.6.7 ..82
Exercise 2.6.8 ..83
Exercise 2.6.9 ..83
Exercise 2.6.10 ..83
Exercise 2.6.11 ..83
Exercise 2.6.12 ..83
Exercise 2.6.13 ..84
Exercise 2.6.15 ..87
Exercise 2.6.16 ..87
Exercise 2.6.17 ..87
Exercise 2.6.18 ..87
Exercise 2.6.19 ..88
Exercise 2.6.20 ..88

2.6.2 Solutions to Exercises in Chapter 2...88

Chapter 3 Relations and Models ..105
3.1 Relations .. 105

3.1.1 Relations: Building a better (representation of) WaterWorld 105

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 3.1.1 ... 106

3.2 Properties of relations .. 106
3.2.1 Relations as subsets... 106

Example 3.1 ... 107
Example 3.2 ... 107
Example 3.3 ... 107
Example 3.4 ... 107
Example 3.5 ... 108
Example 3.6 ... 108
Example 3.7 ... 108

3.2.2 Relations as functions.. 108
Exercise 3.2.1 ... 109
Exercise 3.2.2 ... 109

3.2.3 Functions as Relations ... 109
3.2.4 Binary Relations ... 110

3.2.4.1 Binary Relation Notation .. 110
3.2.4.2 Binary Relations as Graphs .. 110

3.3 Interpretations .. 111
3.3.1 Needing Interpretations to Evaluate Formulas .. 111

3.3.1.1 Using Truth Tables to Summarize Interpretations (Optional) 112
3.3.1.2 Using Formulas to Classify Interpretations (Optional) 112
3.3.1.3 Encoding Functions as Relations... 113

3.4 Nonstandard Interpretations (optional) .. 113
3.4.1 Prime factorization... 113
3.4.2 The Poincare Disc ... 114
3.4.3 P vs. NP and Oracles ... 115
3.4.4 Lo¨wenheim-Skolem and the real numbers .. 116
3.4.5 Object-oriented programming .. 116
3.4.6 Real-World Arguments .. 117

3.5 Modeling with relations ... 117
3.5.1 Modeling with Relations .. 117

Exercise 3.5.1 ... 118
Exercise 3.5.2 ... 118
Exercise 3.5.3 ... 118
Exercise 3.5.4 ... 119

3.5.2 A Case Study: iTunes .. 119
Exercise 3.5.5 ... 119
Exercise 3.5.6 ... 119
Exercise 3.5.7 ... 119

3.5.3 Solutions to Exercises in Chapter 3.. 120

Chapter 4 First-Order Logic ...123
4.1 A formal vocabulary ... 123

4.1.1 Syntax and semantics of quantifiers ... 123
4.1.1.1 Talking about unnamed items... 123

4.1.1.1.1 Warning: The Ambiguous "Any" .. 126

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

4.1.1.2 First-order logic: WFFs revisited .. 126
Definition 4.1: term .. 127
Definition 4.2: Well-Formed Formula (WFF) for first-order logic 128

4.1.1.2.1 Examples... 129
Example 4.1 ... 129
Example 4.2 ... 129
Example 4.3 ... 129
Example 4.4 ... 129
Exercise 4.1.1.1 ... 129
Exercise 4.1.1.2 ... 129
Example 4.5 ... 129
Example 4.6 ... 129
Exercise 4.1.1.3 ... 130
Exercise 4.1.1.4 ... 130
Example 4.7 ... 130
Example 4.8 ... 131
Exercise 4.1.1.5 ... 131
Exercise 4.1.1.6 ... 131
Exercise 4.1.1.7 ... 132

4.1.1.2.2 A hint on deciphering formulas' meanings............................... 132
4.1.1.2.3 "Forall"'s friend "if"... 132

4.1.2 Bound variables, free variables .. 133
Example 4.9 ... 134

4.1.3 Normal forms revisited ... 134
4.1.3.1 CNF and DNF revisited (Optional) ... 134

Example 4.10 ... 134

4.2 Reasoning with equivalences .. 135
4.2.1 First-order equivalences ... 135

4.2.1.1 First-order Equivalences... 135
Example 4.11 ... 137
Example 4.12 ... 138
Exercise 4.2.1.1 ... 138

4.2.1.2 Are we done yet? ... 139

4.3 Reasoning with inference rules .. 139
4.3.1 First-order inference rules ... 139

4.3.1.1 Inference with quantifiers ... 139
4.3.1.1.1 Exists-intro .. 140
4.3.1.1.2 Exists-Elim ... 141
4.3.1.1.3 Forall-Intro .. 141
4.3.1.1.4 Forall-Elim ... 142

4.3.1.2 Formal inference rules and proofs ... 142
Example 4.13 ... 143
Exercise 4.3.1.1 ... 143

4.3.1.3 Proofs and programming .. 144

4.4 Exercises for First-Order Logic ... 145

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

4.4.1 Relations and Interpretations ... 145
Exercise 4.4.1 ... 145
Exercise 4.4.2 ... 145
Exercise 4.4.3 ... 145
Exercise 4.4.4 ... 146
Exercise 4.4.5 ... 146
Exercise 4.4.6 ... 147
Exercise 4.4.7 ... 147

4.4.2 Quantifiers .. 147
Exercise 4.4.8 ... 147
Exercise 4.4.9 ... 148
Exercise 4.4.10 ... 148

4.4.3 Interpreting First-order Formulas .. 148
Exercise 4.4.11 ... 148
Exercise 4.4.12 ... 149
Exercise 4.4.13 ... 149
Exercise 4.4.14 ... 150
Exercise 4.4.15 ... 150
Exercise 4.4.16 ... 150
Exercise 4.4.17 ... 151
Exercise 4.4.18 ... 151
Exercise 4.4.19 ... 152
Exercise 4.4.20 ... 152

4.4.4 Modeling ... 153
Exercise 4.4.21 ... 153
Exercise 4.4.22 ... 153
Exercise 4.4.23 ... 154

4.4.5 Reasoning with Equivalences.. 154
Exercise 4.4.24 ... 154
Exercise 4.4.25 ... 155
Exercise 4.4.26 ... 155
Exercise 4.4.27 ... 155

4.4.6 Reasoning with Inference Rules ... 155
Exercise 4.4.28 ... 155
Exercise 4.4.29 ... 156
Exercise 4.4.30 ... 156
Exercise 4.4.31 ... 156
Exercise 4.4.32 ... 156

4.4.7 Solutions to Exercises in Chapter 156

Chapter 5 Conclusion, Acknowledgements ..160
5.1 Logic: Looking Back .. 160

5.1.1 Why didn't we begin with quantifiers all along? ... 160
5.1.2 Logic and everyday reasoning .. 161
5.1.3 Other logics .. 161

5.1.3.1 Limitations of first-order logic's expressiveness 162
Example 5.1 ... 162

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

5.1.4 Logic in computer science... 163

5.2 Acknowledgements ... 164

Chapter 6 Appendices and Reference Sheets ...165
6.1 Propositional equivalences .. 165

Example 6.1 ... 166

6.2 Propositional inference rules... 166
6.3 First-order equivalences ... 168
6.4 First-order inference rule ... 169
6.5 Propositional axioms for WaterWorld .. 171

6.5.1 Propositions ... 172
6.5.2 The domain axioms ... 173

6.6 First-order axioms for WaterWorld ... 175
6.6.1 Domain and Relations ... 175
6.6.2 The domain axioms.. 176

6.7 Browser supports .. 177

Glossary..178

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Chapter 1 Introduction

1.1 90 = 100: A Proof
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Construct a four-sided figure ABED as follows:

• |∠ABE| = 90 ◦
• |∠DEB| = 100 ◦
• |AB| = |ED|

Using that as a starting point, we now tinker a bit to show that 90 = 100:

• Draw the perpendicular bisectors to BE and AD; call the point where they meet
"C".

Note: Actually, we must prove that those two perpendicular bisectors really do
meet at all (i.e., that the point C even exists). In this case, it turns out to be
pretty clear it's not hard to argue that lines AD and BE aren't parallel, and
therefore their perpendicular bisectors aren't parallel, and so they must
intersect (in Euclidean geometry). Still, be alert for people making glib
assertions in proofs.

1

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.1 A construction to help prove that 90=100

Looking at this figure, some warning flags should be going up: How do we know C lies
below BD? Might it lie above BD? Or exactly on BD? It turns out that the argument
below is the same in all of these cases, though you'll certainly want to verify this to
yourself later.

2

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1
By
construction.

2

C is on the
perpendicular
bisector of BE
(thus ,BEC is
isosceles).

3

Base angles of
isosceles
triangle BEC
are congruent.

4

Congruent
angles have
equal
measures; line
3.

5

C is on the
perpendicular
bisector of AD
(thus ,ADC is
isosceles).

6

Triangles with
three
congruent
sides are
congruent
(Euclid's Side-
Side-Side
congruence
theorem);
lines 1,2,5.

7
(From here, it's just routine steps to conclude
90 = 100:)

8
Corresponding
parts of

Table 1.1 A useful corollary: 0 = 1.

3

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

congruent
triangles are
congruent;
line 6.

9

Congruent
angles have
equal
measures; line
8.

10
By
construction.

11
By
construction.

12

Substituting
equals with
equals; lines 11
and 4.

13

Substituting
equals with
equals; lines
12 and 9.

14

Substituting
equals with
equals; lines
13 and 10.

15

Subtracting
equals from
equals
remains equal.

16

By
construction,
and
substituting

Table 1.1 A useful corollary: 0 = 1.

4

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

equals with
equals; line 15.

17

By
construction,
and
substituting
equals with
equals; line 16.

Table 1.1 A useful corollary: 0 = 1.

1 Previous theorem.

2
Subtracting equals (90) from equals
remains equal.

3
Dividing equals by non-zero equals (10)
remains equal.

Exercise 1.1.1
If you feel this result is incorrect, then the challenge for you is to find
the first line which is false. You may have noticed that the proof
given here has some very minuscule steps e.g. "Congruent angles
have equal measure." Usually such simple steps can be omitted, since
they are obvious to any reader. We include them for a few reasons:

• As a careful thinker, you should recognize that such small steps
really are part of the complete reasoning, even if they're not worth
mentioning continually.

• If a computer is checking a proof, it needs to actually include those
steps.

• Programmers do need to be concerned with distinctions about
(abstract) types the difference between angles and their measures,
in this case.

• Sometimes a line's justification is glibly given as "by
construction", when that may not even be correct !-).

In this course, we'll spend a few weeks working with proofs which do include all the
small, pedantic steps, to instill a mental framework for what a rigorous proof is. But
after that, you can relax your proofs to leave out such low-level steps, once you
appreciate that they are being omitted.

5

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1.2 The need for proofs
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The ancient Greeks loved to hang around on the stoa, sip some wine, and debate. But
at the end of the day, they wanted to sit back and decide who had won the argument.
When Socrates claims that one statement follows from another, is it actually so?
Shouldn't there be some set of rules to officially determine when an argument is
correct? Thus began the formal study of logic.

ASIDE: The three fundamental studies were the Trivium grammar (words), logic
(reasoning), and rhetoric (effective communication). These allowed study of the
QuadTivium arithmetic (patterns in number), geometry (patterns in space), music
(patterns in tone), and astronomy (patterns in time). All together, these subjects
comprise the seven liberal arts.

These issues are of course still with us today. And while it might be difficult to codify
real-world arguments about (say) gun-control laws, programs can be fully formalized,
and correctness can be specified. We'll look at three examples where formal proofs
are applicable:

• playing a simple game, WaterWorld;
• checking a program for type errors;
• circuit verification.

Many other areas of computer science routinely involve proofs, although we won't
explore them here. Manufacturing robots first prove that they can twist and move to
where they need to go before doing so, in order to avoid crashing into what they're
building. When programming a collection of client and server computers, we usually
want to prove that the manner in which they communicate guarantees that no clients
are always ignored. Optimizing compilers prove that, within your program, some
faster piece of code behaves the same as and can replace what you wrote. With
software systems controlling more and more life-critical applications, it's important to
be able to prove that a program always does what it claims.

1.2.1 WaterWorld
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider a game called WaterWorld, where each location is either empty sea or
contains a pirate. When you enter a location, you must correctly anticipate whether
or not it contains pirates.

• If you correctly anticipate open sea, you are able to enter and determine how
many of the (up to 3) adjacent locations contain a pirate.

• If you correctly anticipate a pirate, the location is tagged as dangerous, and you
gather no further information.

6

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Furthermore, there are really two types of moves: guesses, and assertions. If you
make an assertion, then even if you happen to be correct but it is possible you could
have been wrong, then it is an error. Also, it is an error if you make a guess about a
location if it is actually possible to assert a location's contents. The interesting fact
about these types of games is that while sometimes guesses are necessary (when?),
surprisingly often an assertion can be made.

(You can freely download WaterWorld at here (http://www.teachlogic.org/WaterWorld/
download.shtml).)

Figure 1.2 Glimpses of two different WaterWorld boards

For instance, in the first board, what assertions can we be sure of? What, exactly, is
your reasoning? How about in the second board? You can certainly envision wanting a
computer player that can deduce certain moves, and make those for you
automatically.

1.2.1.1 Type Checking

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When writing a program, we'd like to simply look at the program and determine
whether it has any bugs, without having to run it. We'll see in the future, however, that
such a general problem cannot be solved. Instead, we focus on finding more limited
kinds of errors. Type checking determines whether all functions are called with the
correct type of inputs. E.g., the function + should be called with numbers, not
Booleans, and a function which a programmer has declared to return an integer really
should always return an integer. Consider the following program:

// average:

// Simply divide sum by N, but guard against dividing by 0.

7

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://www.teachlogic.org/WaterWorld/download.shtml
http://www.teachlogic.org/WaterWorld/download.shtml
http://www.teachlogic.org/WaterWorld/download.shtml
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

//

real-or-false average(real sum, natNum N) {

if (N!= 0)

return sum I N;

else

return false;

}

One reason programmers are required to declare the intended type of each variable is
so that the computer (the compiler) can prove that certain errors won't occur. How
can you or the compiler prove, in the above, that average returns a real number or
false, but never returns (say) a string, and doesn't raise an exception? Deductions are
made based on premises about the types that are passed in, along with axioms about
the input and return types of the built-in functions if, !=, and I, as well as which
exceptions those built-ins might raise.

Consider this variant:

// augment-average:

// Given an old sum and N, compute the average if one more

// datum were included.

//

real augment average(real old sum, natNum old N, real new datum) {

return average(old sum + new datum, old N + 1);

}

Most compilers will reject augment-average, claiming that it may actually return false.
However, we're able prove that it really will only return a real, by using some
knowledge about natural numbers and adding 1, plus some knowledge of what
average returns. (Note that our reasoning uses aspects of average's interface which
aren't explicitly stated; most6 type systems aren't expressive enough to allow more
detailed type contracts, for reasons we'll allude to later.) So we see that many
compilers have overly conservative type-checkers, rejecting code which is perfectly
safe, because they are reasoning with only a narrow set of type-rules.

This example alludes to another use of logic: Not only is it the foundation of writing
proofs (ones that can be created or checked by computers), but logic can also be used
as an unambiguousspecificationlanguage. Observe that while a function's
implementation is always specified formally and unambiguously in a programming
language the interface is specified entirely English, aside from a few type declarations.
Many bugs stem from ambiguities in the English, that different humans interpret
differently (or, don't think about). Being able to use logic to specify an interface (and
cannot be modified even if the somebody later tunes the implementation) is an
important skill for programmers, even when those logic formulas aren't used in
proofs.

8

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1.2.1.2 Circuit Verification

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Given a circuit's blueprints, will it work as advertised? In 1994, Intel had to recall five
million of its Pentium processors, due to a bug in the arithmetic circuitry: This cost
Intel nearly half a billion dollars, lots of bad publicity, and it happened after intensive
testing. Might it have been possible to have a program try to prove the chip's
correctness or uncover an error, before casting it in silicon?

Software and hardware companies are increasingly turning to the use of automated
proofs, rather than semi-haphazard testing, to verify (parts of) large products correct.
However, it is a formidable task, and how to do this is also an active area of research.

There are of course many more examples; one topical popular concern is veriflying
certain security properties of electronic voting machines (often provided by vendors
who keep their source software a proprietary secret).

Having proofs of correctness is not just comforting; it allows us to save effort (less
time testing, and also able to make better optimizations), and prevent recall of faulty
products. But: who decides a proof is correct the employee with best SAT scores?l? Is
there some trusted way to verify proofs, besides careful inspection by a skilled, yet still
error-prone, professional?

Many highly intelligent people are poor thinkers. Many people of average intelligence
are skilled thinkers. The power of the car is separate from the way the car is driven.
EdwaTd De Bono, consultant, wTiteT, and speakeT (1933-)

9

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1.3 Defining a proof

1.3.1 What are proofs? (informal)
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 1.1
The following submission from an anonymous engineer to the
January, 1902 edition of Popular Mechanics caught my eye. Seems
like something every Boy/Girl Scout and Architect should know.

"HOW TO USE THE WATCH AS A COMPASS: Very few people are
aware of the fact that in a watch they are always provided with a
compass, with which, when the sun is shining, the cardinal points
can be determined. All one has to do is to point the hour hand to the
sun and south is exactly half way between the hour and the figure 12
on the watch. This may seem strange to the average reader, but it is
easily explained. While the sun is passing over 180 degrees (east to
west) the hour hand of the watch passes over 360 degrees (from 6
o'clock to 6 o'clock). Therefore the angular movement of the sun in
one hour corresponds to the angular movement of the hour hand in
half an hour; hence, if we point the hour hand toward the sun the line
from the point midway between the hour hand and 12 o'clock to the
pivot of the hands will point to the south. Engineer."

They give an argument of correctness; is that really a proof? Well, there are some
ambiguities: Do I hold the watch vertically, or, in the plane of the sun's arc? Certainly I
can't hold it up-side down, even though this isn't explicitly stated. Furthermore, the
correctness of the reasoning relies on some unstated assumptions. E.g., the sun is at
its highest (northernmost) point of its transit at noon. Is this actually true? Does it
depend on the time of year? I'm not exactly sure (and will have to sit down and scratch
my head and draw pictures of orbits, to convince myself). Certainly there are at least a
couple of caveats: even beyond account for Daylight Savings Time, the solar-time and
clock-time only align at time-zone boundaries, and they drift up to an hour apart,
before the next boundary rectifies the difference. Is this presuming I'm in the northern
hemisphere? What if I'm on the equator?

To be fair, the intent of this anecdote was to give enough evidence to convince you,
not necessarily to be a complete, stand-alone self-contained proof. But in writing out a
careful proof, one is forced to consider all the points just made; being forced to
understand these can lead you to better understand the procedure yourself. But be
careful to distinguish between something which sounds reasonable, and something
that you're certain of.

10

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1.3.1.1 An argument by form

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

How can we tell true proofs from false ones? What, exactly, are the rules of a proof?
These are the questions which will occupy us.

Proofs are argument by form. We'll illustrate this with three parallel examples of a
particular proof form called syllogism.

Example 1.2

1 All people are mortal Premise

2 Socrates is a person. Premise

3
Therefore. Socrates is
mortal.

Syllogism, lines
1,2

Example 1.3

1
All [substitution ciphers] are
[vulnerable to brute-force
attacks]

Premise

2
The [Julius Caesar cipher] is a
[substation cipher].

Premise

3
Therefore, the [Julius Caesar
cipher] is [vulnerable to brute-
force attacks].

Syllogism,
lines 1,2

Note that you don't need to know anything about cryptography to know that the
conclusion follows from the two premises. (Are the premises indeed true? That's a
different question.)

11

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Example 1.4

1 All griznoxes chorble happily Premise

2 A floober is a type of griznox. Premise

3
Therefore, floobers chorble
happily.

Syllogism,
lines 1,2

You don't need to be a world-class foober expert to evaluate this argument, either.

ASIDE: Lewis Carroll, a logician, has developed many whimsical examplesl0 of
syllogisms and simple reasoning. (Relatedly, note how the social context of Carroll's
examples demonstrates some feminist issues in teaching logic .)

As you've noticed, the form of the argument is the same in all these. If you are
assured that the first two premises are true, then, without any true understanding,
you (or a computer) can automatically come up with the conclusion. A syllogism is one
example of a inference rule that is, a rule form that a computer can use to deduce
new facts from known ones.

1.3.1.2 Some non-proofs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Of course, not all arguments are valid proofs. Identiflying invalid proofs is just as
interesting as identi flying valid ones.

NOTE:

Homer: Ah, not a bear in sight. The Bear Patrol must be working.

Lisa: That's speciousl reasoning, Dad.

Homer: Thank you, honey.

Lisa: By your logic, this rock keeps tigers away.

Homer: Oh? How does it work?

Lisa: It doesn't work.

Homer: Uh-huh.

Lisa: It's just a stupid rock.

Homer: Uh-huh.

Lisa: But I don't see any tigers around here, do you?

[pause]

Homer: Lisa, I want to buy your rock!

[A moment's hesitation ... and money changes hands.]

(From The Simpsons Much Apu About Nothing .)

12

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

If Lisa isn't around, who will identify specious reasoning for us? We can certainly use
her approach of finding other particular examples that follow the same argument, yet
lead to a clearly erroneous conclusion.

Example 1.5
Suppose that my friend makes the following argument:

1 Warm cola tastes bad. Premise

2
Warm salt-water tastes
bad.

Premise

3
Therefore, mixing them
together tastes bad.

“Common-sense
conclusion”.
lines 1,2

I'm skeptical, so I have a sip; sure enough, the conclusion is indeed
true. But is the proof correct does the "common-sense conclusion"
rule actually hold? In order to refute the form of the argument, we
can try similar arguments which have the same form but a false
conclusion (as Lisa did).

1
Ice-cold coke tastes
good.

Premise

2 Ice coffee tastes good. Premise

3
Therefore, mixing
them together tastes
good.

“Common-sense
conclusion”, lines 1
and 2.

After another unfortunate sip, I verify that this conclusion is not true, and therefore
my friend's reasoning is at fault.

My friend responds by claiming that the "common-sense conclusion" is too valid; the
rule is that bad-taste is preserved upon mixing, not that any taste is preserved. While
I'm inclined to believe that, we realize we can still test this more refined rule: can you
come up with an instance of mixing together bad-tasting things and ever getting a
yummy result? (Say, salt and four, which can be mixed and baked to get delicious
saltines The argument continues, about whether the form of the argument precludes
baking, and so on.)

The end result (after I take some antacid) is that we have a clearer understanding of
the initially vague "common-sense conclusion", and stricter rules about when it
applies. Thus, refining the argument has led us to a greater understanding.

13

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

The above examples are a bit frivolous, but the procedure of looking for
counterexamples applies to many real-world dilemmas. It also highlights the
difference between a correct proof, and a faulty proof that might still happen to lead
to a true result. (By the way, this is the exact same skill used when trying to come up
with an algorithm for a problem: "well, the algorithm works for this input, but can I
find a something that makes one of the steps fail?" If so, you then try refining your
algorithm "well, I can add a test to take care of that problem; is that enough so that it
always works?")

Exercise 1.3.1
Solve this statement for [X]: It is wrong to ban [X]. Such a ban would
punish those reasonable citizens who would use [X] responsibly,
while those who really want to abuse [X] will be able to get it anyway,
through a black market which will only subsidize other criminal
activities.

In real-world issues, there are often many subtleties, and short
arguments that sound airtight might be glossing over factors which
are important in practice.

Example 1.6
During daylight, there is no need to have headlights (or running
lights) on: there's already plenty of light for everybody to see each
other by. Even during the day, headlights slightly increase how
quickly other drivers see you during (say) a routine, tenth-of-a-
second glance in their mirror.

Example 1.7
When in a turn-only lane, there is absolutely no need to signal since
there's only one way to turn, a signal can't communicating any
information to other drivers’ Glib, but not true: Other defensive
drivers presumably know you have only one legal option, but they
don't know that you know that, and they are planning reactions in
case you surprise them with a sudden illegal maneuver. By signaling,
you give them information which helps them better plan for yet
other contingencies. Furthermore, it also gives you more confidence
that other drivers are expecting your turn, reducing your suspicion
that they're about to pull a surprise maneuver on you. (True, these
are all low-probability events which almost always turn out to be
unnecessary. But avoiding accidents is all about minimizing risks for
the one moment events do spiral out of control.)

14

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 1.8
“You'll lose weight if and only if you burn more calories than you take in. All
those diet-plan books can never get around this, and all their details are
pointless.”

True, calorie intake and expenditure solely determine weight loss/
gain. But after some thought, we can get examples where the above
logic overlooks some relevant differences: If your friend told you they
were switching from a diet of 2000 calories of balanced short-term
and long-term energy sources (sugars, proteins, and carbs) to a diet
of 2000 calories worth of Pixy Stix at breakfast plus a Flintstones
multivitamin, would you be optimistic that they would have the
willpower to strictly follow the new plan? The two plans are equal
when counting calories, but in actuality one really is a better plan.
(Even more exaggeratedly, consider a daily plan of 2000 calories of
sugar while never drinking any water since water has no calories, it
can't affect your calorie count, according to the above claim.)

These contrived counterexamples help illustrate that it's conceivable
that there can be a difference between diet plans, so the initial claim
isn't technically true.

The point illustrated is that often real-world arguments incorrectly imply that their
result follows from the form of the argument, when in fact the form is not valid in the
way a syllogism is. This fallacy can be illuminated by finding a different domain in
which the argument fails. The practice of searching for domains which invalidate the
argument can help both sides of a debate hone in on bringing the unspoken
assumptions to light. The original argument, if its conclusion is indeed true, must be
patched either by adding the unspoken assumptions or fixing the invalid form.

Exercise 1.3.2
Mistakes in syllogisms are hard to make: what are the only two ways
to have an error in a syllogism?

1.3.1.3 Other Inference Rules

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Of course, there are more ways to deduce things, beyond a syllogism. 　

• Who decides what the valid inference rules are?
• Is it always clear when people have used the inference rules correctly?

15

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.3 Glimpses of two different WaterWorld boards

Consider the following argument about WaterWorld boards:

1 (A) is next to exactly one pirate.
Premise, from
either
subfigure

2
(A) has only one unexplored
neighbor.

Premise, from
either
subfigure

3
If you are an unexpected location
next to (A), then you contain a
pirate.

Incorrect
conclusion

This conclusion is not valid; while it is correct for the first board shown (Figure 1.3), it
is incorrect for the second (Figure 1.3). (I make this mistake all the time when playing
WaterWorld too quickly, arrgghl The Author.)

The problem is that the author of the argument presumably meant to conclude "all
explored neighbors of (A) contain a pirate".

Before we can study exact proofs, we need a way of writing exactly what we
mean. This will occupy us for the next section.

16

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1.3.1.4 The need for a precise language

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

These previous glitches in the WaterWorld arguments both arise, of course, because
we were sloppy about what each sentence meant exactly. We used informal English a
fine language for humans, who can cope with remarkable amounts of ambiguity but
not a good language for speciflying arguments.

ASIDE: Laws and contracts are really written in a separate language from English
legalese full of technical terms with specific meanings. This is done because, while
some ambiguity is tolerable in 99% of human interaction, the remaining 1% can be
very problematic. Even so, legalese still contains intentionally ambiguous terms:
When, exactly, is a punishment "cruel and unusual"?

What exactly is the "community standard" of indecency? The legal system tries to
simultaneously be formal about laws, yet also be flexible to allow for unforeseen
situations and situation-specific latitude. (The result of this tension is the position of
Judge.)

ASIDE: Court decisions, while dense reading, are often the model of well-presented
arguments.

Consider, from a previous example (Example 1.1), the statement "...[this is something]
every Boy/Girl Scout and Architect should know". Does this mean all people who are
both a scout and architect, or everybody who is at least one or the other? Genuinely
ambiguous, in Englishl (Often, "and/or" is used to mean "one or the other or possibly
both".)

We'll next look at a way to specify some concepts non-ambiguously, at least for
WaterWorld. We need to be more careful about how we state our facts and how we
use these known facts to deduce other facts. Remember, faulty reasoning might not
just mean losing a silly game. Hardware and software bugs can lead to significant
bodily harm (Imagine software bugs in an airplane autopilot or surgical robot system),
security loopholes (e.g., in Mozillal6 or IEl7), or expensive recalls (p. 7).

One reaction to the above arguments is "Well, big deal somebody made a mistake
(mis-interpreting or mis-stating a claim); that's their problem. (And sheesh, they sure
are dolts)" But as a programmer, that's not true: Writing large systems, human
programmers will err, no matter how smart or careful or skilled they are. Type-
checkers catch some errors upon compilation, and test suites catch their share of
bugs, but many still remain in real-world software. Thus we are looking for systemic
ways to reduce and catch errors, with the ultimate ideal of being able to prove
programs correct.

ASIDE: Other professions have checklists, protocols, and regulations to minimize
human error; programming is no different, except that the industry is still working on
exactly what the checklists or training should be. Someday, a license will be required
for practicing software, at least for software involved with life-safety.

In our study of formal logic, we'll need three things:

17

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Syntax (language) -- a precise syntax and vocabulary for expressing concepts
without ambiguity,
◦ Propositional logic,
◦ First-order logic (propositional logic, plus relations and quantifiers)

• Semantics (meaning) and modeling -- how to connect these formal languages to
whatever topic we want to reason about (including our software).

• Reasoning (proofs) -- methods of deducing new facts from old. We'll see three
types of reasoning, and how to use them for each of our two logics:
◦ Truth tables
◦ Boolean Algebra
◦ Inference Rules

We'll visit these topics in an interleaved manner first propositional logic (immediately
with its semantics) and three methods of reasoning for it; then first-order logic and an
in-depth look at its interpretations, and finally the methods of reasoning for first-order
logic.

We'll begin with a particular syntax propositional logic for the game of WaterWorld
before using this syntax to formally deduce safe moves.

1.3.2 Solutions to Exercifes in Chapter 1
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 1.1.1

The flaw is extremely hard to find. We won't actually give the solution, but here's a
hint on how to go about attacking the puzzle:

Note that finding the bug in the proof is the same skill as debugging a program. A
good approach is to try various degenerate inputs. In this case, there are a couple of
"inputs" to the construction the length of CD is arbitrary; no matter how long or short
the proof should apply equally well. Similarly, the angle 100 ◦ seems arbitrary; fiddling
with inputs like these (making them very small or very large) might give you some
clues as to where the bug is. A very careful drawing will clear things up.

Solution to Exercise 1.3.1

This argument is or has been commonly used for varying topics

• marijuana,
• alcohol,
• all drugs,
• handguns,
• birth control,
• prostitution,
• encryption technology.

18

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The interesting part, is that the traditional Left and Right political positions each use
this argument for some of these items, while rejecting the argument when used for
other items.

A more rational response is to either accept all the above, or none of the above, or to
realize that the stated argument wasn't everything that there might be implicit
assumptions or arguments which actually do distinguish between these cases (the
different interpretations of "[X]"). Being able to articulate the differences is essential.
The more refined arguments may be more nuanced, and less able to ft into a sound-
bite, but lead to a better understanding of one's own values. And sometimes, upon
reflection, one may realize that some of the implicit values or premises are things they
actually disagree with, once they are precisely spelled out.

Solution to Exercise 1.3.2

1. The argument isn't actually in syllogism form. For example, the following is an
incorrect syllogism:

1

All people
don’t
know my
file’s
password

Premise (Equivalent to “Nobody knows
my file’s password”, but reworded to be
of the required form “All somethings
have some property.”.)

2

All
hackers
are
people.

Premise

3

Therefore,
my file is
secure
from
hackers.

Incorrect syllogism, lines 1, 2

To be a syllogism, the conclusion would have to be "all hackers don't know my file's
password." The file might or might not be secure, but the above doesn't prove it.

2. One of the two premises is wrong.

19

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1
All people don’t know my file’s
password.

Premise, but
possibly false

2 All hackers are people.
Premise, but
possibly false

3
Therefore, all hackers don’t know
my file’s password.

Syllogism, line 1,
2

This proof fails, of course, if some hackers are non-people (e.g., programs), or if some
people know the password. (In fact, presumably you know the password!)

Of course, even if a proof fails, the conclusion might be true for other reasons. An
incorrect argument doesn't prove the conclusion's opposite!

20

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Chapter 2 Propositional Logic

2.1 A formal vocabulary

2.1.1 Propositions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Recall examples of where we'd like proofs:

• WaterWorld (Is a certain location guaranteed safe?)
• type checking (Does a program call functions in the proper way?)
• circuit verifcation (Does a circuit always work as advertised?)

After seeing the reasons why proofs are important, we ended with a call for first
needing a precise language for writing down statements without the ambiguity of
English.

ASIDE: Might a programming language be a good way to specify formal concepts
without ambiguity? Programming languages are usually motivated by speciflying how
to do something (implementation), rather than formally speciflying what is being
done (interface). While there is a deep relation between these two, logic is more
appropriate for speci flying the "what".

2.1.1.1 A formal vocabulary

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Imagine an offer where, for a mere $6.99, you can get: EE, (FF or CF or OB or HB) or CC
and PH and BR and GR or WB and PJ. Some fine print clarifies for us that BR includes
T (Whi, Whe, Ra, or Hb), FT, HM (Bb, Ba, or Ca), EM, B with CrCh, BB (GR from
6-11am). Unfortunately, it's not clear at all how the "and" and "or"s relate.
Fundamentally, is "x and y or z" meant to be interpreted as "(x and y) or z", or as "x and
(y or z)"? With some context, we might be able to divine what the author intended: the
above ofer is the direct translation from the menu of a local diner 2 : 2 eggs, potatoes
(french fries, cottage fries, O'Brien or hashed brown) or cottage cheese and peach half
(grits before 11am) and choice of bread with gravy or whipped butter and premium
jam. Bread choices include toast (white, wheat ,raisin or herb), hot four tortillas,
homemade muffin (blueberry, banana or carrot), English muffin, bagel with cream
cheese, homemade buttermilk biscuits. Grits available from 6:00am to 11:00am. (In a
brazen display of understatement, this meal was called "Eggs Alone".) Even given
context, this offer still isn't necessarily clear to everybody: can I get both french fries
and a peach half? Happily, coffee is available before having to decipher the menu. In
this example, parentheses would have clarified how we should interpret "and", "or".
But before we discuss how to connect statements, we will consider the statements
themselves.

21

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 2.1: proposition

A statement which can be either true or false.

Example

“Your meal will include hashbrowns.”

Definition 2.2: propositional variable

A variable that can either be true or false, representing whether a certain proposition
is true or not.

Example

HB

We will often refer to "propositional variables" as just plain ol' "propositions", since
our purpose in studying logic is to abstract away from individual statements and
encapsulate them in a single variable, thereon only studying how to work with the
variable.

For a proposition or propositional variable X, rather than write "X is true", it is more
succinct to simply write "X". Likewise, "X is false" is indicated as "¬X".

ASIDE: Compare this with Boolean variables in a programming language. Rather than
(x == true) or (x == false), it's idiomatic to instead write x or !x.

Observe that not all English sentences are propositions, since they aren't true/false
issues. Which of the following do you think might qualify as propositions? If not, how
might you phrase similar statements that are propositions?

• "Crocodiles are smaller than Alligators."
• "What time is it?"
• "Pass the salt, please."
• "Hopefully, the Rice Owls will win tomorrow's game."
• "Mr. Burns is filthy rich."
• "Fresca® is the bee's knees."

2.1.1.1.1 A particular vocabulary for WaterWorld

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When playing WaterWorld, what particular propositions are involved? To consider this,
we think of a generic board, and wonder what the underlying statements are. They are
statements like "location A contains a pirate" ("A − unsafe"), "location G has 2 adjacent
pirates" ("G − has − 2") and so on. Each of these statements may be true or false,
depending on the particular board in question.

Here are all the WaterWorld propositions (Section 6.5) that we'll use.

Remember that B − unsafe doesn't mean "I'm not sure whether or not B is safe";
rather it means "B is unsafe" it contains a pirate. You may not be sure whether (the
truth of) this proposition follows what you see, but in any given board the variable has
one of two values, true or false.

22

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Every WaterWorld board has the same set of propositions to describe it: A − unsafe, B
− has − 2, etc. However, different boards will have different underlying values of those
propositions.

2.1.1.1.2 Connectives

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Some statements in the above proof were simple, e.g., the single proposition "A − has
− 2". Some statements had several parts, though, e.g., "(F − unsafe and G − unsafe)".
We build these more complicated statements out of propositions. If you know both F
− unsafe is false, and G − unsafe is false, what can you deduce about the truth of the
statement "(F − unsafe and G − unsafe)"? Clearly, it is also false. What about when F −
unsafe is false, but G − unsafe is true? What about when both propositions are true?
In fact, we can fill in the following table:

A B (a^b)

false false False

false true False

true false false

true true true

Table 2.1 Truth table for ∧∧ (AND)

Definition 2.3: truth table

A truth table for an expression has a column for each of its propositional variables. It
has a row for each different true/false combination of its propositional variables. It
has one more column for the expression itself, showing the truth of the entire
expression for that row.

Exercise 2.1.1.1
What do you think the truth table for "a or b" looks like? Hint: To fill
out one row of the table, say, for a = true and b = false, ask yourself
"For this row, is it true that (a is true, or b is true)?"

Exercise 2.1.1.2
The above proof also used subexpressions of the form "not b-
unsafe". What is the truth table for "not a"?

23

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.1.1.3
What is the truth table for the expression "(not a) or b"?

Definition 2.4: connective

1. The syntactic operator combining one or more logical expressions into a larger
expression.

Example
Two operators are ∧ and ∨.

2. A function with one or more Boolean inputs and a Boolean result. I.e., the
meaning of a syntactic operator.

Example
The meaning of ∧ and ∨, e.g., as described by their truth tables.

Example
nand (mnemonic: "not and"), written ↑, takes in two Boolean values
a and b, and returns true exactly when a∧∧ b is not true that is, a ↑ b
≡¬ (a∧∧ b).

The following are the connectives we will use most often. At least some of these
should already be familiar from Boolean conditional expressions.

24

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Connective Pronunciation Meaning
Alternative
pronunciations /
notations

not a is false -a; !a

and and b are
both true

a*b; ab; a&&b;
a&b

or

at least
one of
{a,b} is
true

a+b; a||b; a|b

implies

equivalent
to

if a then b; a
only if b; b if a; b
is necessary for
a; a is sufficient
for b

Table 2.2 Connectives

Many other connectives can also be defined. In fact, it turns out that any connective
for propositional logic can be defined in terms of those above.

Example 2.1
Another connective is if-and-only-if or iff, written as a⇔ b, which
is true when a and b have the same truth value. So, as its name
implies, it can be defined as (a⇒ b) ∧ (b⇒ a). It is also commonly
known as "a is equivalent to b" and "a is necessary and sufficient for
b".

Exercise 2.1.1.4
Another connective is "exactly-one-of", which is more traditionally
called exclusive-or or xor (since it excludes both a and b holding,
unlike the traditional "inclusive" or.) How would you define a "xor" b
in terms of the above connectives?

25

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Note that the conventional a∨ b is sometimes called inclusive-or, to stress that it
includes the case where both a and b hold. In English, the word "or" may sometimes
mean inclusive-or, and other times mean exclusive-or, depending on context.
Sometimes the term "andjor" is used to emphasize that the inclusive-or really is
intended.

Exercise 2.1.1.5
For each of the following English sentences, does "or" mean
inclusive-or or exclusive-or?

1. "Whether you are tired or lazy, caffeine is just the drug for you!"
2. "Whether you win a dollar or lose a dollar, the difference in your

net worth will be noticed."
3. "If you own a house or a car, then you have to pay property tax."
4. "Give me your lunch money, or you'll never see your precious

hoppy taw again"

2.1.2 Formulas

2.1.2.1 Well-Formed Formulas

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If we want to develop complicated expressions about breakfast foods like eggs,
hashbrowns, and so on, we will want an exact grammar telling us how to connect the
propositions, what connections are allowed, and when parentheses are necessary (if
at all). We will choose a grammar so that all our formulas are fully parenthesized:

Definition 2.5: Well-Formed formula (WFF)

1. A constant: true or false. (If you prefer brevity, you can write "T" or "F".)
2. A propositional variable.

Example
a

3. A negation ¬φ, where φ is a WFF.

Example
¬c

4. A conjunction φ ∧ ψ, where φ and ψ are WFFs.

Example
a∧¬c

26

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5. A disjunction φ ∨ ψ, where φ and ψ are WFFs.

Example
¬c∨ a∧¬c, or equivalently, (¬c) ∨ (a∧¬c)

6. An implication φ ⇒ ψ, where φ and ψ are WFFs.

Example
¬c∨ a∧¬c⇒ b, or equivalently, ((¬c) ∨ (a∧¬c)) ⇒ b

The last two examples illustrate that we can add parentheses to formulas to make the
precedence explicit. While some parentheses may be unnecessary, over-
parenthesizing often improves clarity. We introduced the basic connectives in the
order of their precedence: ¬ has the highest precedence, while ⇒ has the lowest.
Furthermore, ∧ and ∨ group left-to-right: a∧ b∧ c ≡ (a∧ b) ∧ c, whereas ⇒ groups
right-to-left.

Example 2.2
We can combine these ways of forming WFFs in arbitrarily complex
ways, for example,

While large WFFs are common, and we will use some, ones with this
much nesting are not.

Note: φ, ψ, and θ are meta-variables standing for any WFF. The literal
character "φ" doesn't actually show up inside some WFF; but instead, any
particular formula can be used where we write "φ". It is a variable which you
the reader must substitute with some particular WFF, such as " a⇒ b ".
Similarly, a, b, and c are meta-variables to be replaced with a proposition, such
as "b".

Variations of well-formed formulas occur routinely in writing programs. While
different languages might vary in details of what connectives are allowed, how to
express them, and whether or not all parentheses are required, all languages use
WFFs.

Example 2.3
When creating the homeworks' web pages, the authors keep the
problems and solutions together in one file. Then, a program reads
that file, and creates a new one which either excludes the solution
(for the problem set), or includes it (for the solution set, and for
practice-problems). The condition for deciding whether to include
the solutions is a WFF.

27

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

;; is-a-solution?: paragraph -> boolean

;; A function to tell if we are looking at a "solution" paragraph.

;; Assume this is provided.

;; is-in-a-practice-prob?: paragraph -> boolean

;; A function to tell if Is the current problem a practice problem?

;; Assume this is provided.

;; include-all-solutions?: boolean

;; A variable for the entire file.

;; Assume this is provided.

;; show-or-hide-soln: paragraph -> paragraph

;; Either return the given paragraph,

;; or (if it shouldn't be revealed) return a string saying so.

;;

(define (show-or-hide-soln a-para)

(if (and (is-a-solution? a-para)

(not (or include-all-solns? (is-in-a-practice-prob? a-para)))

"(see solution set)"

a-para))

Note that the Boolean variable include-all-solutions? and Boolean values of (is-a-
solution? a-para) and (is-in-a-practice-prob? a-para) play the part of propositions (is −
soln, include − solns, is − practice), respectively. The if's condition boils down to the
WFF is − soln ∧ ¬ (include − solns∨∨ is − practice).

Keep in mind that a WFF is purely a syntactic entity. We'll introduce rules later for re-
writing or reasoning with WFFs, but it's those rules that will be contrived to preserve
our meaning of connectives like ∧ or ¬. The truth value of a WFF depends on the truth
values we assign to the propositions it involves.

When writing a program about WFFs, veriflying syntactic property, calculating a value,
counting the number of negations or bs, etc., such programs exactly follow the
definition of WFF given.

2.1.2.2 Some formulas are truer than others

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Is the formula A − unsafe∨∨ A − has − 2 true? Your response should be that it depends
on the particular board in question. But some formulas are true regardless of the
board. For instance, A − unsafe∨∨¬A − unsafe: this holds no matter what. Similarly, A
− unsafe∧∧¬A − unsafe can never be satisfied (made true), no matter how you try to
set the variable A − unsafe.

28

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 2.6: truth assignment

An assignment of a value true or false to each proposition being used.

Example
For the formula a⇒ a∧ b, one possible truth assignment is a = true
and b = false. With that truth assignment, the formula is false.

ASIDE: We've used three different symbols to describe "equality" in some sense:

• a⇔ b is a formula. The symbol "⇔" is a logical connective.
• φ ≡ ψ is a statement that two formulas are equivalent −−− that is, the same for

all truth assignments.
• a = true defines the value of a proposition. We also use the symbol for defining

variables, b = ψ, and meta-variables, φ = ψ.

Of these, only "⇔" occurs within a formula.
Commonly, people use symbols such as "≡" for multiple purposes. This is
problematic when part of what we are studying are the syntactic formulas themselves.

Definition 2.7: tautology

A WFF which is true under any truth assignment (any way of assigning true/false to
the propositions).

Example
A − unsafe ⇒ A − unsafe

Example
a⇒ a∨ b

Definition 2.8: unsatisfable

A WFF which is false under any truth assignment.

Example
¬ (A − unsafe ⇒ A − unsafe)

Example
a⇒¬a

Note that in algebra, there are certainly formulas which are true (or similarly, false) for
all values, but they don't get special names. For example, over the real numbers, any

assignment to x makes the formula x2 ≥ 0 true, so it's similar to a tautology. Similarly, x
= x +1 is unsatisfable, since it can't be made true for any assignment to x.

29

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Some people use the term contingency to mean formulas in between: things which
can be either true or false, depending on the truth assignment. Really, tautologies and
unsatisfable formulas are boring. However, trying to determine whether or not a
formula is a tautology (or, unsatisfable) is of interest. That's what proofs are all aboutl

Figure 2.1 Kinds of formulas: tautologies, contingencies, unsatisfiables

Identify the following Yogi Berra quotes either as tautologies, unsatisfiable, or neither.
(Take these exercises with a grain of salt, since the English statements are open to
some interpretation.)

Exercise 2.1.2.1
" Pitching always beats batting −−− and vice-versa. "

Exercise 2.1.2.2
You can observe a lot just by watchin'.

Exercise 2.1.2.3
Nobody goes there anymore... it's too crowded.

Exercise 2.1.2.4
It sure gets late early out here.

Exercise 2.1.2.5
Always go to other people's funerals; otherwise they won't come to
yours.

30

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.1.2.3 Finding Truth

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Now that we've seen how to express concepts as precise formulas; we would like to
reason with them. By "reason", we mean some automated way of ascertaining or
veriflying statements −−− some procedure that can be carried out on an unthinking
computer that can only push around symbols. In particular, for propositional logic,
we'll restrict our attention to some (closely related) problems:

• TAUTOLOGY: given a formula φ, is it a tautology?
• SATisfability: Give a formula φ, is it satisfable? (Is there some truth assignment to

its variables, that makes it true?)
• EQUIV: Given two WFFs φ and ψ, are they equivalent? (Do they give the same

result for all possible truth assignments to their variables?

2.1.2.4 Game-specific rules

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Is x ∨ y ∨ z a tautology? Clearly not. Setting the three propositions each to false, the
formula is false. But now consider: Is A − has − 0∨∨ A − has − 1∨∨ A − has − 2 a
tautology? The answer here is " yes of course, ... well, as long we're interpreting those
propositions to refer to a WaterWorld board. " We'll capture this notion by listing a
bunch of domain axioms for WaterWorld: formulas which are true for all WaterWorld
boards.

There are a myriad of domain axioms which express the rules of WaterWorld. Here
are a few of them:

• A − has − 0 ⇒ B − safe ∧ G − safe
• A − has − 2 ⇒ B − unsafe ∧ G − unsafe
• ...

A more complete list is here (Section 6.5.2: The domain axioms (Page 173)). Whenever
we deal with WaterWorld, we implicitly take all these domain axioms as given.

2.2 Reasoning with truth tables

2.2.1 Using truth tables
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Seeing how we can express some concepts as some formulas, and how some
formulas are tautologies while others might be true or false depending on the truth
assignment, we come to a question: how can we determine when a formula is a

31

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

tautology? How can we tell if two different formulas are equivalent for all truth
assignments? We'll look at three different methods of answering these questions:

• reasoning with truth tables (Reasoning with truth tables (Page 31)),
• reasoning with equivalences (Propositional equivalences (Page 36)), and
• reasoning with inference rules (Propositional inference rules (Page 45)).

2.2.1.1 Using Truth Tables

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Is ⇒ associative? In other words, is a⇒ (b⇒ c) always equivalent to a⇒ b⇒ c? What
is a methodical way of answering questions of this type? We can make a truth table
(Definition: "truth table", p. 19) with two output columns, one for each formula in
question, and then just check whether those two columns are the same.

Exercise 2.2.1.1

Use truth tables to show that a⇒ (b⇒ c) and (a⇒ b) ⇒ c aren't equivalent.
Thus we see that truth tables are a method for answering questions of the form "Is
formula φ equivalent to formula ψ?" We make a truth table, with a column for each of
φ and ψ, and just inspect whether the two columns always agree. A bit of a brute-
force solution, but certainly correct.
What about the related question, "Is formula θ a tautology?". Well, obviously truth
tables can handle this as well: make a truth table for the formula, and inspect whether
all entries are true. For example, in the above problem (Using Truth Tables (Page 32)),
we could have made a truth table for the single formula a⇒ (b⇒ c) ⇔ (a⇒ b) ⇒ c.
The original question of equivalence becomes, is this new formula a tautology?

The first approach is probably a tad easier to do by hand, though clearly the two
approaches are equivalent. Another handy trick is to have three output columns
you're computing: one for φ = a⇒ (b⇒ c), one for ψ =(a⇒ b) ⇒ c, and one for φ⇔ ψ;
filling out the first two helper columns makes it easier to fll out the last column.

Tip
When making a truth table for a large complicated WFF by hand, it's
helpful to make columns for sub-WFFs; as you fll in a row, you can
use the results of one column to help you calculate the entry for a
later column.

32

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.2.1.2
Is it valid to replace the conditional

int do something(int value1, int value2)

{

bool a = ...;

bool b = ...;

if(a && b)

return value1;

else if (a // b)

return value2;

else

return value1;

}

with this c onditional?

int do something(int value1, int value2)

{

bool a = ...;

bool b = ...;

if ((a && !b) // (!a && b))

return value2;

else

return value1;

}

After all, the latter seems easier to understand, since it has only two cases, instead of
three.
So, how would do we use truth tables to reason about WaterWorld? Suppose you
wanted to show that G − safe was true on some particular board. Clearly a truth table
with the single column G − safe alone isn't enough (it would have only two rows false
and true and just sit there and stare at you). We need some way to incorporate both
the rules of WaterWorld (Propositional axioms for WaterWorld (Page 171)) and the
parts of the board that we could see.
We can do that by starting with a huge formula that was the conjunction of all the
WaterWorld domain axioms; call it ρ. We would encode the board's observed state
with another formula, ψ. Using these, we can create the (rather unwieldy) formula that
we're interested in: ρ∧ ψ⇒ G − safe. (Notice how this formula effectively ignores all
the rows of the truth-table that don't satisfy the rules ρ, and the rows that don't
correspond to the board we see ψ: because of the semantics of ⇒, whenever ρ∧ ψ is
false, the overall formula ρ∧ ψ⇒ G − safe is true.)

33

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.2.2 The limitations of truth tables

2.2.2.1 Are we done yet?

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Are we done with propositional logic, now that we can test for equivalence and
tautologies, using truth tables? Possibly. Truth tables can answer any question about
propositional logic, but not always conveniently.
Consider the following code:

bool do something(int value)

{

bool a = ...;

bool b = ...;

if(a&& !b)

return true;

else if (!a && !b)

return false;

else if (a)

return a;

else if (b)

return false;

else

return true;

}

Clearly, this is very ugly and should be simplifed. But to what? We could build a truth
table for the corresponding WFF, but so far we don't have any better way of finding a
simpler equivalent formula than testing equivalence with whatever comes to mind.
We need some way to generate formulas, given either an equivalent formula or a
truth table.

There is another practical difficulty with truth table: they can get unwieldy.

Exercise 2.2.2.1
How many rows are there in a truth table with 2 input variables? 3
variables? 5 variables? 10 variables? n variables?

34

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.2.2.2
(Optional) Now, how many such boolean functions are possible, with
2 inputs? With? For fun, sit down and name all the possible two-
input functions. You'll find that some of them are rather boring, such
as the constant function true, and many are just permutations on ⇒.

When discussing a circuit with 100 wires (each corresponding to a single proposition),
truth tables are clearly infeasible. Modern processors have millions of wires and
transistors. It is still an area of active research to cope with such a huge number of
possibilities. (The key idea is to break things down into small sections, prove things
about the small sections, and hopefully have a small set of sentences formally
capturing the interface between sections.)

So truth tables are intractable for analyzing circuits of more than a few wires. But will
they suffice for answering WaterWorld questions? Image a (large) table with all the
neighbor propositions: A − has − 0, B − has − 0, ..., A − has − 1, B − has − 1, ... Now,
determine which rows which entail B − safe. To answer this, we end up looking at
rows involving many clearly-irrelevant propositions such as Z − has − 2.

ASIDE: Hmm, considering every possible board and then counting what proportion of
boards entail B − safe hmm, this is the brute-force definition of probability Since such
truth tables enumerates all possible boards, it's like looking for probability 1 the brute-
force way.

Also, this method of playing WaterWorld via huge truth tables would be unsatisflying
for another reason: it doesn't actually reflect our own reasoning. As a general principle
of programming, your program should always reflect how you conceive of the
problem. The same applies to logic.

ASIDE: Consider the difference between using truth tables and actually reasoning. The
philosopher Bertrand Russell8 , trying to pin down what exactly constitutes
"knowledge", suggested that he knows that the last name of Britain's prime minister
begins with a 'B'. While Gordon Brown is prime minister, making Bertrand is correct,
we hesitate to say he actually knows the fact he wrote his example when the prime
minister was Arthur Balfour9 (1902-1905). So while he is correct in a truth-table sense,
his reasoning isn't, and we tend to say that he does not actually know the prime
minister's last initial.

So, no: we're not yet finished with propositional logic. We want to look for (hopefully)
more feasible ways to determine whether a formula is a tautology (or, whether two
formulas are equivalent). As a clue, we'll try to discover methods which are based on
the way we naively approach this. We'll look first at Reasoning with equivalences (Page
36), and then at Propositional inference rules (Page 45).

35

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.3 Reasoning with equivalences

2.3.1 Propositional equivalences

2.3.1.1 Propositional Equivalences

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

What are the roots of x3 − 4x? Well, in high-school algebra you learned how to deal
with such numeric formulas:

x3 – 4x

= x(x2-4) factor out x

= x(x-2)(x+2) The identity a2 – b2 = (a + b)(a-b) with a
being x, and b being 2.

This last expression happens to be useful since it is in a form which lets us read of the
roots 0, +2, -2. The rules of algebra tell us that these three different formulas are all
equivalent. In fact, our very definition of two formulas being equivalent is that for any
value of x the two formulas return the same value. We are distinguishing between
syntax (the expression itself, as data), and semantics (what the expression means).
Usually, when presented with syntax, one is supposed to bypass that and focus on its
meaning (e.g., reading a textbook). However, in logic and post-modern literature alike,
we are actually studying the interplay between syntax and semantics. The general gist
is that in each step, you rewrite subparts of your formula according to certain rules
("replacing equals with equals").

Well, we can use a similar set of rules about rewriting formulas with equivalent ones,
to answer the questions of whether two formulas are equal, or whether a formula is a
tautology. George Boolell was the first to realize that true and false are just values in
the way that numbers are, and he first codified the rules for manipulating them; thus
Boolean algebra is named in his honor.

ASIDE: The term "algebral2 " comes from the values true, false and operators ∧, ∨
having some very specific properties similar to those of numbers with ×, +.

36

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 2.2 George Boole (1815-1861)

Again, each individual step consists of rewriting a formula according to certain rules.
So, just what are the rules for manipulating Boolean values? We'll start with an
example.

Example 2.4

1
a ∧ false ∨ b ∧
true

2 ≡false ∨ b ∧ true Dominance of false over ∧

3 ≡b ∧ true ∨ false Commutatively of ∨

4 ≡b ∧ true
Identity element for ∨ is
false

5 ≡b
Identity element for ∧ is
true

Thus we have a series of equivalent formulas, with each step justified by citing a Propo
sitional equivalences (Page 165). By and large, the equivalences are rather mundane. A
couple are surprisingly handy; take a moment to consider DeMorgan's laws.

(Try φ being "Leprechauns are green", and ψ being "Morgana Le Fay likes gold". Do
these laws make sense, for each of the four possible truth assignments?) Augustus
DeMorganl was also an important fgure in the formalization of logic.

37

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

:

Figure 2.3 Augustus DeMorgan (1806-1871)

Here is another example. For a statement φ⇒ ψ, the contrapositive of that formula is
¬ψ⇒¬φ. We can show that a formula is equivalent to its contrapositive:

38

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 2.5

1 φ⇒ψ

2 ≡¬φ∨ψ Definition of ⇒

3 ≡ψ∨¬φ Commutativity of ∨

4 ≡¬¬ψ∨¬φ Double Complementation

5 ≡¬ψ⇒¬φ Definition of ⇒

Table 2.3 Contrapositive

Don't confuse the contrapositive of a statement with the converse of a formula: The
converse of φ⇒ ψ is the formula ψ⇒ φ; in general a formula is not equivalent to
its converse!

This next example is actually a proof of one of the laws from the given list, using (only)
others from the list.

Example 2.6

1 φ∧ψ∧ψ

2 ≡φ∧ψ∧ψ∧ true Identity of ∧

3 ≡ψ∧φ∧ψ∧ true Commutativity of ∨

4 ≡ψ∧(φ∨ true) Distributivity of ∧ over ∨

5 ≡ψ∧ true Domicance of ∨

6 ≡ψ Identity of ∧

Table 2.4 Absorption of ∨∨

39

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.3.1.1
Show that the "Absorption of ∧" equivalence holds, given the other
equivalences. I.e., show (a∨ b) ∧ b ≡ b.

Compared to proofs using truth tables, Boolean algebra gives us
much shorter proofs. But, determining which equivalence to use in
the next step of a proof can be difcult. In this case, compare the
solution for this exercise to the previous absorption proof. These two
proofs have a special dual relationship described in the next section.

Exercise 2.3.1.2
Show that the modus ponens rule, a∧ (a⇒ b) ⇒ b always holds. I.e.,
show that it is a tautology, and thus equivalent to true.

So, what would it mean to use Boolean algebra as reasoning for
WaterWorld? That is, if you wanted to show that G − safe was true,
how would you do that using Boolean algebra? As with truth-tables,
we would take the conjunction of all the WaterWorld domain axioms
(call it ρ), and the board's observed state (ψ). We would then want to
show that asserting G − safe was already equivalent to the rules-and-
observed-state: ρ∧ ψ ≡ ρ∧ ψ∧ G − safe.

2.3.1.1.1 Duals (optional)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Duals: a symmetry between ∧, ∨ mediated by ¬.

Looking at the provided propositional equivalences (Propositional equivalences (Page
165)), you should notice a strong similarity between those for ∨ and those for ∧. Take
any equivalence, swap ∨s and ∧s, swap trues and falses, and you'll have another
equivalencel For instance, there are two favors of DeMorgan's law, which are just
duals of each other:

ASIDE: In terms of circuit diagrams, we can change each AND gate to an OR gate and
add negation-bubbles to each gate's inputs and outputs. The principle of duality
asserts that this operation yields an equivalent circuit.

The idea of duality is more general than this. For example, polyhedra have a natural
duall5 of interchanging the role of vertices and faces.

40

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2.3.2 Normal forms

2.3.2.1 CNF, DNF, ... (ENufF already!)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In high school algebra, you saw that while x3− 4x and x (x − 2) (x + 2) are equivalent,
the second form is particularly useful in letting you quickly know the roots of the
equation. Similarly, in Boolean algebra there are certain canonical "normal" forms
which have nice properties.

A formula in Conjunctive Normal Form, or CNF, is the conjunction of CNF clauses.
Each clause is a formula of a simple form: a disjunction of possibly-negated
propositions.

Example 2.7
c⇒ a∧ b is equivalent to (a∨¬c) ∧ (b∨¬c). This latter formula is in
CNF, since it is the conjunction of disjunctions, and each disjunction
consists only of propositions and negated propositions.

Example 2.8
The conjunctions and disjunctions need not be binary. The following
formula is also is CNF.

¬a∧ (a∨ b∨¬c) ∧ (b∨¬d∨ e∨ f)

Note that its first clause is just one negated proposition. It is still
appropriate to think of this as a disjunction, since φ ≡ φ∨ φ.
Another format, Disjunctive Normal Form, or DNF is the dual of
conjunctive normal form. A DNF formula is the disjunction of DNF
clauses, each a conjunction of possibly-negated propositions.

Example 2.9
a∧ b⇒ c is equivalent to ¬a∨¬b∨ c which is in DNF: three
disjunctions, each being a clause with only one term. (It also happens
to be in CNF a single clause with three termsl) It is also equivalent to
the more feshed out DNF formula where we insist that each clause
include all three variables. We end up with a formula that includes
each possible clause except a∧ b∧¬c: That is, the formula (a∧ b∧
c) ∨ (a∧¬b∧ c) ∨ (a∧¬b∧¬c) ∨ (¬a∧ b∧ c) ∨ (¬a∧ b∧¬c) ∨ (¬a
∧¬b∧ c) ∨ (¬a∧¬b∧¬c).

41

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

ASIDE: Electrical Engineering courses, coming from more of a circuit perspective,
sometimes call CNF product-of-sums, and call DNF sum-of-products, based on ∨,∧
being analogous to +,*.

Any Boolean function can be represented in CNF and in DNF. One way to obtain CNF
and DNF formulas is based upon the truth table for the function.

• A DNF formula results from looking at a truth table, and focusing on the rows
where the function is true: As if saying "I'm in this row, or in this row, or ...": For
each row where the function is true, form a conjunction of the propositions. (E.g.,
for the row where a is false, and b is true, form ¬a∧ b.) Now, form the
disjunction of all those conjunctions.

• A CNF formula is the pessimistic approach, focusing on the rows where the
function is false: "I'm not in this row, and not in this row, and ...". For each row
where the function is false, create a formula for "not in this row": (E.g., if in this
row a is false and b is true form ¬ (¬a∧ b); then notice that by DeMorgan's law,
this is a∨¬b a disjunct. Now, form the conjunction of all those disjunctions.

Example 2.10

a b c Unknown function

false false false false

false false true false

false true false true

false true true true

true false false false

true false true true

true true false false

true true false false

Table 2.5 Truth table example

For CNF, the false rows give us the following five clauses:

• a∨ b∨ c
• a∨ b∨¬c
• ¬a∨ b∨ c

42

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

• ¬a∨¬b∨ c
• ¬a∨¬b∨¬c

and the full formula is the conjunction of these. Essentially, each clause rules out one
row as being true.

For DNF, the true rows give us the following three clauses:

• ¬a∧ b∧¬c
• ¬a∧ b∧ c
• a∧¬b∧ c

and the full formula is the disjunction of these. Essentially, each clause allows one row
to be true.

This shows that, for any arbitrarily complicated WFF, we can find an equivalent WFF in
CNF or DNF. These provide us with two very regular and relatively uncomplicated
forms to use.

Exercise 2.3.2.1
The above example (Example 2.10) produced CNF and DNF formulas
for a Boolean function, but they are not the simplest such formulas.
For fun, can you find simpler ones?

2.3.2.1.1 Notation for DNF, CNF

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Sometimes you'll see the form of CNF and DNF expressed in a notation with
subscripts.

• DNF is∨iψi, where each clause φi is∧j λj , where each λ is a propositional
variable (Prop), or a negation of one (¬Prop).

• CNF is∧iψi, where each clause ψi is∨jλj , where each λ is again a propositional
variable (Prop), or a negation of one (¬Prop).

For example, in the CNF formula (a∨ b) ∧ (¬a∨ b∨ c) ∧ (¬a∨¬b) we have φ2 = ¬a
∨ b∨ c within that clause we have λ1 = ¬a.

One question this notation brings up:

• What is the disjunction of a single clause? Well, it's reasonable to say that ψ ≡ ψ.
Note that this is also equivalent to ψ∨ false.

• What is the disjunction of zero clauses? Well, if we start with ψ ≡ ψ∨ false and
remove the ψ, that leaves us with false! Alternately, imagine writing a function
which takes a list of booleans, and returns the ∨ of all of them the natural base
case for this recursive list-processing program turns out to be false. Indeed, this
is the accepted defnition of the empty disjunction. It follows from false being the
identity element for ∨. Correspondingly, a conjunction of zero clauses is true.

43

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Actually, that subscript notation above isn't quite correct: it forces each clause to be
the same length, which isn't actually required for CNF or DNF. For fun, you can think
about how to patch it up. (Hint: double-subscripting.)

Note that often one of these forms might be more concise than the other. Here are
two equivalently verbose ways of encoding true, in CNF and DNF respectively: (a∨¬a)
∧ (b∨¬b) ∧ ... ∧ (z∨¬z) is equivalent to (a∧ b∧ c∧ ... ∧ y∧ z) ∨ (a∧ b∧ c∧ ...
∧ y∧¬z) ∨ (a∧ b∧ c∧ ... ∧¬y∧ z) ∨ ... ∨ (¬a∧¬b∧ ... ∧¬y∧¬z). The first
version corresponds to enumerating the choices for each location of a WaterWorld
board; it has 26 two-variable clauses. This may seem like a lot, but compare it to the
second version, which corresponds to enumerating all possible WaterWorld boards

explicitly: it has all possible 26-variable clauses; there are 226 ≈ 64 billion of them!

2.3.3 Soundness and completeness

2.3.3.1 Are we done yet?

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We have shown procedures, using both truth tables and equivalences, for solving two
different logic problems:

• Equivalence: Show whether or not two WFFs φ and ψ are equivalent (the same
under any truth assignment);

• Tautology: Show whether or not a given WFF φ is a tautology (true under all truth
assignments).

Exercise 2.3.3.1
Which of these two logic problems seems harder than the other? That
is, suppose you have a friend who can solve any Equivalence problem
efficiently. But you want to open a business which will solve any
Tautology problem efficiently. Can you open your business and, by
subcontracting out specific Equivalence problems to your friend,
really solve any Tautology problem brought to you? This question is
sometimes phrased as "Does Tautology reduce to Equivalence? "Or,
does it work the other way: does Equivalence reduce to Tautology?

But we have a more fundamental question to ask, about the method
of using Boolean algebra (propositional equivalences) to prove
something: Where does the initial list of allowable equivalences come
from, and how do we know they're valid? The answer is easy −−− each
equivalence can be verified by a truth table!

44

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.3.3.2
Using a truth table, show the validity of conjunctive Redundancy: φ∧
(¬φ∨ ψ) ≡ φ∧ ψ This is called soundness of Boolean algebra: If, using
our propositional equivalence rules, we derive that φ and ψ are
equivalent, then truly they are equivalent. (Whew!) By the way, there
is one subtle point: our truth table tells us that a∧ b and b∧ a are
equivalent. But then suddenly we generalize this to saying that for
any formulas φ and ψ, φ∧ ψ and ψ∧ φ are also equivalent. What lets
us justify that step? It's because any given formula will be either true
or false, so we can reduce the entire formula to a single true/false
proposition. Is Boolean algebra enough? Does our list of allowable
propositional equivalences include everything you'll need? That is,
could I have asked as a homework problem to show some two
formulas equivalent (using Boolean algebra), and even though they
really are equivalent, there aren't enough rules to on our list to let
you finish the homework? Hmm, good question! The property we
desire here is called the completeness of Boolean algebra: any
equivalence which is true can be proved. It turns out that, given any
two formulas which really are equivalent, Boolean algebra is indeed
sufficiently powerful to show that. Put both formulas into CNF (or,
DNF); if the truth tables are equal then the CNF formulas will be
equal. (Well, there are a few details to take care of: you have to order
the clauses alphabetically, eliminate any duplicate clauses, and
include all variables in each clause. This might be tedious, but not
difficult.) Thus, Boolean algebra is complete, since (we state without
proof) this procedure can always be carried out. The concepts of
soundness and completeness can be generalized to any system.

Definition 2.9: soundness

If the system (claims to) prove something is true, it really is true.

Definition 2.10: completeness

If something really is true, the system is capable of proving it.

2.4 Reasoning with inference rules

2.4.1 Propositional inference rules

2.4.1.1 Inference

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Truth tables and equivalences are useful and powerful tools, but they do not
correspond to how we usually reason about things. What we will do now is look at
more familiar reasoning and how to formalize that. For example, with Boolean algebra

45

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

it is awkward to prove that a∧ b implies a. For that, it is necessary to reword the
problem in terms of equivalences, as a∧ b⇒ a ≡ true. Our next tool provides a more
straightforward way to reason about implications.

Example 2.11
Given the following piece of a WaterWorld board, how would you
conclude that G is unsafe?

Figure 2.4 A glimpse of a WaterWorld board

Since H− has − 2, at least two of H's three neighbors must be unsafe. But, since we
know that one of these, J, isn't unsafe, then the two others, including G, must both be
unsafe. Let's write this out more explicitly:

46

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1

H - has - 2would imply
one of the following is
true:

(P - unsafe and G -
unsafe), or

(J - unsafe and P -
unsafe), or

(G - unsafe and J -
unsafe).

WaterWorld domain
axiom, i.e., definition of
H - has - 2

2 H - has - 2 is true.
Premise (by inspection of
this particular board)

3

One of the following is
true:

(P - unsafe and G -
unsafe), or

(J - unsafe and P -
unsafe), or

(G - unsafe and J -
unsafe).

lines 1,2

4 not J - unsafe Premise (by inspection)

5
(P - unsafe and G -
unsafe)

lines 3,4

6 G - unsafe line 5

Whew! A lot of small steps are involved in even this small deduction. It's apparent we'd
want to automate this as much as possible! Let's look at some other short examples,
which we'll formalize in a moment.

Exercise 2.4.1.1
How do you know that A − has − 2 proves B − unsafe ?

Exercise 2.4.1.2
Similarly, how do you reason that A − has − 1 and G − safe prove B −
unsafe?

47

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.4.1.1.1 Formal inference rules and proofs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the above examples, we relied on common sense to know what new true formulas
could be derived from previous ones. Unfortunately, common sense is imprecise and
sometimes wrong. So, we need to formalize how we form proofs.

We now define a formal proof of θ from the premises φ, ..., ψ, written

(A proof with no premises simply means there is nothing on the left of the turnstile:

.) For example, we'll show shortly that H − has − 2 f G − unsafe. A proof consists of a
sequence of WFFs, each with a justifcation for its truth. We will describe four
permissible justifcations for each step:

• A premise.
• An axiom.
• An inference rule.
• A subproof.

ASIDE: Ofcially we might want to annotate the turnstile with "ww", to mean "proves
within the WaterWorld inference system", indicating our use of the WaterWorld
domain axioms. If you're proving things about other domains, you'd use different
domain axioms.

Example 2.12
We can formalize the above examples to show each of the following:

See below for formal proofs of some of these.

Stating an axiom, a simple assumed truth, is a rather trivial, boring way of coming up
with a true formula. Some axioms are domain axioms: they pertain only to the
domain you are considering, such as WaterWorld. In our case, we don't have any
axioms that aren't domain axioms. If our domain were arithmetic, our axioms would
describe how multiplication distributes over addition, etc.

Just using axioms is not enough, however. The interesting part is to deduce new true
formulas from axioms and the results of previous deductions.

Note: "The point of philosophy is to start with something so simple as not to
seem worth stating, and to end with something so paradoxical that no one will
believe it." Bertrand Russell , The Philosophy of Logical Atomism

48

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

An inference rule formalizes what steps are allowed in proofs. We'll use this list of
valid inference rules (Propositional inference rules (Page 166)) as our defnition, but,
this is just one set of possible inference rules, and other people could use slightly
different ones.

First, let's look at some simple examples, using the simpler inference rules.

Example 2.13
We'll formalize a previous exercise (Exercise 2.4.1.1) to show

.

1 A – has – 2 Premise

2
A – has – 2 ⇒

B – unsafe ∧ F - unsafe
WaterWorld domain action

3 B – unsafe ∧ F – unsafe

⇒Elim, lines 1,2, where

ψ = A – has – 2, and

φ = B – unsafe ∧ F - unsafe

4 B – unsafe

∧Elim (left), line 3, where

ψ = B – unsafe, and

φ = F - unsafe

What we mean in line 3, for example, is that we are using the domain axiom ⇒Elim.
That states that if we know φ⇒ ψ, and we know φ, then we can conclude ψ. In line 3,
we have defined φ = A − has − 2 and ψ =B − unsafe∧∧ F − unsafe, so that φ⇒ ψ
corresponds to the conclusion of line 2 and φ corresponds to that of line 1. Thus, this
domain axiom applies, and we get the conclusion ψ.

That's almost exactly like the steps we took in the previous informal proof, but now
we're a bit pickier about our justifcations for each step.

Formally, when using a domain axiom, the justifcation is a combination of the name of
that inference rule, the line numbers of which previous WFFs are being used, and a
description of how those WFFs are used in that inference rule in this particular step.
Later, we'll often omit the description of exactly how the specifc inference rule is used,
since in many cases, that information is painfully obvious.

49

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 2.14
In this system, commutativity of ∧ and ∨ are not among the
inference rules. However, they do follow. For example, consider the
following proof of

1 A ∧ B Premise

2 A ∧Elim (left), line 1, where φ = A

3 B ∧Elim (right), line 1, where ψ = B

4 B ∧ A ∧Intro, lines 3,2, where φ = B, and ψ = A

Does this example (Example 2.14) also show that

? Well, yes and no. That proof does not have anything to do with propositions C and D.
But, clearly, we could create another nearly identical proof for

, by substituting C and D for A and B, respectively. What about proving the other
direction of commutativity:

? Once again, the proof has exactly the same form, but substituting B and A for A and
B, respectively. Stating such similar proofs over and over is technically necessary, but
not very interesting. Instead, when the proof depends solely on the form of the
formula and not on any axioms, we'll use meta-variables to generalize.

Example 2.15
Generalized ∧ commutativity:

1 χ∧υ Premise

2 υ ∧Elim (left), line 1, where φ =χ

3 χ ∧Elim (right), line 1, where ψ =υ

4 υ ∧ χ ∧Intro, lines 3,2, where φ = υ, ψ=χ

50

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.4.1.3
Similarly, associativity of ∧ and ∨ are not among the inference rules.
This is a particularly important detail, since our WaterWorld domain
axioms frequently use formulas of the form a∧ b∧ c, which isn't
technically legal according to our definition of WFFs. What we'd like
to show is that

and

as well as the equivalent for ∨. Thus, when we see three, four, or
more terms in a conjunction (or disjunction), we can legitimately
group them as we see fit.

These deductions are straightforward and should be unsurprising, but perhaps not
too interesting. These simple rules can carry us far and will be used commonly in
other examples.

Example 2.16
The case-elimination rule is easy enough for a dog! Rico has a
vocabulary of over 200 words, and if asked to fetch an unknown toy,
he can pick it out of a group of known toys by process-of-
elimination. (It's almost enough to make you wonder whether dogs
know calculus.)

Figure 2.5 This Border Collie knows his inference rules.

There is a subtle difference between implication (⇒) and provability (f). Both embody
the idea that the truth of the right-hand-side follows from the left-hand-side. But, ⇒ is
a syntactic formula connective combining two WFFs into a larger WFF, while f
combines a list of propositions and a WFF into a statement about provability.

51

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.4.1.4
Show that,

is equivalent to

in that, we can show one if and only if we can show the other.

2.4.2 Using subproofs

2.4.2.1 Subproofs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Reductio ad absuTdum ("RAA"), Latin for "reduction to absurdity", seems very
strange: If we can prove that false is true, then we can prove the negation of our
premise. Huh!?l What on Earth does it mean to prove that false is true?

This is known as proof-by-contradiction. We start by making a single unproven
assumption. We then try to prove that false is true. Clearly, that it nonsense, so we
must have done something wrong. Assuming we didn't make any mistakes in the
individual inference steps, then the only thing that could be wrong is the assumption.
It must not hold. Therefore, we have just proven its negation.

This form of reasoning is often expressed via contrapositive. Consider the slogan

If you paid list price, you didn't buy it at SuperMegaMart.

(This is a contrapositive, because the real statement the advertisers want to make is
that if you buy it at SuperMegaMart, then you won't pay list price.), which we'll
abbreviate payFull⇒⇒¬boughtAtSMM. You know this slogan is true, and you just
made a SuperMegaMart purchase (boughtAtSMM), and are suddenly wanting a proof
that you got a good deal. Well, suppose we didn't. That is, suppose payFull. Then by
the truth of the marketing slogan, we infer ¬boughtAtSMM. But this contradicts
boughtAtSMM (that is, from ¬boughtAtSMM and boughtAtSMM together we can
prove that false is true). The problem must have been our pessimistic assumption
payFull; clearly that couldn't have been true, and we're happy to know that ¬payFull.

52

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Example 2.17
Spot the proof-by-contradiction used in The Simpsons:

Bart, fling through the school records: " Hey, look at this: Skinner
makes $25,000 per year! "

Other kids: "Ooooh!"
Milhouse: "And he's 40 years old; that makes him a millionaire! "
Skinner, indignantly: " I wasn't a principal when I was 1!"
Milhouse: "And, he paints houses during the summer ... he's a

billionaire!"
Skinner: "If I were a billionaire, would I still be living with my

mother? " [Kids' laughter]
Skinner, to himself: " The kids just aren't responding to logic

anymore! "

In the particular set of inference rules we have chosen to use, RAA is surprisingly
important. It is the only way to prove formulas that begin with a single "¬".

53

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 2.18
We'll prove

1.a α∧ ¬α
Premise
for
subproof

1.b α

∧Elim
(left), line
1.a, where
φ = α, and ψ
= ¬α

1.c ¬α

∧Elim
(right),
line 1.a,
where φ =
α, and ψ =
¬α

1.d false

falseIntro,
lines
1.b,1.c,
where φ = α

2 ¬ (α∧ ¬α)

RAA, line
1, where φ
= α∧ ¬α

Exercise 2.4.2.1
Here's another relatively simple example which uses RAA. Show that
the modus tollens rule holds:

Another use of subproofs is to organize proofs' presentations. Many proofs naturally
break down into larger subparts, each with its own intermediate conclusion. These
steps between these subparts are big enough to correspond to our intuition, but too
big to correspond to individual inference rules. This gives additional useful structure
to a proof, aiding our understanding.

54

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 2.19
Previously, we showed that ∧ (AND) commutes (Example 2.14).
However, that conclusion is only directly applicable when the ∧ is at
the "top-level", i.e., not nested inside some other connective. Here,
we'll show that ∧ commutes inside ¬, or more formally,

Caution: When doing inference-style proofs, we will not use the Boolean
algebra laws nor replace subformulas with equivalent formulas. Conversely,
when doing algebraic proofs, don't use inference rulesl While theoretically
it's acceptable to mix the two methods, for homeworks we want to make
sure you can do the problems using either method alone, so keep the two
approaches separate!

We'll do two proofs of this to illustrate that there's always more than one way to prove
something!

In our first proof, we'll use RAA. Why? Looking at our desired conclusion, what could
be the last inference rule used in the proof to reach the conclusion? By the shape of
the formula, the last step can't use any of the "introduction" inference rules (∧Intro,
∨Intro, ⇒Intro, falseIntro, or ¬Intro). We could potentially use any of the "elimination"
inference rules. But, for ∧Elim, ∨Elim, ⇒Elim, ¬Elim, or CaseElim, we would first have
to prove some more complicated formula to obtain our desired conclusion. That
seems somewhat unlikely or unnecessary. For falseElim, we'd have to first prove
false, i.e., obtain a contradiction, but our only premise isn't self-contradictory. The
only remaining option is RAA.

1 ¬ (α∧ β) Premise

2 subproof:

2.a β∧ α Premise for subproof

2.b α∧ β
Theorem: ∧ commutes (Example
2.14), line 2a

2.c false falseIntro, lines 1,2.b

3 ¬ (α∧ β) RAA, line 2

The proof above uses a subproof because it is necessary for the use of RAA. In
contrast, the proof below uses two subproofs simply for organization.

For our second proof, let's not use RAA directly. Our plan is as follows:

55

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

• Assume the premise ¬ (α∧ β).
• Again, use commutativity to show that β∧ α⇒ α∧ β
• Use modus tollens (Exercise 2.4.2.1) to obtain the conclusion.

We can organize the proof into corresponding subparts:

1 ¬ (α∧ β) Premise

2
subproof:β
∧ α⇒ α∧

β

2.a

Theorem
statement:
∧

commutes
(Example
2.14)

2.b
⇒Intro,
line 2.a

3
subproof:¬
(β∧ α)

3.a

Theorem
statement:
modus
tollens
(Exercise
2.4.2.1)

3.b
⇒Intro,
line 3.a

3.c
∧Intro,
lines 2,1

3.d
⇒Elim,
lines
3.b,3.c

56

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.4.2.2 More examples

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Now let's use these rules in a couple larger proofs, to show some more interesting
results.

Example 2.20
Let's redo the first example (Example 2.11)'s proof formally and show

The inference rules we used informally above don't correspond
exactly to those in our defnition, so the formal proof is more
complicated.

1
H − has − 2 ⇒⇒ P − unsafe ∧∧ G − unsafe ∨∨ J −
unsafe ∧∧ P − unsafe ∨∨ G − unsafe ∧∧ J − unsafe

WaterWorld
axiom,
choosing a
grouping of
the ternary ∨,
as justifed by
∨

commutativity
(Example 2.14)

2 H − has − 2 ∧∧ J − safe Premise

3 H − has − 2
∧Elim (left),
line 2

4
P − unsafe ∧∧ G − unsafe ∨∨ J − unsafe ∧∧ P −
unsafe ∨∨ G − unsafe ∧∧ J − unsafe

⇒Elim, lines
1,3

5 J − safe
∧Elim (right),
line 2

6 J − safe ⇒⇒ ¬J − unsafe
WaterWorld
axiom

7 ¬J − unsafe
⇒Elim, lines
5,6

57

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

8

8.a G − unsafe ∧∧ J − unsafe
Premise for
subproof

8.b J − unsafe
∧Elim (right),
line 8.a

8.c false
falseIntro,
lines 7,8.b

9 ¬ (G − unsafe ∧∧ J − unsafe) RAA, line 8

10
P − unsafe ∧∧ G − unsafe ∨∨ J − unsafe ∧∧ P −
unsafe

CaseElim
(right), lines
4,9

11 subproof:J − unsafe ∧∧ P − unsafe f false

11.a J − unsafe ∧∧ P − unsafe
Premise for
subproof

11.b J − unsafe
∧Elim (left),
line 11.a

11.c false
falseIntro,
lines 7,11.b

12 ¬ (J − unsafe ∧∧ P − unsafe) RAA, line 11

13 P − unsafe ∧∧ G − unsafe
CaseElim
(right), lines
10,12

14 G − unsafe
∧Elim (right),
line 13

Wow! This formalization is a lot longer than the original informal proof. That's a result
of the particular set of inference rules we are using, that we can only make inferences

58

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

in small steps. Also, here we were pickier about the distinction between "not safe" and
"unsafe".

Example 2.21
The previous example (Example 2.20) is a perfect candidate for
adding structure to the proof by using additional subproofs. The
following is more similar to the original informal proof (Example
2.11).

Note also that subproofs can have their own subproofs.

59

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1
H − has − 2 ⇒⇒ P − unsafe ∧∧ G − unsafe ∨∨ J − unsafe ∧∧
P − unsafe ∨∨ G − unsafe ∧∧ J − unsafe

WaterWorld
axiom,
choosing a
grouping of
the ternary ∨,
as justied by
∨

commutativity
(Example 2.14)

2

2.a H − has − 2 ∧∧ J − safe Premise

2.b H − has − 2
∧Elim (left),
line 2.a

3
P − unsafe ∧∧ G − unsafe ∨∨ J − unsafe ∧∧ P − unsafe ∨∨
G − unsafe ∧∧ J − unsafe

⇒Elim, lines
1,3

4

4.a H − has − 2 ∧∧ J − safe Premise

4.b J − safe
∧Elim (right),
line 4.a

4.c J − safe ⇒⇒ ¬J − unsafe
WaterWorld
axiom

4.d ¬J − unsafe
⇒Elim, lines
4.b,4.c

5

5.a

5.a.i G − unsafe ∧∧ J − unsafe
Premise for
subproof

5.a.ii J − unsafe
∧Elim (right),
line 5.a.1

5.a.iii false
falseIntro,
lines 4,5.a.2

5.b ¬ (G − unsafe ∧∧ J − unsafe) RAA, line 5.a

5.c
P − unsafe ∧∧ G − unsafe ∨∨ J − unsafe ∧∧ P −
unsafe

CaseElim
(right), lines
3,5.b

5.d

60

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

5.d.i J − unsafe ∧∧ P − unsafe
Premise for
subproof

5.d.ii J − unsafe
∧Elim (left),
line 5.a.1

5.d.iii false
falseIntro,
lines 4,5.d.2

5.e ¬ (J − unsafe ∧∧ P − unsafe) RAA, line 5.d

5.f P − unsafe ∧∧ G − unsafe
CaseElim
(right), lines
5.c,5.e

6 G − unsafe
∧Elim (right),
line 5

A standard way of presenting proofs is by using lemmas to show parts of the proofs.
Lemmas are simply formulas which we prove not as an end result, but as intermediate
steps in a larger proof. So, they are simply another way of presenting subproofs.

Example 2.22

Figure 2.6 Example WaterWorld board

61

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Consider the above figure (Figure 2.6). We'll show B − has − 1∧∧ G − has − 1∧∧ J − has
− 1 f K − unsafe. We'll do this through the following series of lemmas:

• Lemma A:

• Lemma B:

• Lemma C:

• Lemma D:

• Lemma E:

• Lemma F:

First, we'll show the main proof, assuming each of the lemmas. Then, proofs of each of
the lemmas will follow.

62

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1
B − has − 1∧∧ G − has − 1∧∧ J − has −
1

Premise

2 B − has − 1 ∧Elim (left), line 1

3 G − has − 1∧∧ J −has − 1
∧Elim (right), line
1

4 G − has − 1 ∧Elim (left), line 3

5 J − has − 1
∧Elim (right), line
3

6

6.a ¬A − unsafe
Premise for
subproof

6.b H − unsafe
Lemma A, lines
6.a,4

6.c C − unsafe
Lemma B, lines
6.a,2

6.d false
Lemma C, lines
6.b,6.c,5

7 A − unsafe RAA, line 6

8 C − safe Lemma D, lines 7,2

9 H − safe Lemma E, lines 7,3

10 K − unsafe
Lemma F, lines
8,9,5

And that's the desired proof! Now it just remains to show each of the six lemmas.

Lemma A:

63

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 ¬A − unsafe Premise

2 G − has − 1 Premise

3

3.a A − unsafe ∧∧ H − safe
Premise for
subproof

3.b A − unsafe ∧Elim

3.c false
falseIntro,
lines 1,3b

4 ¬ (A − unsafe ∧∧ H − safe) RAA, line 3

5
G − has − 1 ⇒⇒ A − safe ∧∧ H − unsafe ∨∨ A −
unsafe ∧∧ H − safe

WaterWorld
axiom

6 A − safe ∧∧ H − unsafe ∨∨ A − unsafe ∧∧ H − safe
⇒Elim,
lines 5,2

7 A − unsafe ∧∧ H − safe ∨∨ A − safe ∧∧ H − unsafe

Theorem:
∨

commutes,
line 6

8 A − safe ∧∧ H − unsafe
CaseElim,
lines 4,7

9 H − unsafe
∧Elim
(right), line
8

Lemma B:

64

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 ¬A − unsafe Premise

2 B − has − 1 Premise

3

3.a A − unsafe ∧∧ C − safe
Premise for
subproof

3.b A − unsafe
∧Elim
(left), line
3a

3.c false
falseIntro,
lines 1,3b

4 ¬ (A − unsafe ∧∧ C − safe) RAA, line 3

5
B − has − 1 ⇒⇒ A − safe ∧∧ C − unsafe ∨∨ A − unsafe
∧∧ C − safe

WaterWorld
axiom

6 A − safe ∧∧ C − unsafe ∨∨ A − unsafe ∧∧ C − safe
⇒Elim,
lines 5,2

7 A − unsafe ∧∧ C − safe ∨∨ A − safe ∧∧ C − unsafe

Theorem:
∨

commutes,
line 6

8 A − safe ∧∧ C − unsafe
CaseElim,
lines 4,7

9 C − unsafe
∧Elim
(right), line
8

Proving the other lemmas is left as an exercise to the reader.
Note that we took a little shortcut: we used the lemmas as if they were inference rules.
According to our previous definition of proofs, we technically should present the
lemma as a subproof and then use an inference rule or two to show how that applies,
as we've done in previous examples. This shorter form is common practice and much
easier to read.
In summary, we must state one of the following four possible reasons for each step in
a proof, allowing subproofs.

• This step's WFF is a premise.
• This step's WFF is an axiom.
• This step's WFF follows from a inference rule applied to previous steps' WFFs. The

reason includes a statement of which inference rule is used and how.
• This step's WFF follows from a subproof, where that subproof may temporarily

introduces additional premises. The reason includes the entire subproof. When
that subproof has been shown elsewhere, such as in class or another exercise, it

65

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

may simply be cited, for brevity. Of course, subproofs may have additional
embedded subproofs, in turn.

Technically, when using subproofs, one must be careful to rename variables, to avoid
clashes. Rather than formalize this notion, we'll leave it as "obvious".

2.4.3 The soundness and completeness of inference rules
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The folly of mistaking a paradox for a discovery, a metaphor for a proof, a torrent of
verbiage for a spring of capital truths, and oneself for an oracle, is inborn in us. Paul
Valery, poet and philosopher (1871-1945)

Throughout this discussion, we've implicitly assumed that if we've proven something,
it must be true. But we should be careful: What if one of those listed inference rule
isn't always valid? What if we introduced a new rule? (Sure, you'd probably balk if we
proposed something silly like a ∨ b ⇒ a, or even more degenerately false. But what
about some more reasonable-sounding rule?) What if our new rule introduces an
inconsistency, when combined with the other rules in a some complicated way? In
fact, are we absolutely certain that this can't already happen with the inference rules
we have?l This brings us back to the questions of Soundness and completeness (Page
44) of a proof system. Fortunately, the system presented here is both sound and
complete (though proving this is beyond our current scope). However, we can rest
assured, that for propositional logic, what we can prove really does correspond
entirely to what is true.

Exercise 2.4.3.1
If we omitted the RAA inference rule, would this new system be
sound? Would it be complete?

2.4.4 Proofs and programming

2.4.4.1 Proofs and programming

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Proofs are organized a lot like programs. Based on some premises (inputs), we obtain
some conclusion (output) after using a series of inference rules (basic computation
like addition and other operations). Using subproofs, especially when citing previous
proofs, is just like organizing our program into functions that can be used many times.

Naturally, since using inference rules is not only how people prove things, but also
computers. A clear example is in type checking. The core idea of type checking a
function application is "If function f takes an argument of type α and producing an
output of type β, and expression exp is of type α, then f(exp) is of type β." This type
rule closely resembles ⇒Elim: "If a proven formula is a⇒ b and other proven formula

66

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

is a, then together, b is a proven formula." Furthermore, this similarity is highlighted
by notation in many programming languages which would write the type of f as α → β.
Type rules are simply inference rules for proving results about the types of programs,
and in most typical programming languages these rules closely correspond to those
we are using for logic. This correspondence is known as the Curry-Howard
Isomorphism.

As with logic, we want type checkers to be sound and complete. Soundness here
means that if the program passes type checking, when we execute the program (or
single function) and get a value, that value is of the stated type. In other words, if our
program type checks, then we are guaranteed that some kinds of errors will not
happen at run-time. That also means that if our program would have a run-time type
error, the type checker will correctly report that our program is erroneous.
Completeness here means that if we execute the program (or single function) and get
a value of a certain type, then our type checker indeed tells us that type.

Note that type checking is still an area of active research, since the job is made difficult
in the presence of language features such as inheritance, multiple inheritance,
dynamic class loading, etc. When people introduce new computer languages with new
features, and want to claim that their new language is typesafe (that no function ever
will be applied to the wrong type at run-time), then the paper which introduces the
language will contain such a proof.

2.4.5 Conclusions

2.4.5.1 Are we done yet?

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

These inference rules may seem limited, and you may have some more general ones
in mind. Soon, we'll see additional inference rules in the context of first-order logic,
which will give us a richer set of proofs. In general, a hard problem is finding a
language that is both expressive enough to describe the domain succinctly, but also
limited enough to automate reasoning. This is a very practical issue in type checking
and other program analysis. While it can be easy to find some program errors
automatically, it is very difficult or impossible to guarantee that you can find all errors
(of some specifc kind, like type errors).

One thing we would like to eliminate is the need (at least technically) to restate
structurally identical proofs, as discussed for commutativity (Example 2.14). We will be
able to add the idea of generalizing such proofs directly into the logic and inference
rules.

Despite the desire for more fexible reasoning, we'd also like to consider whether we
have more inference rules than are necessary. Are some of them redundant? This is
similar to the software rule that we should have a single point of control, or the similar
idea that libraries should provide exactly one way of doing something. In general, this
is not easy to ensure. We have shown that some potential additional inference rules,
like commutativity and associativity, weren't necessary. But we haven't shown our

67

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

core inference rules to be minimal. What do you think? (See the homework exercise
problems on the redundancy of not-elimination (Exercise 2.6.16), not-introduction
(Exercise 2.6.17), and case-elimination (Exercise 2.6.18).)

2.4.5.2 Distinctness of the approaches (optional)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You might be wondering can we use propositional equivalences as axioms when using
inference rules? The short answer is no. First, Boolean equivalences are pairs of
formulas, whereas axioms are individual formulas. Second, none of our inference
rules mention equivalences.

However, let's reword the question could we use propositional equivalences when
using inference rules? It would make sense to add an inference rule to allow this. One
possibility would be an inference rule that turns an equivalence into an implication: "if
we know φ ≡ ψ, then we know φ⇒ ψ." Another possibility would be an inference rule
that allows us to substitute equivalence subterms, as we do in equivalence proofs: "if
we know φ ≡ ψ and θ, then we know θ[φ →ψ], i.e., θ, except with instances of φ
replaced by ψ." With either, we would also have to allow equivalence proofs as
subproofs or lemmas in inference proofs.

Traditionally, and in our presentation, we do not combine equivalences and inference
rules in any such way. The disadvantage of combining them is that instead of two
relatively simple proof systems, you would have one more complicated proof system.
It would be harder to learn all that you could do in such a system, and for theorists, it
would be harder to prove things such as soundness and completeness for the
combined system. In learning and describing proofs, it is best to keep them separate.
However, the advantage would be shorter proofs. When using the combined system,
you'd have flexibility to use whichever technique suited the current step best. In
practice, people commonly combine these and other proof techniques.

2.5 Exercises for Propositional Logic I
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Please write logic formulas using the syntax previously defined, using false (or for
brevity, "F"), true (or "T"), ¬, ∧, ∨, and ⇒. Except where directed, use only these
connectives.

ASIDE: You can download WaterWorld if you like. At Rice University, WaterWorld is
installed on OwlNet, in IhomeIcomp280IbinIwaterworld.

68

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2.5.1 Propositional Logic
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 2.5.1
Your friend Tracy argues: “It is bad to be depressed. Watching the
news makes me feel depressed. Thus, it's good to avoid watching the
news.”

Regardless of whether the premises and conclusion are true, show
that the argument is not, by showing it doesn't hold for all domains.
Replace "depressed" and "watching news" with expressions which
leave the premises true, but the conclusion false (or at least, what
most reasonable people would consider false).

Exercise 2.5.2
An acquaintance says the following to you: " Chris claims knowledge
is more important than grades. But she spent yesterday doing an
extra-credit assignment which she already knew how to do.
Therefore, she's a hypocrite and deserves no respect. "

Regardless of whether the premises and conclusion are true, show
that the argument is not, by showing it doesn't hold for all domains.
Replace "knowledge" and "grades" with expressions which give you
true premises, but a false conclusion (or at least, what most
reasonable people would consider false).

Note: Exaggerate "knowledge" to something more important, and "grades" to
something less important.

Exercise 2.5.3
While the following argument may sound plausible initially, give a
particular situation where the conclusion doesn't hold (even though
the premises do). Then, in a sentence or two, sketch why your
counterexample may still represent rational behavior by pointing out
a real-world subtlety that the initial argument ignored.

1. If a certain outft meets a dress code, then peT foTce all less-
revealing outfts also meet that dress code.

2. In public transportation projects, out of two alternatives, the
cheaper one which gets the job done is the better choice.

69

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.5.4
Choose just one of the following informal arguments. While the
argument sounds plausible initially, give a particular situation where
the conclusion doesn't hold (even though the premises do). Then,
briefy state why your counterexample may still represent rational
behavior by pointing out a real-world subtlety that the initial
argument ignored.

1. [cell phone] Talking on a cell phone while driving increases the
likelihood of an accident. Interestingly, hands-free phones do not
signifcantly help29 . It's just the distraction of a phone
conversation that causes the problem.

2. [equivalent products] If two companies ofer two materially
equivalent products, then most everybody will buy the cheaper
one.

3. [service] In a free market, if a company doesn't ofer good service,
individual customers will become fed up and take their business
elsewhere.

4. [web browser] If there are two versions of a free web browser, and
they run equally quickly, users will use the one with better
featuresjinterface.

5. [door-locking] Anybody who really wants to break into your house
while you're gone will be able to. (For instance, using a towel to
mufe sound, break the corner of a back window, reach in and
unlatch the window, and climb through.) So there's no point in
locking your front door.

Exercise 2.5.5
Let p, q, and r be the following propositions:

• p: You get an A on the fnal exam
• q: You do every exercise in the book.
• r: You get an A in this class.

Write the following formulas using p, q, and r and logical connectives.

1. You get an A in this class, but you do not do every exercise in the
book.

2. To get an A in this class, it is necessary for you to get an A on the
fnal.

3. Getting an A on the fnal and doing every exercise in the book is
sufcient for getting an A in this class.

70

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.6
Translate the following English sentences into propositional logic.
Your answers should be WFFs.

1. If the Astros win the series ("AW"), then pigs will fy ("PF").
2. Pigs will not fy, andjor bacon will be free ("BF").
3. The Astros will win the series, or bacon will be free, but not both.

Exercise 2.5.7
It just so happens that all the web pages in Logiconia which contain
the word "Poppins" also contain the word "Mary". Write a formula (a
query) expressing this. Use the proposition Poppins to represent the
concept "the web page contains 'Poppins"' (and similar for Mary).

Exercise 2.5.8
• If a Logicanian page contains the word "weasel", then it also

contains either "words" or "eyed"; and
• Whenever a Logiconian page contains the word "mongoose", it

does not also contain the word "weasel"; and
• Finally, all Logiconian pages contain the word "Logiconia", rather

patriotically.

Write a formula expressing all this. (Your formula will involve five
propositions: weasel, words, ... Try to find a formula which mirrors
the wording of the English above.)

Given the above statements, if a web page in Logiconia does not
contain "weasel", does it contain "mongoose"?

Let's go meta for a moment: Is this web page Logiconian? (Yes, this
one you're looking at now, the one with the homework problems.)
Explain why or why not.

71

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.9
Different search engines on the web have their own syntax for
speciflying searches.

ASIDE: Note that a formula may be true for some web pages, and false
for others. The search engine is concerned with finding all web pages
which satisfy the formula. This is called a query, in database lingo.

Only a few allow full Boolean queries. Some interpret a list of several
words in a row as an implicit conjunction, others as an implicit
disjunctions.

1. Read about the search syntax for the search language of eBay@3l .
Write an eBay query for auctions which contain "border", do not
contain "common", and contain at least one of "foreign" or
"foriegn" [sic, misspellings are a great way to find underexposed
auctions].

2. Google£'s advanced search32 is typical for the online search
engines. In particular, you can search for results containing all of
a, b, ..., at least one of c, d, ..., and none of e, f, Describe how
that corresponds to a Boolean formula.

3. Give an example of a Boolean formula which cannot be rewritten
to conform to Google's advanced search interface.

72

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.10

Figure 2.7 A sample WaterWorld board

Consider the particular board shown in the above figure (Figure 2.7).

1. Y − safe, Y − has − 0, and ¬Y − has − 2 are among the formulas
which are true for this board but not for all boards. That is, they
are neither domain axioms nor tautologies. Give two other such
formulas.

2. V − safe might or might not be true for this board. Give two other
such formulas.

73

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.11
In that same board (Figure 2.7), is location W safe? What is your
informal reasoning? (List all your small steps.) Similarly for location
P .

Exercise 2.5.12
Give a domain axiom of WaterWorld which was omitted in the
ellipses in the WaterWorld domain axioms (Section 6.5).

Exercise 2.5.13
Even allowing for elision, the list of WaterWorld domain axioms
(Section 6.5) is incomplete, in a sense. The game reports how many
pirates exist in total, but that global information is not reflected in
the propositions or axioms.

First, assume we only use the default WaterWorld board size and
number of pirates, i.e., five. Give samples of the additional axioms
that we need.

Next, generalize your answer to model the program's ability to play
the game with a different number of pirates.

Exercise 2.5.14
Give one WFF which meets all three conditions:

• true in all WaterWorld boards ("A theorem of WaterWorld")
• not already listed as one of the WaterWorld domain axioms (Propo

sitional axioms for WaterWorld (Page 171)), and
• not a tautology of propositional logic (can be made false in some

truth assignment, though it may not be a truth assignment which
satisfies the WaterWorld axioms).

2.5.2 Reasoning with Truth Tables
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When writing truth tables, please list rows in the order used in all examples: FF, FT, TF,
TT. For three-input tables, use the above four lines preceded by F, then the above four
lines preceded by T.

74

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.5.15
In a truth table for two inputs, provide a column for each of the
sixteen possible distinct functions. Give a small formula for each of
these functions.

Note: These functions will include those for ∧, ∨, and the other
connectives whose truth tables you've already seen (Section 2.1.1.1.2:
Connectives).

Exercise 2.5.16
Write the truth table for xnor, the negation of exclusive-or, What is a
more common name for this Boolean function?

Exercise 2.5.17
How many years would it take to build a truth table for a formula with
1000 propositions? Assume it takes 1 nanosecond to evaluate each
formula.

A formula with 1000 propositions clearly isn't something you would
create by hand. However, such formulas easily arise when modeling
the behavior of a program with a 1000-element data structure.

75

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.18
Use truth tables to answer each of the following. Showing
whether the connectives obey such properties via truth
tables is one way of establishing which equivalences or
inference rules we should use.

1. Show whether ⇒ is commutative.

2. Show whether ⊕ is commutative.

3. Show whether ⊕ is associative.

4.
Prove that ∧ distributes over ∨: φ∧ (ψ∨ θ) ≡ φ∧ ψ∨ φ

∧ θ

Note: This version is left-distributivity. Right-
distributivity follows from this plus the commutativity of
∧.

5.
Prove that ∧ distributes over ∨: φ∧ (ψ∨ θ) ≡ φ∧ ψ∨ φ

∧ θ

6. Show whether ∧ or ∨ distribute over ⇒.

7. Show whether ⇒ distributes over ∧ or ∨.

8. Show whether ∧ or ∨ distribute over ⊕.

9. Show whether ⊕ distributes over ∧ or ∨.

Exercise 2.5.19
For each of the following, find a satisflying truth assignment, (values
of the propositions which make the formula true), if any exists.

1. (a⇒¬b) ∧ a
2. (a⇒ c⇒¬b) ∧ (a∨ b)

Exercise 2.5.20
For each of the following, find a falsiflying truth assignment, (values
of the propositions which make the formula false), if any exists.

1. (a⇒¬b) ∨ a
2. (¬b⇒ (a⇒ c)) ∨ a∧ b

76

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.21
Formula φ is stronger than formula ψ if ψ is true whenever φ is true
(i.e., φ is at least a strong as ψ), but not conversely. Equivalently, this
means that φ⇒ ψ is always true, but ψ⇒ φ is not always true.

As one important use of this concept, if we know that ψ⇒ θ, and that
φ is stronger than ψ, then we also know that φ⇒ θ. That holds simply
by transitivity. Another important use, which is outside the scope of
this module, is the idea of strengthening an inductive hypothesis.

Similarly, φ is weaker than formula ψ whenever ψ is stronger than φ.

Show which of the following hold. When true, show φ⇒ ψ is true by a
truth table, and show a falsi flying truth assignment for ψ⇒ φ. When
false, give a truth table and truth assignment the other way around.

1. a∧ b is stronger than a∨ b.
2. a∨ b is stronger than a.
3. a is stronger than a⇒ b.
4. b is stronger than a⇒ b.

Exercise 2.5.22
Using truth tables, show that (a∨ c) ∧ (b⇒ c) ∧ (c⇒ a) is equivalent
to (b⇒ c) ∧ a. but not equivalent to (a∨ c) ∧ (b⇒ c).

77

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.23
When writing a complicated conditional that involves multiple pieces
of data, it is easy to incorrectly oversimplify. One strategy for avoid
mistakes is to write such code in a two-step process. First, write a
conditional with a case for every possible combination, as in a truth
table. Second, simplify the conditional.

Using this approach, we might obtain the following code after the
first step. Simplify this code.

list merge_sorted_lists(list list1, list list2)

{

if (is_empty(list1) && is_empty(list2))

return empty_list;

else if (is_empty(list1) && !is_empty(list2))

return list2;

else if (!is_empty(list1) && is_empty(list2))

return list1;

else if (!is_empty(list1) && !is_empty(list2)) {

if (first_element(list1) < first_element(list2))

return make_list(first_element(list1),

merge_sorted_lists(rest_elements(list1),list2));

else if (first_element(list1) >= first_element(list2))

return make_list(first_element(list2),

merge_sorted_lists(list1,rest_elements(list2)));

}

}

78

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.5.24
Consider the following conditional code, which returns a boolean
value.

int i;

bool a,b;

...

if (a && (i > 0))

return b;

else if (a && i <= 0)

return false;

else if (a || b)

return a;

else

return (i > 0);

Simplify it by flling in the following blank with a single Boolean
expression. Do not use a conditional (such as if or ?:).

int i;

bool a,b;

...

return ;

Use either Java/C++ or Scheme syntax. In the former case, please fully
parenthesize to make your formula unambiguous, rather than relying

on Java's33 or C++'s34 many levels of operator precedence.

2.5.3 Reasoning with Equivalences
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 2.5.25
Using Propositional equivalences (Page 165), and the defnition or nor
(mnemonic: "not or"), written ↓, φ ↓ ψ ≡¬ (φ∨ ψ), express the
function ∧ in terms of ↓ only. That is, give a formula which doesn't
use ∧, ∨, ¬, but instead only uses ↓ and which has the same truth
table as φ∧ ψ.

79

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.5.26
Similar to the previous exercise, express each of the following using
nand (Example) only, and prove correctness using the algebraic
identities (Propositional equivalences (Page 165)).

This operation is particularly interesting, since making a NAND gate
in hardware requires only two transistors.

1. ¬
2. ∧
3. ∨

Exercise 2.5.27
Using algebraic identities (Propositional equivalences (Page 165)),
show that (a∨ c) ∧ (b⇒ c) ∧ (c⇒ a) is equivalent to (b⇒ c) ∧ a.

This is an algebraic hand-evaluation: a series of formulas joined by ≡.
Don't write just portions of previous formulas and mysteriously re-
introduce the dropped parts later. For each step, mention which
identity you used. It is also helpful if you underline the formula you
are rewriting in the next step. You can use commutativity and
associativity without using a separate line, but mention when you use
it.

Exercise 2.5.28
In two exercises, you've shown the same equivalence by truth tables
(Exercise 2.5.22) and by algebraic identities (Exercise 2.5.27).

1. What is an advantage of using truth tables? What is an advantage
of using identities?

2. In that truth table exercise (Exercise 2.5.22), you also showed two
formulas φ and ψ non-equivalent. It is also possible to do so with
Boolean algebra rather than truth tables. How?

3. Describe a hybrid approach, combining truth tables and Boolean
algebra, to prove the equivalence and non-equivalence of
formulas.

4. To ponder on your own without turning it in: Which approach
appeals more to you?

Exercise 2.5.29
Using Propositional equivalences (Page 165), rewrite the formula (a⇒
b∨ c) ∧¬b to one with fewer connectives.

80

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

2.6 Exercises for Propositional Logic II

2.6.1 Reasoning with Inference Rules
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

For proofs on this homework, remember that each step must be justified by one of
the following:

• a premise,
• a WaterWorld axioms (The domain axioms (Page 173)),
• a listed inference rule (Propositional inference rules (Page 166)) with the

referenced line numbers (and, if ambiguous, substitutions for the inference rule's
meta-variables), or

• a subproof shown inline, or equivalently, a theoremjlemma shown previously.

Except where otherwise directed, you may use any theorem shown in the text or by a
previous exercise, even if that exercise was not assigned.

Exercise 2.6.1
Fill in the blank reasons in the following proof that ∨ commutes,
that is,

1 χ ∨ υ Premise

2

2.a χ Premise for subproof

2.b υ ∨ χ ∨Intro, line 2.a

3

3.a υ Premise for subproof

3.b υ ∨ χ

4 υ ∨ χ

81

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 2.6.2
Show that

Note: It should take around 8 steps.

Exercise 2.6.3
Show what is often called the implication chain rule:

Exercise 2.6.4
Show what is often called negated-or-elimination (left):

Note: Think backwards. How can we end with ¬φ? One way is to end with RAA,
under the premise φ. Using that premise φ and the starting premise ¬ (φ∨ ψ)
can you derive the contradiction?

Exercise 2.6.5
Using the inference rule RAA, prove

Exercise 2.6.6
Show that

Note: The proof is a bit longer than you might expect. Use the ∨Elim inference
rule to get the final result.

Exercise 2.6.7
In our inference rules, unlike our equivalences, we chose to not
include any corresponding to distributivity.

1. Prove a left-hand version of one direction of distributivity:

2. Use the previous part's result, plus ∧'s commutativity to prove
the corresponding right-hand version:

82

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.6.8
In our inference rules, unlike our equivalences, we chose to not
include any corresponding to DeMorgan's Law. Show that each of the
following versions is still provable.

1.
2.
3.
4.

Exercise 2.6.9
The above exercise suggests that it would be useful to have an
inference rule or theorem that says given

then

Or, equivalently, because of ⇒Intro and ⇒Elim,

Why don't we?

Exercise 2.6.10
In our inference rules, unlike our equivalences, we have nothing that
directly equates φ⇒ ψ and ¬φ∨ ψ. Prove each of the following.

1.
2.

Exercise 2.6.11
Prove the following:

Exercise 2.6.12
Prove what is commonly called the Law of Excluded Middle:

1. Give a short proof citing our previous proof (Example 2.18) of

and the relevant version of DeMorgan's Law from above (Exercise
2.6.8).

2. Give a direct version without using previous theorems.

Note: Use RAA two or three times.

83

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.6.13
Prove the missing steps and reasons in the following WaterWorld
proof of

84

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 X − has − 1

2
WaterWorld
axiom

3
⇒Elim,
lines 1,2

4 subproof:

4.a W − safe ∧ Y − unsafe
Premise for
subproof

4.b Y − unsafe

4.c W − unsafe ∨ Y − unsafe

5
subproof:

5.a ¬ (W − safe ∧ Y − unsafe)
e)Premise
for
subproof

5.b W − unsafe ∧ Y − safe

CaseElim
(left), lines
where φ =
and ψ =

5.c

5.d W − unsafe ∨ Y − unsafe

6 W − safe ∧ Y − unsafe ∨ ¬ (W − safe ∧ Y − unsafe)

Theorem:
Excluded
Middle,
where χ =

7 W − unsafe ∨ Y − unsafe

85

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Figure 2.8 A sample WaterWorld board

Given the above fgure (Figure 2.8), and using any of the immediately obvious facts as
premises, prove that location P is safe by using our proof system and the WaterWorld
axioms.

While this proof is longer (over two dozen steps), it's not too bad when sub-proofs are
used appropriately. To make life easier, you may use the following theorem: Q −has −
1⇒⇒ P − safe∧∧ R − safe∨∨ P − safe∧∧W − safe∨∨ R − safe∧∧W − safe, along with
any proven previously. When looking at the given board, you can use premises like Y −
safe as well as ¬Y − unsafe.

86

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.6.15
Starting from the WaterWorld axiom Q − has − 1⇒⇒ P − safe∧∧ R −
safe∧∧W − unsafe∨∨ P − safe∧∧ R − unsafe∧∧W − safe∨∨ P − unsafe
∧∧ R − safe∧∧W − safe, we could prove the following theorem cited in
the previous problem (Exercise 2.6.14): Q − has − 1⇒⇒ P − safe∧∧ R −
safe∨∨ P − safe∧∧W − safe∨∨ R − safe∧∧W − safe.

Prove the following theorem which is slightly simpler:

Note: If you have trouble, first prove an even simpler version:

Exercise 2.6.16
Show that the ¬Elim inference rule is redudant in our system. In
other words, with out using ¬Elim, prove that

Exercise 2.6.17
Show that the ¬Intro inference rule is redundant in our system. In
other words, without using ¬Intro, prove that

. To make sure that you're not hiding any uses of ¬Intro, also do not
use any previous theorems.

Exercise 2.6.18
Show that the CaseElim inference rule is redundant in our system.
For brevity, we'll just consider the left-hand version. In other words,
without using CaseElim, prove that

To make sure that you're not hiding any uses of CaseElim, also do not
use any previous theorems.

87

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 2.6.19
• State where on a board pirates could be positioned, so that: P − has

− 1∧∧ U − has − 1∧∧W − has − 1, but X − safe.
• Compare this with a previous theorem (Example 2.22), B − has − 1
∧∧ G − has − 1∧∧

• J − has − 1⇒⇒ K − unsafe, the same idea shifted down a couple of
rows. Suppose we try to translate this theorem's proof so as to
conclude ¬X − safe (clearly untrue, by the above). What is the first
step of the modifed proof which doesn't hold when B,G,J,Kare
mindlessly replaced with P ,U,W ,X, respectively? (Just give a line
number; no explanation needed. Your answer will be of the form
"Lemma A line 1" or "main proof line 2".)

• We've just seen that the mindless changing of location-names
introduces false steps. But we can be a little smarter, and modify
the false step to get a formula which is true, and is also still in the
spirit of the original proof. We can thus patch the problem from
the previous part, and continue on modiflying the original proof
for several more steps. But clearly we can't translate the entire
original proof; we eventually hit a more fundamental snag: a
formula which isn't true, yet can't be patched up, either. What is
the first line that can't be patched? (Again, just give a line
number; no explanation needed. Your answer will be of the form
"Lemma A line 1" or "main proof line 2".)

Exercise 2.6.20
Which is worse, having an unsound (but complete) inference system
or an incomplete (but sound) one? Why?

2.6.2 Solutions to Exercises in Chapter 2
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 2.1.1.1

88

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

a b (a∨ b)

false false false

false true true

true false true

true true true

Table 2.6 Truth table for ∨∨ (OR)

Solution to Exercise 2.1.1.2

a ¬a

false true

true false

Table 2.7 Truth table for ¬ (NOT)

Solution to Exercise 2.1.1.3

a b (a⇒ b)

false false true

false true true

true false false

true true true

Table 2.8 Truth table for ⇒⇒ (IMPLIES)

Solution to Exercise 2.1.1.4

Exactly one is true if either (a is true, and b is false) or (a is false, and b is true). So, one
way to define it is a ⊕ b ≡ a∧¬b∨¬a∧ b. The two halves of that formula also
correspond to the two true rows of xor's truth table:

89

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

a b (a ⊕ b)

false false false

false true true

true false true

true true false

Table 2.9 Truth table for xor

Solution to Exercise 2.1.1.5

1. Inclusive.
2. Exclusive.
3. Inclusive.
4. Exclusive (hopefully).

Solution to Exercise 2.1.2.1

Unsatisfable.

Solution to Exercise 2.1.2.2

Tautology, arguably.

Solution to Exercise 2.1.2.3

Unsatisfable, unless of course you interpret "nobody" as "nobody of note".

Solution to Exercise 2.1.2.4

Neither. If you interpret "gets late" as a social issue but "early" as a clock issue, then
the statement might be true, depending on where "here" is.

Solution to Exercise 2.1.2.5

Unsatisfable, except perhaps in a karmic37 sense.

Solution to Exercise 2.2.1.1

90

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

a b c (a⇒ (b⇒ c)) ((a⇒ b) ⇒ c)

false false false true false

false false true true true

false true false true false

false true true true true

true false false true true

true false true true true

true true false false false

true true true true true

Table 2.28 Truth table to check associativity of implication

By inspecting the two right-most columns, we see that the formulas are indeed not
equivalent. They have different values for two truth-settings, those with a = false and
c = false.

Solution to Exercise 2.2.1.2

In the original code, we return value2 when the first case is false, but the second case
is true. Using a WFF, when ¬ (a∧ b) ∧ (a∨ b). Is this equivalent to the WFF a∧¬b
∨¬a∧ b? Here is a truth table:

91

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

a b
¬ (a
∧ b)

(a∨
b)

(¬ (a
∧ b)
∧ (a
∨

b))

(a∧
¬b)

(¬a
∧ b)

((a
∧

¬b)
∨

(¬a
∧

b))

false false true false false false false false

false true true true true false true true

true false true true true true false true

true true false true false false false false

Table 2.10 Truth table for comparing conditionals' equivalence

Yes, looking at the appropriate two columns we see they are equivalent.

Solution to Exercise 2.2.2.1

• 2 variables: As we're seen, 4 rows.
• 3 variables: 8 rows.
• 5 variables: 32 rows.
• 10 variables: 1024 rows.

• n variables: 2n rows.

Solution to Exercise 2.2.2.2

• With 2 variables, we have 4 rows. How many different ways can we assign true
and false to those 4 positions? If you write them all out, you should get 16
combinations.

• With 3 variables, we have 8 rows and a total of 256 different functions.

• With n variables, we have 2n rows and a total of 22n different functions. That's a
lotl

Solution to Exercise 2.3.1.1

92

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 a∧ (a⇒ b) ⇒ b

2 ≡ a∧ (¬a∨ b) ⇒ b Definition of ⇒

3 ≡ a∧ ¬a∨ a∧ b⇒ b Distributivity of ∨ over ∧

4 ≡ false ∨ a∧ b⇒ b Complement

5 ≡ a∧ b∨ false ⇒ b Commutativity of ∨

6 ≡ a∧ b⇒ b Identity of ∨

7 ≡ ¬ (a∧ b) ∨ b Definition of ⇒

8 ≡ ¬a∨ ¬b∨ b DeMorgan's law

9 ≡ ¬a∨ ¬b∨ b Associativity of ∨

10 ≡ ¬a∨ b∨ ¬b Commutativity of ∨

11 ≡ ¬a∨ true Complement

12 ≡ true Dominance of ∨

Solution to Exercise 2.3.1.2

1 (a∨ b) ∧ b

2 ≡ (a∨ b) ∧ (b∨ false) Identity of ∨

3 ≡ (b∨ a) ∧ (b∨ false) Commutativity of ∨

4 ≡ b∨ a∧ false Distributivity of ∨ over ∧

5 ≡ b∨ false Dominance of ∧

6 ≡ b Identity of ∨

Solution to Exercise 2.3.2.1

93

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

• CNF: (a∨ b) ∧ (¬a∨ b∨ c) ∧ (¬a∨¬b)
• DNF: (¬a∧ b) ∨ (a∧¬b∧ c)

ASIDE: Karnaugh maps38 are a general technique for finding minimal CNF and DNF
formulas.

They are most easily used when only a small number of variables are involved. We
won't worry about minimizing formulas ourselves, though.

Solution to Exercise 2.3.3.1

We can indeed reduce the question of Tautology to the question of Equivalence: if
somebody asks you whether φ is true, you can just turn around and ask your friend
whether the following two formulas are equivalent: φ, and true. Your friend's answer
for this variant question will be your answer to your customer's question about φ.
Thus, the Tautology problem isn't particularly harder than the Equivalence problem.

But also, Equivalence can be reduced to Tautology: if somebody asks you whether φ is
equivalent to ψ, you can construct a new formula (φ⇒ ψ) ∧ (ψ⇒ φ). This formula is
true exactly when φ and ψ are equivalent. So, you ask your friend whether this bigger
formula is a tautology, and you then have your answer to whether the two original
formulas were equivalent. Thus, the Equivalence problem isn't particularly harder than
the Tautology probleml

Given these two facts (that each problem reduces to the other), we realize that really
they are essentially the same problem, in disguise.

Solution to Exercise 2.3.3.2

Compare the last two columns in the following:

a b ¬a∨ b a∧ (¬a∨ b) a∧ b

false false true false false

false true true false false

true false false false false

true true true true true

Table 2.11 Truth table to prove validity of conjunctive Redundancy

Solution to Exercise 2.4.1.1

Intuitively, this is straightforward. Since A − has − 2, then both of its two neighbors,
including B, must be unsafe. For this problem, let's be a bit more formal and use WFFs
instead of prose in the steps.

94

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 A − has − 2 Premise

2
A − has − 2 ⇒ B −
unsafe ∧ F − unsafe

WaterWorld domain axiom,
i.e., defnition of A − has − 2

3
B − unsafe ∧ F −
unsafe

lines 1,2

4 B − unsafe line 3

Solution to Exercise 2.4.1.2

Again a similar idea, if A − has − 1, then at least one of A's two neighbors must be
unsafe. But, since we know that one of these, G isn't unsafe, then the other, B, must be
unsafe.

1
A − has − 1 ⇒ B − safe ∧ G − unsafe
∨ B − unsafe ∧ G − safe

WaterWorld
domain axiom

2 A − has − 1 Premise

3
B − safe ∧ G − unsafe ∨ B − unsafe
∧ G − safe

lines 1,2

4 G − safe Premise

5 B − unsafe ∧ G − safe lines 3,4

6 B − unsafe line 5

Solution to Exercise 2.4.1.3

Here, we'll show only χ ∧ υ ∧ ω f χ ∧ υ ∧ ω and leave the other direction (and ∨'s
associativity) to the reader. These are all very similar to the previous commutativity
example (Example 2.14).

95

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 χ ∧ υ ∧ ω Premise

2 χ ∧ υ ∧Elim (left), line 1

3 χ ∧Elim (left), line 2

4 υ ∧Elim (right), line 2

5 ω ∧Elim (right), line 1

6 υ ∧ ω ∧Intro, lines 4,5

7 χ ∧ υ ∧ ω ∧Intro, lines 3,6

Note that we omitted the detailed explanation of how each rule applies, since this
should be clear in each of these steps.

Solution to Exercise 2.4.1.4

First, if we know

, then that means there is some written proof... we know

, simply by

If we know f φ⇒ ψ, then if we add a premise φ, then ψ follows by ⇒Elim. Note how
this proof is about other proofsl (However, while we reason about this particular
inference system, we're not using this system while proving things about it this proof
is necessarily outside the inference system.

Solution to Exercise 2.4.2.1

96

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 α ⇒ β Premise

2 ¬β Premise

3 subproof:α f false

3.a α Premise for subproof

3.b β ⇒Elim, lines 1,3.a

3.c false falseIntro, lines 2,3.b

4 ¬α RAA, line 3

Solution to Exercise 2.4.3.1

It would be sound: Look at all the possible proofs that can be made in the original
system; all those proofs lead to true conclusions (since that original system is sound,
as we're claiming). If we just discard all those that include RAA, the remaining proofs
are still all true, so the smaller system is sound.

It would not be complete, though: As pointed out, RAA is our only way to prove
negations without premises. There are negated formulas that are true (and have no
premises) for example ¬false. Without RAA, we cannot provide a proof of ¬false, so the
smaller system is incomplete.

Solution to Exercise 2.5.1

Lots of possible counterexamples. " It is bad to be depressed. Doing homework makes
me depressed; so it's good to not do my homework. " Or, " It is bad for people to be in
physical pain. Childbirth causes pain. Therefore childbirth needs be avoided by all
people. " If the original conclusion is really correct, Tracy needs to elucidate some of
his unspoken assumptions.

The faw seems to be along the lines of, " avoiding bad in the short run may not always
be good in the long run " (or equivalently, sometimes you have to choose the lesser of
two evils). No, you weren't asked to name a specifc faw, and reasonable people can
difer on precisely what the faw is. (And, formal logic is not particularly helpful here.)
Nonetheless, uncovering hidden assumptions in arguments often helps understand
the real issues involved.

ASIDE: For fun, pick up the front page of the daily newspaper, and see how many
arguments use faulty rules of inference andjor rely on unspoken premises (which not
all might agree with). In particular, political issues as spun to the mainstream press are
often riddled with error, even though there are usually reasonable arguments on both
sides which policy-makers and courts debate.

Solution to Exercise 2.5.2

97

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

" Terry claims that encouraging human-rights is more important than playing Tetris.
But Terry played Tetris yesterday rather than volunteering with Amnesty

International39 . " Most people wouldn't condemn Terry as a hypocrite just because of
this; even the most dedicated of people are entitled to some free time. If your friend
wants to prove Terry hypocritical, they'll have to provide further evidence or
arguments.

Or similarly, "Politician X claims to support science funding, but voted against a
proposal to shift all Medicare funds to NASA. "

Solution to Exercise 2.5.3

1. It can be socially acceptable to wear my swimsuit into a fast-food restaurant. My
underwear is less revealing than my swimsuit, and yet it would still raise many
more eyebrows to go to that restaurant in my underwear, than my swimsuit.
Clothes (and style in general) somehow encompass a form of communication,
and people may object to an outft's mood or message without actually objecting
to how much the outft reveals. (Other examples of communication-through-style
include team logos, t-shirts with humorous slogans, and arm bands.)

2. Buses are a lot cheaper than light rail. Yet, the light-rail here in Houston
demonstrates that many people who wouldn't routinely take a bus are willing to
take light rail. (Only after we recognize this, can we try to fgure out what why the
diference exists, and then brainstorm to find a better overall solution.)

Solution to Exercise 2.5.5

1. r∧¬q
2. r⇒ p Think of the English being reworded to " If you got an A in this class, you

must have gotten an A on the fnal. "
3. 3. p∧ q⇒ r

Solution to Exercise 2.5.7

Poppins⇒⇒Mary

Solution to Exercise 2.5.10

1. There are many simple answers, such as Y − has − 1, ¬W − has − 1, ...
2. There are many simple answers, such as a, N − has − 1, J − has − 3, ...

For each, there are also many such formulas composed with connectives such as ∧
and ∨.

Solution to Exercise 2.5.16

98

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

false false true

false true false

true false false

true true true

Table 2.12 Truth table for xnor

This is the "equals" for Booleans. It is also represented by the connective if-and-only-if
(Example 2.1).

If you said something like "the both-or-neither function", that's not quite good enough,
as it's a roundabout way of expressing the simple idea of equivalence. Granted, it
takes some practice to internalize Booleans as values, and that equality is as valid for
them as for any other value.

Solution to Exercise 2.5.23

list merge sorted lists(list list1, list list2)

{

if (is empty(list1))

return list2;

else if (is empty(list2))

return list1;

else {

if (first element(list1) < first element(list2))

return make list(first element(list1),

merge sorted lists(rest_elements(list1),list2));

else

return make list(first element(list2),

merge sorted lists(list1,rest elements(list2)));

}

}

Alternatively, we could test the emptiness of the lists in the other order.

Solution to Exercise 2.5.25

First we show that we can write negation in terms of ↓, or more specifically, ¬θ ≡ θ ↓
θ. Checking this on a truth table is pretty easy (there are only two rows to check). But

99

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

for this question we need to use algebraic manipulation. This can be derived in a
couple of simple steps:

1 ¬θ

2 ≡ ¬θ∧ ¬θ Idempotency of ∧

3 ≡ ¬ (θ∨ θ) DeMorgan's law

4 ≡ θ ↓ θ Defnition of nor

We use this lemma to show our ultimate goal:

1 δ ∧ E

2 ≡ ¬¬ (δ ∧ E) Double Complementation

3 ≡ ¬ (¬δ ∨ ¬E) DeMorgan's law

4
≡ ¬ ((δ ↓ δ) ∨
¬E)

Lemma, with [θ→δ]

5
≡ ¬ ((δ ↓ δ) ∨ (E
↓ E))

Lemma, with θ = E

6 ≡ δ ↓ δ ↓ E ↓ E
Defnition of nor, where φ = δ ↓ δ, and
ψ = E ↓ E

Note that we judiciously used new meta-variables δ and E rather than re-using φ and
ψ (which would still be correct, but would make the graders need to pay much closer
attention to the scope of those variables).

Solution to Exercise 2.6.4

100

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 ¬ (φ∨ ψ) Premise

2 subproof:

2.a φ Premise for subproof

2.b φ∨ ψ ∨Intro, line 2a

2.c false falseIntro, lines 1,2b

3 ¬φ RAA, line 2

Table 2.40

Solution to Exercise 2.6.14

101

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 Q − has − 1 Premise

2 X − has − 1 Premise

3 ¬Y − unsafe Premise

4 W − unsafe ∨ Y − unsafe

Theorem:
above
problem
(Exercise
2.6.13), line
2

5 Y − unsafe ∨ W − unsafe

Theorem:
∨

commutes,
line 4

6 W − unsafe
CaseElim,
lines 3,5

7
subproof:

7.a ¬¬ (P − safe ∧ W − safe
) Premise
for
subproof

7.b P − safe ∧ W − safe
¬Elim, line
7.a

7.c W − safe
∧Elim, line
7.b

7.d W − safe ⇒ ¬W − unsafe
WaterWorld
axiom

7.e ¬W − unsafe
⇒Elim,
lines 7.c,7.d

7.f false
falseIntro,
lines 6,7.e

102

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

8 ¬ (P − safe ∧ W − safe) RAA, line 7

9
subproof:

9.a ¬¬ (R − safe ∧ W − safe
) Premise
for
subproof

9.b R − safe ∧ W − safe
¬Elim, line
9.a

9.c W − safe
∧Elim, line
9.b

9.d W − safe ⇒ ¬W − unsafe
WaterWorld
axiom

9.e ¬W − unsafe
⇒Elim,
lines
9.c,9.d

9.f false
falseIntro,
lines 6,9.e

10 ¬ (R − safe ∧ W − safe) RAA, line 9

11
Q − has − 1 ⇒ P − safe ∧ R − safe ∨ P −
safe ∧ W − safe ∨ R − safe ∧ W − safe

Theorem:
Allowed by
problem
statement

12
P − safe ∧ R − safe ∨ P − safe ∧ W −
safe ∨ R − safe ∧ W − safe

⇒Elim,
lines 1,11

13
R − safe ∧ W − safe ∨ P − safe ∧ R −
safe ∨ P − safe ∧ W − safe

Theorem:
∨

commutes,
line 12

14
P − safe ∧ R − safe ∨ P − safe ∧ W −
safe

CaseElim,
lines 8,13

103

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

15
P − safe ∧ W − safe ∨ P − safe ∧ R −
safe

Theorem:
∨

commutes,
line 14

16 P − safe ∧ R − safe
CaseElim,
lines 10,15

17 P − safe
∧Elim, line
16

Alternatively, the subproofs could easily have been pulled out into lemmas. Just like
using subroutines in a program, that would make the proof somewhat clearer, even
though in this case each lemma would be used only once.

Observe how the two subproofs have some identical lines (7.c-7.f and 9.c-9.f). It would
be incorrect to replace those lines in the second subproof with a citation of the results
of the first subproof. First, because the previous subproof had been completed, and
moreover, the two subproofs have different premises. This is analogous to two
subroutines that happen to have some identical code lines, even through they are
called separately and have different parameters.

Note: Interestingly, we didn't need to use R − safe as a premise. (In fact, we
nearly proved that ¬R − safe would have been inconsistent with the other
premises.)

Solution to Exercise 2.6.16

1 ¬¬φ Premise

2 subproof:

2.a ¬φ Premise for subproof

2.b false falseIntro, lines 1,2.a

3 φ RAA, line 2

104

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Chapter 3 Relations and Models

3.1 Relations

3.1.1 Relations: Building a better (representation of)
WaterWorld

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

So far, we have represented WaterWorld boards using propositions like A − has − 2
and B − unsafe. You've probably already felt that this is unwieldy, having hundreds
propositional variables running around, with only our naming convention implying any
relation between them. Worse, this zoo of propositions doesn't reflect how we actually
think about WaterWorld. For instance, the only way the rules recognize that locations
A and B are near each other is because of several axioms which simultaneously involve
A − has − 2 and B − unsafe, etc., in just the right way to result in our idea of the
concept "neighbor". In fact, there is no way of talking about the location A directly; we
only had propositions which dealt with its properties, such as whether or not it
neighbored exactly two pirates.

If writing a program about WaterWorld, our program should reflect our conception of
the problem. However, as it stands, our conception corresponds to having many
Boolean variables named A − has − 2, B − unsafe, etc. Even worse, the rules would be
encodings of the hundreds of axioms. A long enumeration of the axioms is probably
not how you think of the rules. In other words, when explaining the game to your
friend, you probably say "if a location contains a 2, then two of its neighbors are
pirates", rather than droning on for half an hour about how "if location A contains a 2,
then either location B is unsafe or ...".

Moreover, the original rules only pertained to a fixed-size board; inventing a new
game played on a 50×50 grid would require a whole new set of rules! That is clearly
not how we humans conceptualize the game! What we want, when discussing the
rules, is a generic way to discussing neighboring locations, so that we can have one
single rule, saying that if a (generic) location has a zero, then any neighboring location
is safe. Thus, we allow the exact details of "neighboring location" to change from game
to game as we play on different boards (just as which locations contain pirates
changes from game to game).

In a program, you'd probably represent the board as a collection (matrix, list,
whatever) of Booleans. In our logic, to correspond to this data structure, we'll
introduce binary relations.

ASIDE: By including relations (rather than sticking entirely with propositions), we are
leaving the realm of propositional logic; we'll soon reach first-orderlogic once we also
introduce quantifiers (Section 4.1.1) corresponding to aspects of program control-flow
(loops).

105

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

We'll start by adding a way to express whether any two locations are adjacent: a
relation nhbr, which will encode the board's geography as follows: nhbr (A, B) and
nhbr (Z, Y)are true, while nhbr (A, D) and nhbr (M, Z) are false.

What, exactly, do we mean by "relation"? We'll see Properties of relations (Page 106),
that we can represent nhbr as a set of pairs-of-locations (or equivalently, a function
which takes in two locations, and returns either true or false.)

This relation "nhbr" entirely encodes the board's geography. Giving somebody the
relation is every bit as good as to showing them a picture of the board (in some ways,
better the relation makes it perfectly clear whether two locations which just barely
touch at a single point, like B and G, are meant to be considered neighbors.)

Exercise 3.1.1
We used a binary (two-input) relation to describe neighboring
locations. How can we use a relation to capture the notion "location A
is safe"?

After defining relations and discussing their properties, we'll talk about Interpretations
(Page 111) relative to particular relations.

Using relations gives us additional flexibility in modeling our domain, so that our
formal logical model more closely corresponds to our intuition. Relations help
separate the WaterWorld domain axioms (code) from the data, i.e., the particular
board we're playing on.

3.2 Properties of relations
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When using relations in logic formulas, there are two things going on:

• relations themselves, as mathematical entities, and
• formulas involving symbols, which must be interpreted as specifc relations.

First things first: we'll just discuss relations for now, and later tackle using relations in
logic formulas.

We'll start with a couple of equivalent ways of defining relations, and then discuss a
common subclass of relations: binary relations.

3.2.1 Relations as subsets
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider the set of WaterWorld locations Loc = {A, B, . . ., Z}. For this domain (also
known as a universe), we'll say a binary relation is a set of (ordered) pairs of the
domain.

106

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Example 3.1
For instance, the nhbr relation of the previous section is the set {(A,
B) , (A, G) , (B, A) , (B, C) , . . ., (Y, X) , (Y, Z) , (Z, Y)}.
That is, x is related to y if (x, y) is in the set nhbr.

Example 3.2
For the domain D = {Object, String, MutableString}, the relation
subclass − of might be {(String, Object) , (MutableString, Object) ,
(MutableString, String)}.

In general, a binary relation over the domain D is a subset of D×D.
Note that these are ordered pairs; just because x is related to y
doesn't mean y has the same relation to x. For example, while
(MutableString, Object) is in the relation subclass − of, the pair
(Object, MutableString) most certainly is not.

Example 3.3
You can consider the relation hasStarredWith, over the domain of
Hollywood actors. We won't list all the elements of the relation, but
some related pairs are:

• hasStarredWith(Ewan McGregor, Cameron Diaz), as witnessed
by the movie A Life Less Or dinary, 1997.

• hasStarredWith (Cameron Diaz, John Cusack), as witnessed by
the movie Being John Malkovich, 1999.

If binary relations are subsets of pairs of the domain, what might a
unary relation be? Simply, subsets of the domain.

Example 3.4
For the domain of vegetables, Ian defnes the relation yummy? as
{tomatoes, okra, cucumbers, carrots, potatoes} and nothing else.

107

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 3.5
In one particular game of WaterWorld, the relation hasPirate turned
out to be {K, T, R, U, E}.

If unary and binary relations make sense, what about ternary, etc.,
relations? Surel In general, a k-ary relation (or, "relation of arityk")

over the domain D is a subset of Dk . However, any given relation has
a fixed arity. That is, a relation may be binary or ternary, but not
both.

As with propositions, rather than writing " R (x, y) is true ", we'll
simply write " R (x, y) ". In fact, notice that once you choose some
particular pair of x and y, then R (x, y) can be treated as a single true/
false proposition. (We'll soon extend the idea of propositions to
include such relation symbols, and then allow formulas to include
these terms.)

Example 3.6
"prime (18) " is a proposition that's false, assuming the standard
interpretation (Interpretations (Page 111)) of prime.

Example 3.7
"safe (A) " is a proposition that is true on some boards and not
others.

3.2.2 Relations as functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The relation nhbr, which we're defining as a set (of pairs), could also be thought of
being a function. We say that the indicat or function of a set is a Boolean function
indicating whether its input is in the set or not. So instead of being given the set nhbr,
you would have been equally happy with its indicator function fnhbr, where (for
example) fnhbr (B, C) = true and fnhbr (B, Q) = false. Similarly, if you know that
fhasPirate (K) = true and that fhasPirate (L) = false, then this is enough information to
conclude that

and

. The set and the function are equivalent ways of modeling the same underlying
relation.

108

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The next two exercises aren't meant to be difficult, but rather to illustrate that, while
we've sketched these two approaches and suggested they are equivalent, we still need
an exact definition.

Exercise 3.2.1
For the indicator function

on the domain of (pairs of) natural numbers, write down the set-of-
pairs representation for the corresponding binary relation. It's
insightful to give the answer both by listing the elements, possibly
with ellipses, and also by using set-builder notation. In general, for a
binary indicator function f, what, exactly, is the corresponding set?

Exercise 3.2.2
For the relation hasPirate = {K, T, R, U, E} on the set of (individual)
WaterWorld locations, write down the indicator-function
representation for the corresponding unary relation. In general, how
would you write down this translation?

Since these two formulations of a relation, sets and indicator functions, are so close,
we'll often switch between them (a very slight abuse of terminology).

Think about when you write a program that uses the abstract data type Set. Its main
operation is elementOf . When might you use an explicit enumeration to encode a set,
and when an indicator function? Which would you use for the set of WaterWorld
locations? Which for the set of prime numbers?

3.2.3 Functions as Relations
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Some binary relations have a special property: each element of the domain occurs as
the first item in exactly one tuple. For example, isPlanet = {(Earth, true) , (Venus,
true) , (Sol, false) , (Ceres, false) , (Mars, true)}is actually a (unary) function. On the
other hand, isTheSquareOf = {(0, 0) , (1, 1) , (1, −1) , (4, 2) , (4, −2) , (9, 3) , (9, −3) ,...}
is not a function, for two reasons. First, some numbers occur as the first element of
multiple pairs. Second, some numbers, like 3, occurs as the first element of no pairs.

We can generalize this to relations of higher arity, also. This is explored in this exercise
(Exercise 4.4.2) and this one (Exercise 4.4.3).

109

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.2.4 Binary Relations
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

One subclass of relations are common enough to merit some special discussion:
binary relations. These are relations on pairs, like nhbr.

3.2.4.1 Binary Relation Notation

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Although we introduced relations with prefix notation, e.g., < (i, j), we'll use the more
common infix notation, i<j, for well-known arithmetic binary relations.

3.2.4.2 Binary Relations as Graphs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In fact, binary relations are common enough that sometimes people use some entirely
new vocabulary: A domain with a binary relation can be called vertices with edges
between them. Together this is known as a graph. We won't stress these terms right
now, as we're not studying graph theory.

Binary relations (graphs) can be depicted visually, by drawing the domain elements
(vertices) as dots, and drawing arrows (edges) between related elements.

A binary relation with a whole website devoted to it is "has starred in a movie with".
We'll call this relation hasStarredWith over the domain of actors. Some sample points
in this relation:

1. hasStarredWith (Ewan McGregor, Cameron Diaz), as witnessed by the movie A
Life Less Ordinary, 1997.

2. hasStarredWith (Cameron Diaz, John Cusack), as witnessed by the movie Being
John Malkovich, 1999.

You can think of each actor being a "location", and two actors being "adjacent" to each
other if they have ever starred in a movie together; two of these locations, even if not
adjacent might have a multi-step path between them. (There is also a shorter path;
can you think of it? The (in)famous Kevin Bacon game asks to find a shortest path from
one location to the location Kevin Bacon. Make a guess, as to the longest shortest path
leading from (some obscure) location to Kevin Bacon.)

Some other graphs:

• Vertices can be tasks, with edges meaning dependencies of what must be done
first.

• In parallel processing, Vertices can be lines of code; there is an edge between two
lines if they involve common variables. Finding subsets of vertices with no lines

110

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

between them represent sets of instructions that can be executed in parallel (and
thus assigned to different processors.)

• "Word ladders" seek to transform one word to another by changing one letter at
a time, while always remaining a word. For example, a ladder leading from WHITE
to SPINE in three steps is: ·
◦ WHITE ·
◦ WHINE ·
◦ SHINE ·
◦ SPINE

If a solution to such a puzzle corresponds to a path, what do vertices represent? What
are edges? Do you think there is a path from any 5-letter word to another?

3.3 Interpretations

3.3.1 Needing Interpretations to Evaluate Formulas
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You might have noticed something funny: we said safe (a) depended on the board,
but that prime (18) was false. Why are some some relations different than others? To
add to the puzzling, there was a caveat in some fne-print from the previous section: "
prime (18) is false under the standard interpretation of prime ". Why these weasel-
words? Everybody knows what prime is, don't they? Well, if our domain is matrices of
integers (instead of just integers), we might suddenly want a different idea "prime".

Consider the formula E (x, x) true for all x in a domain? Well, it depends not only on the
domain, but also on the specifc binary relation E actually stands for:

• for the domain of integers where E is interpreted as "both are even numbers", E
(x, x) is false for some x.

• for the domain {2, 4, 6, 8} where E is interpreted as "sum to an even number", E
(x, x) is true for every x.

• for the domain of integers where E is interpreted as "greater than", E(x, x) is false
for some x (indeed, it's false for every x).

• for the domain of people where E is interpreted as "is at least as tall as", E (x, x) is
true for every x.

Thus a formula's truth depends on the interpretation of the (syntactic, meaning-free)
relation symbols in the formula.

Definition 3.1: Interpretation

The interpretation of a formula is a domain, together with a mapping from the
formula's relation symbols to specific relations on the domain.

One analogy is “Programs are to data, as formulas are to interpretations ". (In
particular, the formula is a like a boolean function: it takes its input (interpretation),
and returns true or false.)

111

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.3.1.1 Using Truth Tables to Summarize Interpretations (Optional)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider the formula ϕ = R (x, y) ⇒ S (x, y) ∧¬T (x, y). As yet, we haven't said anything
about the interpretations of these three relations. But, we do know that each of R (x,
y), S (x, y), and T (x, y) can either be true or false. Thus, treating each of those as a
proposition, we can describe the formula's truth under different interpretations.

R (x, y) S (x, y) R (x, y) [U+03D5]

false false false true

false false true true

false true false true

false true true true

true false false false

true false true false

true true false true

true true true false

3.3.1.2 Using Formulas to Classify Interpretations (Optional)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the previous section, having a formula was rather useless until we had a particular
interpretation for it. But we can view that same idea backwards: Given a formula, what
are all the interpretations for which the formula is true?

For instance, consider a formula expressing that an array is sorted ascendingly: For all
numbers i,j, (i<j) ⇒ (element (i) ≤ element (j)). But if we now broaden our mind about
what relations/functions the symbols element, < , and ≤ represent and then wonder
about the set of all structures/interpretations which make this formula true, we might
find that our notion of sorting is broader than we first thought. Or equivalently, we
might decide that the notion "ascending" applies to more structures than we first
suspected.

112

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Similarly, mathematicians create some formulas about functions being associative,
having an identity element, and such, and then look at all structures which have those
properties; this is how they define notions such as groups, rings, fields, and algebras.

3.3.1.3 Encoding Functions as Relations

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

What about adding functions, to our language, in addition to relations? Well, functions
are just a way of relating input(s) to an output. For example, 3 and 9 are related by the
square function, as are 9 and 81, and 0,0. Is any binary relation a function? No, for
instance {(9, 81) , (9, 17)} is not a function, because there is no unique output related
to the input 9.

How can we enforce uniqueness? The following sentence asserts that for each
element x of the domain, R associates at most one value with x: For all x, y and z of the
domain,

This is a common trick, for to describe uniqueness: if y and z each have some
property, then they must be equal. (We have not yet specified that for every element
of the domain, there is at least one element associated with it; we'll get to that later.)

Exercise 3.3.1

We just used a binary relation to model a unary function. Carry on this idea, by using a
ternary relation to start to model a binary function. In particular, write a formula
stating that for every pair of elements w, x in the domain, the relation S associates at
most one value with that pair.

3.4 Nonstandard Interpretations (optional)

3.4.1 Prime factorization
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Note that there are other possible interpretations of "prime". For example, since one
can multiply integer matrices, there might be a useful concept of "prime matrices".

For example: Consider only the numbers F = {1, 5, 9, 13,... }that is, F = {k, 4k +1 | k∈∈
N}. It's easy to verify that multiplying two of these numbers still results in a number of
the form 4k +1. Thus it makes sense to talk of factoring such numbers: We'd say that
45 factors into 59, but 9 is considered prime since it doesn't factor into smaller
elements of F .

Interestingly, within F , we lose unique factorization: 441 = 9 ×49 = 21 ×21, where each
of 9, 21, and 49 are prime, relative to F ! (Mathematicians will then go and look for
exactly what property of a multiplication function are needed, to guarantee unique
factorization.)

113

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The point is, that all relations in logical formula need to be interpreted. Usually, for
numbers, we use a standard interpretation, but one can consider those formulas in
different, non-standard interpretations!

3.4.2 The Poincare Disc
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A long outstanding problem was that of Euclid's parallel postulate: Given a line and a
point not on the line, how many lines parallel to the first go through that point? Euclid
took this as an axiom (unable to prove that it followed from his other axioms). Non-
Euclidean geometries of Lobachevsky and Riemann took different postulates, and got
different geometries. However, it was not clear whether these geometries were sound
whether one could derive two different results that were inconsistent with each other.

Henri Poincare developed an ingenious method for showing that certain non-
Euclidean geometries are consistent or at least, as consistent as Euclidean geometry.
Remember that in Euclidean geometry, the concepts "point" and "line" are left
undefined, and axioms are built on top of them (e.g., "two different lines have at most
one point in common"). While it's usually left to common sense to interpret "point",
"line", and "a point is on a line", any interpretation which satisfies the axioms means
that all theorems of geometry will hold.

The Poincare disc is one such interpretation: "point" is taken to mean "a point in the
interior of the unit disc", and "line" is taken to mean "a circular arc which meets the
unit disc at right angles". So a statement like "two points determine a line" can be
interpreted as [*] For any two points inside the disc, there is exactly one circular arc
which meets the disc at right angles. Indeed, this interpretation5 preserves all of
Euclid's postulates except for the parallel postulate. You can see that for a given line
and a point not on it, there are an infinite number of parallel (that is, non-intersecting)
lines.

114

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 3.1 Some lines in the Poincare disc, including several lines parallel to a line L through a point

p

(Note that the distance function is very different within the Poincare disc; in fact the
perimeter of the disc is of at infinity. Angles, however, do happen to be preserved.)

The critical point of his interpretation of a non-Euclidean geometry is this: it is
embedded in Euclidean geometry! So we are able to prove (within the embedding
Euclidean geometry) that the disc-postulates hold (e.g., we can prove the statement [*]
above as a theorem about circular arcs in Euclidean geometry). Therefore, if there is
any inconsistency in non-Euclidean geometry, then that could be parlayed into some
inconsistency of Euclidean geometry. Thus, his interpretation gives a proof that the
strange non-Euclidean geometry is as sound as our familiar Euclidean geometry.

3.4.3 P vs. NP and Oracles
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A well-known problem in computer science "P vs. NP" asks whether (for a given
problem) it is truly more difficult to find a short solution (when one exists) ("NP"), than
it is to verify a short purported solution handed to you ("P"). For example, "Given a set
of people and how strong person is, can you partition them into two tug-of-war teams
which are exactly evenly matched?" Certainly it seems easier to check that a pair of
proposed rosters has equal strength (and, verify that everybody really is on one team
or the other) than to have to come up with two perfectly-matched teams. But
conceivably, the two tasks might be equally-difficult up to some acceptable
(polynomial time) overhead. While every assumes that P is easier than NP, nobody has
been able to prove it.

115

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

An interesting variant of the problem lets both the problem-solver and the purported-
answer-verifier each have access to a particular oracle a prog ram that will gives
instant yes/no answers to some other problem (say, "given any set of numbers, yes or
no: is there an even-sized subset whose total is exactly the same as some odd sized
subset?").

It has been shown that there is some oracle which makes the problem-solver's job
provably tougher than the proof-verifier’s job, and also there is some other oracle
problem-solver's job provably no-tougher than the proof-verifier’s job.

This means that any proof of P being different from NP has to be subtle enough so
that when P and NP are re-interpreted as "P and NP with respect to a particular
oracle", the proof will no longer go through. Unfortunately, this eliminates all the
routine methods of proof; we know that solving this problem will take some new
attack.

3.4.4 Lo¨wenheim-Skolem and the real numbers
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Lo¨wenheim-Skolem theorem of logic states that if a set of (countable) domain
axioms has a model at all, then it has a countable model. This is a bit surprising when
applied to the axioms of arithmetic for the real numbers: even though the real
numbers are uncountable, there is some countable model which meets all our (fnite)
axioms of the real numbersl

3.4.5 Object-oriented programming
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Note that object-oriented programming is founded on the possibility for nonstandard
interpretations: perhaps you have some code which is given a list of Objects, and you
proceed to call the method toString on each of them. Certainly there is a standard
interpretation for the function Object.toString , but your code is built to work even
when you call this function and some nonstandard, custom, overridden method is
called instead.

It can become very difficult to reason about programs when the run-time method
invoked might be different from the one being called. We're used to speciflying type
constratins which any interpretation must satisfy; wouldn't it be nice to specify more
complicated constraints, e.g. "this function returns an int which is a valid index into
[some array]"? And if we can describe the constraint formally (rather than in English
comments, which is how most code works), then we could have the computer enforce
that contractl (for every interpretation which gets executed, including non-static ones).

An obvious formal specifcation language is code itself have code which verifes pre-
conditions before calling a function, and then runs code veriflying the post-condition
before leaving the function. Indeed, there are several such tools about (Java , Scheme

116

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

). In the presence of inheritance, it's harder than you might initially think to do this
correctly .

It is still a research goal to be able to (sometimes) optimize away such run-time
verifications; this requires proving that some code is correct (at least, with respect to
its post-condition). The fact that the code might call a function which will be later
overridden (our "non-standard interpretations") exacerbates this difficulty. (And
proving correctness in the presence of concurrency is even tougherl)

Even if not proving programs correct, being able to specify contracts in a formal
language (code or logic) is a valuable skill.

3.4.6 Real-World Arguments
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Finally, it is worth noting that many rebuttles of real world arguments (Exercise 1.3.1)
(see also some exercises (Exercise 2.5.1)) amount to showing that the argument's form
can't be valid since it doesn't hold under other interpretations, and thus there must be
some unstated assumptions in the original.

3.5 Modeling with relations

3.5.1 Modeling with Relations
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

ASIDE: Note that the nhbr relation can actually represent an arbitrarily weird board,
such as locations that look adjacent on the map but actually aren't, boards which wrap
around a cylinder or toroid, or a location with a tunnel connecting it to a location far
across the board (like the secret passages in the game Clue, or the harrowing sub trip
through Naboo in Star Wars: The Phantom Menace.) One-way passages can be
encoded as well (meaning the nhbr relation need not be symmetric). Actually, any
graph can be representedl

117

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 3.5.1
How shall we encode concepts such as " location A has 3 dangerous
neighbors ", using relations? Proofs otherwise unchanged. Note that
we might express our rules as " for any locations x and y, we have the
following axiom: has − 3(x)∧∧ nhbr (x, y)⇒⇒¬safe (y) ". Really, note
that there's something else going on here: x and y are symbols which
can represent any location: they are variables, whose value can be
any element of the domain.

For the domain of types-of-vegetables, the relation yummy is a
useful one to know, when cooking. In case you weren't sure, yummy
(Brussels sprouts) = false, and yummy (carrots) = true.

Suppose we had a second relation, yucky. Is it conceivable that we
could model a vegetable that's neither yucky nor yummy, using these
relations? Sure! (Iceberg lettuce, perhaps.) In fact, we could even
have a vegetable which is both yummy and yucky radishes!

ASIDE: A quick digression on a philosophical nuance: the domain for the above
problem is not vegetables; it's types-of-vegetables. That is, we talk about whether or
not carrots are yummy; this is different than talking the yumminess of the carrot I
dropped under the couch yesterday, or the carrot underneath the chocolate sauce. In
computer science, this often manifests itself as the difference between values, and
types of values. As examples, we distinguish between 3 and the set of all integers, and
we distinguish between particular carrots and the abstract idea of carrots. (Some
languages even include types as values.) Philosophers enjoy debating how particular
instances define the abstract generalization, but for our purposes we'll take each both
vegetables and types of-vegetables as given.

Exercise 3.5.2
You might have objected to the idea of the unary relation yummy,
since different people have different tastes. How could you model
individuals' tastes? (Hint: Use a binary relation.))

Modeling actors and the has-starred-with relation didn't include
information about specific movies. For instance, it was impossible to
write any formula which could capture the notion of three actors all
being in the same movie.

Exercise 3.5.3
Why doesn't hasStarredWith (a, b) ∧ hasStarredWith (b, c) ∧
hasStarredWith (c, a) capture the notion of a, b, and c all being in the
same movie? Prove your answer by giving a counterexample.

118

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 3.5.4
How might we make a model which does capture this? What is the
domain? What relations do you want?

Of course, the notion of interpretations are still with us, though
usually everybody wants to be thinking of one standard
interpretation. Consider a relation with elements such as isChildOf
(Bart, Homer, Marge). Would the triple (Bart, Marge, Homer) be in
the relation as well as (Bart, Homer, Marge)?

As long as all the writers and users of formulas involving isChildOf
all agree on what the intended interpretation is, either convention
can be used.

3.5.2 A Case Study: iTunes
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider iTunes' "smart playlists": you can create a playlist consisting of (say)

All songs I've rated3-stars or better, and whose genre is not Classical

This is "smart" because its a program which is re-run every time your music library
changes: For example, if you change a song's genre, it may be immediately added or
deleted from the playlist. We realize actually have a simple formula (which we can
express in propositional logic with relations). The structure (instance) for a single is the
interpretation. This formula is true when interpreted on (my library's representation
of) Brian Eno's "Here Come the Warm Jets", but false for Bonnie Tyler's '80's epic
"Holding Out for a Hero" and for Bach's " "Little" Fugue in Gm ". We now have one
formula, and want to determine its truth-value in many different particular
interpretations. In fact, we want to return all interpretations which make the formula
(playlist) true.

Exercise 3.5.5
Look at the GUI box for defining these queries. Compared to
propositional logic, what sort of formulas can you define?

Exercise 3.5.6
Are there queries which can't be directly transliterated into the GUI
box? l4

Exercise 3.5.7
Can you find formulas equivalent to each of the preceding two, which
can be expressed?

119

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The upshot is that iTunes came up with a query language which is as expressive as
propositionall5 logic. For some queries, it can be awkward to use, but the GUI
designers who came up with smart playlists might have figured that few users would
want such queries.

Note: How might you create a GUI widget which can specify any propositional
formula, and yet still look nice and be intuitive enough for my mother to use?
Is there a better usability/expressibility trade-of than what iTunes has done, or
are they optimal?

3.5.3 Solutions to Exercises in Chapter 3
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 3.1.1

We'll use a unary (one-input) relation: safe(A) is true if and only if ("if") location A is
safe.

Solution to Exercise 3.2.1

{(0,0), (1; 1) ; (2; 4) ; (3; 9) , …, (i, i2), …} In set-builder notation, this is {(x; y) (y = x2}

In general, for an indicator function f, the corresponding set would be {(x, y) | f (x, y) }
(Note that we don't need to write " ... f (x, y) = true "; as computer scientists
comfortable with Booleans as values, we see this is redundant.)

Solution to Exercise 3.2.2

In general, for a (unary) relation R,

Solution to Exercise 3.3.1

For all w, x, y, and z of the domain,

Solution to Exercise 3.5.1

A good first guess might be to say we have a function which returns the number of
pirates next to a given location. That is, " piratesNear(A)=3 ". However, "piratesNear"
doesn't qualify as a relation. Why not?

120

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

To work around this, we could propose a binary relation along the lines of "
piratesNear (A, 3) = true ". This is better, but it requires our domain to be not only
board locations, but also numbers. And to be able to talk about numbers, we'd need
more axioms, as well as numeric relations such as >.

ASIDE: Hmmm, what is the arity of ">"?

While this approach is feasible, and ultimately might be what we want, for now, let's
stick with relations involving only locations, not numbers.

Okay, the third time's the charm: we'll implement the concept "A neighbors three
pirates" as a relation has − 3(A) being true. To cover the cases when there are exactly
two neighboring pirates, we'll use a whole new separate relation, "has − 2"; has − 2(A)
would be false on any board where has − 3(A) is true (at least, in our standard
interpretation).

Solution to Exercise 3.5.2

We can use the binary relation thinksIsYummy: In particular, thinksIsYummy (Ian,
anchovies) = false but thinksIsYummy (Phokion, anchovies) = true What set are we
using, as the domain for this? Really, the domain is the union of people and pizza-
toppings. So thinksIsYummy (radishes, brusselsSprouts) is a valid thing to write
down; it would be false. Note that if working with such a domain, having unary
predicates isVegetable and isPerson would be useful.

Solution to Exercise 3.5.3

The proposed formula asserts that each pair has been in some movie together, but
they each could have been different movies without being in the same one
simultaneously. As a counterexample, it is true that hasStarredWith (Charlie Chaplin,
Norman Lloyd) (as witnessed by Limelight, 1952), hasStarredWith (Norman Lloyd,
Janeane Garofolo) (as witnessed by The Adventures of Rocky and Bullwin kle, 2000),
and if we generously include archive footage, hasStarredWith (Charlie Chaplin,
Janeane Garofolo) (as witnessed by Outlaw Comic: The Censoring of Bill Hicks, 2003);
however, they have not all been in a movie together. Might the counterexample you
chose become nullifed, in the future?

Solution to Exercise 3.5.4

As always, there are several ways of modeling this problem. We'll outline three.

First, we could augment the hasStarredWith to be a ternary (3-input) relation to
include the movie. Like in the yummy extension (Exercise 3.5.2), the domain would
then include both actors and movies, and we'd also want relations to know which is
which.

Second, we could use a bunch of relations. Starting with the familiar binary
hasStarredWith, we'd add the ternary hasStarredWith3, the quaternary
hasStarredWith4, Our domain would just be actors. However, we'd either need an
infnite number of such relations, which we normally don't allow, or we'd need an
arbitrary cap on the number of people we're interested in at a time.

121

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Third, we could use sets of actors, instead of individuals. We'd need only one relation,
haveStarredtogether, that states a set of actors have starred together in a single
movie. Solution to Exercise 3.5.5 (p. 84)

This is effectively Disjunctive or Conjunctive Normal Form, limited to clauses of one
term each.

Solution to Exercise 3.5.6

Yes. Two examples are ¬ ((genre = Classical) ∨ (genre = Holiday)), and (genre =
Rock) ∧ ((Rating ≥ 4) ∨ (genre = Classical)).

Solution to Exercise 3.5.7

For the first example, ¬ ((genre = Classical) ∨ (genre = Holiday)), we can clearly use
DeMorgan's law and make the query ¬ (genre = Classical) ∧¬ (genre = Holiday).

However, for (genre = Rock) ∧ ((Rating ≥ 4) ∨ (genre = Classical)) there is no

equivalent one-termper-clause DNF or CNF formula!16

Fortunately, iTunes has a way around this. Playlist membership or non-membership is
itself an available predicate, allowing you to nest playlists. Thus, you can build a
playlist GoodOrClassical for (Rating ≥ 4) ∨ (genre = Classical), then another (genre =
Rock) ∧ GoodOrClassical for the desired result.

122

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Chapter 4 First-Order Logic

4.1 A formal vocabulary

4.1.1 Syntax and semantics of quantifiers

4.1.1.1 Talking about unnamed items

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Suppose we want to express a statement like "there is a location which has two
neighbors" (which is true, at least for the domain of WaterWorld board locations), or
“all actors have co-starred with Kevin Bacon2 " (which isn't true, at least for the
domain of all Hollywood actors). As it stands, we can formulate these only awkwardly,
by talking about specific (constant) locations like A and G, or specifc actors like Ewan
McGregor3 and Cameron Diaz4 . To talk about all locations, or actors, we're forced to
make huge formulas such as nhbr (Z, Y)∧¬nhbr (Z, A)∧¬nhbr (Z, B)∧ ...∧¬nhbr
(Z, X), just to express "there is a location which has only one neighbor".

We'll redress this by introducing two quantifiers, ∃ ("there exists") and ∀ ("for all").
For example, "all actors have co-starred with Kevin Bacon" will be written ∀a :
(coStarredWith (a, KevinBacon)). For " there is a location which has (at least) two
neighbors ", we'll start with “there exists a location x ... “written ∃x :(...).

"For all" is really just an abbreviation for a large conjunction, while "exists" is a
disjunction (it could also be called "for some", though it's not). How large a
conjunction/disjunction? As big as your domain, which actually could be very small, or
it could be infinitely large. Even aside from the fact that we can't write down an
infinitely large conjunction or disjunction, quantifiers let us form the conjunction
without having to select a domain in advance.

To continue with our WaterWorld example, how can we express the concept "x has (at
least) two neigh bors"? Well, we'll rephrase this as, " there exist distinct locations, y and
z, which each of which is a neighbor of x ", written

We need the condition ¬ (y = z) in = z) that formula to ensure that we have distinct
locations. Compare to the algebraic equation x+y =4 in which one possible solution is x
= y =2. Variables act the same way in both logic and algebra: different variables can
happen to take on the same value.

We use quantifiers all the time in natural language. Consider the following examples,
where we provide a natural English wording together with an equivalent phrasing that
makes the quantifcation more explicit. We'll take the translations with a grain of salt,
since sometimes people can disagree on the exact details of the intended English
meaning. Such ambiguity can sometimes be a rich source of creativity, but it's not
tolerable when documenting safety properties of software. While some of these
examples are a bit frivolous, in general quantifiers let us precisely capture more

123

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

interesting concepts in type-checking, data structures such as trees and hash tables,
circuit specifcations, etc.

124

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Natural English Formalized English

" If you don't love yourself,
you can't love anybody else. "

" If you don't love you, there
does not exists a person y,
such that you love y. "

"N*Sync is the best band
ever!"

" For all bands x, N*Sync is
better than band x (or, x = N ∗
Sync). " A quick listen can
easily show this statement
false.

A casually subtle line from
Something About Mary:
"Every day is better than the
next."

" For all days x, x is better than
next(x). "

A buggy line from a song
(Everybody Loves My Baby,
Jack Palmer and Spencer
Willson, 1924): "Everybody
loves my baby; My baby don't
love [anybody] but me."

" For all persons x, x loves my
baby. For all persons y, if my
baby loves y, then y is me. " If
true, one can conclude the
speaker is his own baby, and is
narcissistic.

"Every neighbor of x is
unsafe."

"For all locations y, if y is a
neighbor of x, then y is
unsafe."

"There is a safe location that
is a neighbor of x, if
num(x)<3."

"If num(x)<3, then there
exists a location y, such that y
is safe, and y is a neighbor of
x."

"If you've seen one episode,
you've seen 'em all."

"If there exists one episode x
such that you've seen x, then
for all episodes z, you've seen
z."

"Somebody loves everybody."
"There exists some person y,
such that for all persons x, y
loves x."

Table 4.1 Quantification in English

125

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

"There is someone for
everybody."

"For all persons x, there exists
a person y, such that y is for
x."

"All's well that ends well."
"For all events x, if x ends well
then x is well."

Table 4.1 Quantification in English

4.1.1.1.1 Warning: The Ambiguous "Any"

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The ambiguous "any": I was playing a game with some friends, and we came across
the rule: " If you have more cards than any other player, then discard a card. " Does
this mean "than all other players", or "than some other player"? Our group's opinion
was divided (incl. across many native English speakers). In our class terms, it's not
always clear whether "any" means for-all, or for-some (there-exists). Or maybe more
accurately, in the phrase "for any x", does x necessarily mean an arbitrary player?

ASIDE: Linguistics students, or those who are so sure the rule clearly intended "than all
other players": Switching "x>y " to"x<y " changes from an active voice to a passive
voice but may also reverse your interpretation of the English quantifier "any": "If any
player has fewer points than you, ..."

In your proof-writing (and your English writing, and your informal writing), think about
replacing "any" with either "every" or with "some", to make your meaning clear.

4.1.1.2 First-order logic: WFFs revisited

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We originally defined a well-formed formula (WFF) for propositional logic; we'll extend
this to WFFs for first-order logic, also known as predicate logic. At the same time,
we'll more precisely define the binding of variables.

This logic allows use of both functions and relations. Since these functions' outputs
are not Booleans (otherwise, we'd call them relations), but rather data than can be
used as a relation's input, we separate the syntax into that of terms and formulas.
Terms are all the possible inputs for a relation.

126

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 4.1: term
1. A variable.

Example
a, b, ...

2. A constant.

Example
WaterWorld location F , Kevin Bacon, or the number 3.

3. A function applied to one or more terms.

Example
successor (3)

127

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Definition 4.2: Well-Formed Formula
(WFF) for first-order logic

1. A constant: true or false.

2. An atomic formula: a relation symbol applied to one or more
terms.

Example
nhbr (x, F)

3. A negation of a WFF, ¬φ.

4. A conjunction of WFFs, φ∧ ψ.

5. Adisjunction of WFFs, φ∨ ψ.

6. An implication of WFFs, φ⇒ ψ.

7. A universal quantification of a WFF, ∀x :(φ).

Example
∀x : (nhbr (x, F))

8. An existential quantification of a WFF, ∃x :(φ).

Example
∃x : (nhbr (x, F))

While a formula is just a piece of syntax, the meaning of its connectives, including the
quantifiers, is part of the definition of a WFF. However, as previously discussed, the
meaning of a WFF also depends on the interpretation (Interpretations (Page 111)) we
give to its relations.

128

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

4.1.1.2.1 Examples

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 4.1
Everybody likes John Cusack: ∀x : (likes (x, John Cusack)).

Example 4.2
Somebody likes Joan Cusack: ∃x : (likes (x, Joan Cusack)).

Example 4.3
Somebody likes everybody: ∃x :(∀y : (likes (x, y))). (We use n for
"needy"?)

Example 4.4
Everybody likes somebody: ∀y :(∃x : (likes (y, x))). Careful; this
formula looks similar to the preceding one, but it has a very different
meaning!

Exercise 4.1.1.1
How would you express "Somebody is liked by everybody"?

Exercise 4.1.1.2
How would your express “Everybody is liked by everybody”?

Example 4.5
The following formula is a simple application of symmetry. ∀x :(∀y :
(near (x, y)⇒ near (y, x))) ∧ near (Sue, Joe)⇒⇒ near (Joe, Sue).

While it is certainly true under the intended interpretation, it is also
true under any interpretation. Such formulas are called valid. Valid
first-order formulas are the natural analog of tautological
propositional formulas.

Example 4.6
∀x : (even (x)∧∧ prime (x)⇒⇒ (x = 2)) is a mathematical fact, in the
standard interpretation of arithmetic.

129

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

While technically not allowed by our term (Definition: "term", p. 91) and formula
(Definition: "Well-Formed Formula (WFF) for first-order logic", p. 91) syntax, we'll
continue using infix notation for common mathematical functions and relations, as in
the previous example (Example 4.6).

Exercise 4.1.1.3
The previous example (Example 4.6) used the relations even and
prime. Of course, to use such relations, they must either be defined
directly by the interpretation, or be defined in terms of functions and
relations provided by the interpretation.

How would you define these two relations in terms of the basic
numerical functions (addition, multiplication, ...) and relations (= , <,
>)?

Exercise 4.1.1.4
One hypothesis about natural numbers is known as Goldbach's
Conjecture . It states that all even integers greater than two can be
expressed as the sum of two primes. It is one of the oldest still-
unsolved problems about numbers. How would you write this
conjecture as a WFF?

Enough about number theory. Let's look at some examples about
common data structures and some about our favorite problem,
WaterWorld.

Example 4.7
If your program uses binary search trees and your domain is tree
nodes, you need to know

.

If these trees are also balanced, you need to know

Again, these assume the implied interpretations.

130

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 4.8
We would like to be able to state that the output of a sorting routine
is, in fact, sorted. Let's assume we're sorting arrays into ascending
order.

To talk about the elements of an array in a typical programming
language, we would write something like a[i]. For this example, we'll
use that notation, even though it doesn't quite fit the logic's syntax.

To describe sortedness (in non-decreasing order), we want to state
that each element is greater than or equal to the previous one.
However, just like in a program, we need to ensure our formula
doesn't index outside the bounds of the array. For this example, we'll
assume that an array's indices are zero to (but not including) size(a).

sorted (a) ≡∀i : ((1 ≤ i) ∧ (i< size (a)) ⇒ (a [i − 1] <a [i]))

When proving things about programs, it's often useful to realize there are alternate
ways of defining things. So, let's see a couple more definitions.

We could change our indexing slightly: sorted (a) ≡∀i : ((0 ≤ i) ∧ (i< size (a) − 1) ⇒ (a [i]
<a [i + 1])).

Or we could state that the ordering holds on every pair of elements: sorted (a) ≡∀i :
(∀j : ((0 ≤ i) ∧ (i< size (a)) ∧ (0 ≤ j) ∧ (j< size (a)) ∧ (i<j) ⇒ (a [i] ≤ a [j]))). This definition
isn't any stronger, but it makes an additional property explicit. Generally, you'd find it
harder to prove that this formula was true, but once you did, you'd find it easier to use
this formula to prove other statements.

Exercise 4.1.1.5
The two preceding examples used functions like left, size, and
subtraction, although our logic syntax doesn't include such
functions. However, we can rewrite any use of functions with
appropriate new relations.

As an example, rewrite i< size (a) in proper first-order syntax.

Exercise 4.1.1.6
One simple WaterWorld fact is that if a location has no unsafe
neighbors, then its number of adjacent pirates is zero. Furthermore,
the implication goes both ways. How would you state that as a WFF?

131

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 4.1.1.7
How would you make a similar statement about the number of
adjacent pirates being one? These statements are very similar to, and
provable from, the first-order WaterWorld The domain axioms (Page
173).

4.1.1.2.2 A hint on deciphering formulas' meanings

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Some formulas can get pretty hairy: ∀x :(∃y :(∀z : (likes (x, y)∧¬likes (y, z)))). The
zeroth step is to take a breath, and read this in English: for every x, there's some y
such that for every z, x likes y but y doesn't like z. Even so, how do we approach
getting a handle on what this means? Given an interpretation, how do we know it's
true?

The top-down way would be to read this formula left-to-right. Is the whole formula
true? Well, it's only true if, for every possible value of x, some smaller formula is true
(namely, " there exists a y such that forall z, likes (x, y) and ¬likes (y, z). "). (This is a
formula with x free, that is, it's a statement about x.) And is that formula true? Well,
precisely when we can find some y such that ... (and so on). This direct approach is
hard to keep inside your head all at once.

Most people prefer approaching the problems in a bottom-up manner (or if you
prefer, right-to-left or inside-out): First consider at the small inner bits alone, figure out
what they mean, and only then figure out how they relate.

• What does the innermost formula likes (x, y) ∧¬likes (y, z) mean, in English?
That's not so bad: x likes y, and y dislikes z. A statement about three people called
x, y, z.

• Working outward, what does ∀z : (likes (x, y) ∧¬likes (y, z)) mean? Ah, not so bad

either: x likes y, and y dislikes everybody. 6

• Keep on going: ∃y :(∀z : (likes (x, y) ∧¬likes (y, z))) becomes "x likes some
misanthrope".

• Now it's clear: ∀x :(∃y :(∀z : (likes (x, y) ∧¬likes (y, z)))) is just "everybody likes
some misanthrope".

Phew!

4.1.1.2.3 "Forall"'s friend "if"

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We have already seen quite a few formulas of the general form ∀x :(P (x)⇒ ...).
Indeed, this is a very useful idiom: If our domain is natural numbers but we want to
say something about all primes, we simply write ∀n : (prime (n)⇒ ...). Don't be
fooled; this formula is in no way suggesting that all numbers are prime!

132

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Caution: This same construct using ∃∃ is usually a mistake. Consider ∃∃x :(P
(x) ⇒⇒ ...). By choosing x to be any non-P element, this entire formula is
true, without even glancing at what is inside the "..."l

Note: If you have to demonstrate that all ravens are black, ∀i : (isRaven (i) ⇒⇒
isBlack (i)), there are two ways to do so: You can go out and find every raven
and verify that it's black. Alternately, you can go and find every non-black
item, and verify that it's a non-raven. Epistemologists, philoso phers dealing
with how we humans come to learn and know things (about, say, raven colors),
go on to ponder about real-world degrees-of-belief: If we have only looked at
some ravens, and we find another raven and confirm it is black, does this
increase our degree of belief about all ravens being black? If so, then whenever
we find a non-black item which is a non-raven, this must also increase our
degree of belief that all ravens are black. This leads to Hempel's (so-called)
Paradox: if we are looking for evidence to choose between two competing
hypotheses (say, "all non-black items are not ravens" versus "all non-orange
items are not ravens"), then finding a purple cow increases our belief in both
of these hypotheses, simultaneously!

4.1.2 Bound variables, free variables
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the previous examples we often re-used variable names, even within the same
formula. This shouldn't be surprising or confusing, since we do the same thing in
programs (another formal language). In fact, the same notions of bound and free
variables occur in both situations. An occurrence of variable x is bound if it is in the
body of a quantifier ∀x ... or ∃x Otherwise, the occurrence is free.

For example, in ∀x : (likes(x, y)), the variable y is free but x is not. So this is a
statement about y; we can't evaluate this to true/false until we get some context for y.
It's useful as a subpart for some bigger formula.

Note: The concept "x free in φ" does not talk about the context of φ. So don't
confuse it with "well, over on this part of the page, φ happens to occur as the
sub-part of another formula containing ∀x :(...), so x really is bound." (Just as
7 is prime, even though people sometimes use 7 in the context of 7+1.)
Whether x is free in a φ can be determined by a function isFree (x, φ), needing
no other information to produce an answer.

Looking back at our previous examples, we can see that many of the formulas we
made had no free variables all variables were bound by some quantifier in the
formula. The truth of such formulas depends only on the interpretation and not on
any additional knowledge about what any free variables refer to. Thus, these formulas
are common and important enough that we give them a special name, sentences.

A given variable name can actually have both bound and free occurrences within the
same formula, as in R (x)∧∃x :(¬R (x)). (This formula about x is satisfiable: it says that
R is true about x, but isn't true about everything.) In essence, there are two different

133

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

underlying variables going on, but they each happen to have the same name; from
scope it can be decided which one each occurrence refers to. In programming
language terms, we'd say that the inner x (the local variable) shadows the outer x (the
enclosing variable). In these terms, free variables in logic correspond to global
variables in programs.

Clearly ∀x :(R (x)) is always equivalent to ∀y :(R (y)); variable names are entirely
arbitrary (except maybe for their mnemonic value). So the previous formula might be
more clearly re-written as R (x)∧∃∧∃y: (¬R (y)). (This careful re-writing while respecting a
variable's scope is called α-renaming.) Even if 17 quantifiers each used the same
variable (name) x, we could carefully α-renaming 17 times, and end up with an
equivalent formula where all quantifiers use distinct variables. This will be useful to
avoid potential confusion, especially in the upcoming inference rules (Note, p. 99),
where we'll be introducing and eliminating quantifiers.

Example 4.9
The formula ∀x :(A (x)) ∧∃x :(B (x)) ∧∀x :(C (x)) is equivalent to the
more readable ∀x :(A (x)) ∧∃y :(B (y)) ∧∀z :(C (z)).

4.1.3 Normal forms revisited

4.1.3.1 CNF and DNF revisited (Optional)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In first-order logic, normal forms are still useful for providing a notion of a canonical
form. However, their other benefit of corresponding closely to truth tables does not
apply here, since truth tables aren't useful for first-order logic.

A formula in Prenex Conjunctive Normal Form, or PrenexCNF, has a body in CNF
preceded by a series of quantifiers. Similarly, a formula in
PrenexDisjunctiveNormalForm, or Prenex DNF, has a body in DNF preceded by a
series of quantifiers.

Example 4.10
Assuming φ is in CNF, then the following are each in prenex CNF. On
the other hand, if φ is in DNF, these are in prenex DNF.

• φ

• ∀x.φ
• ∃x.∀y.∃z.φ

Every formula has an equivalent prenex CNF formula and equivalent prenex CNF
formula. For brevity, we'll skip proving this.

134

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.2 Reasoning with equivalences

4.2.1 First-order equivalences
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Now that we can express interesting concepts using the quantifiers "∃" ("there
exists") and "∀" ("for all"), how can we use them for the problem of determining
whether a formula is true? Back in lowly propositional logic, we had three methods:

• truth tables,
• equivalences, and
• formal proofs with inference rules.

How can we adapt these approaches, for first-order logic?

Well, truth tables have no analog approach. With quantifiers, we don't have a finite set
of propositions. Furthermore, variables can't refer to specific items in the domain until
we try to interpret them. And when we do, the domain may be of any size possibly
even infinite. Using a truth table on an infinite domain is clearly infeasible, but the real
problem stems from how we want to be able to discuss reasoning without respect to a
particular domain.

However, we can add equivalences and inference rules to cope with quantifiers. After
showing how to work with quantifiers, we'll come back to examine our newly-
augmented systems for those desirable traits, soundness and completeness.

4.2.1.1 First-order Equivalences

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When we upgrade from propositional logic to first-order logic, what changes do we
need to make to the laws of boolean algebra? Well first of, we can keep all the existing
propositional equivalences (Propositional equivalences (Page 165)). For example, ∀x
:(¬ (φ∧ ψ)) ≡∀x :(¬φ∨¬ψ). (Technically, we're even making those equivalences
stronger, since those meta-variables φ, ψ, θ can now stand for any first-order
formula, rather than merely propositional formulas.)

But, we also need additional identities to deal with our new-fangled quantifiers. What
should these be? The most interesting are those that relate the two kinds of
quantifiers. Universal quantifcation (∀) says that something holds for all members of
the domain, and existential quantifcation (∃) says that something holds for at least
one member. Clearly, ∀x :(φ) implies ∃x :(φ), but the other direction doesn't hold, so
that is not an equivalence.

ASIDE: Wait just a minutel That implication holds only if the domain is non-empty, so
that there is at least one member in it. We'll see this restriction appear a few times.

135

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

What about ∀x :(¬φ)? In English, "for all items x, φ(x) does not hold". A more natural
way to say this is that there is no item x such that φ(x) does hold that is, ¬∃x :(φ).
Indeed, this will be one of our new boolean algebra rules.

See a list of equivalences with quantifiers (First-order equivalences (Page 168)). As
before, we can use these to show other pairs of formulas equivalent, as in the
following examples.

136

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 4.11
Using these identities, we can simplify formulas such as the
following: ∀y : (∀x :(R (x)∧∧ Q (x, y))) ∧ ¬∃z :(¬R (z)).

1
∀y: (∀x : (R (x) ∧ Q (x,
y))) ∧ ¬∃z : (¬R (z))

2
≡ ∀y : (∀x : (R (x)∧ Q
(x, y))) ∧ ∀z : (¬¬R (z))

Complementation
of ∃

3
≡ ∀y : (∀x: (R (x)∧ Q (x,
y))) ∧ ∀z : (R (z))

Double
Complementation

4
≡ ∀x : (∀y : (R (x)∧ Q
(x, y))) ∧ ∀z : (R (z))

Reordering ∀s

5
≡ ∀x : (∀y: (R (x)) ∧ ∀y
: (Q (x, y))) ∧ ∀z : (R (z))

Distribution of ∀
over ∧

6
≡ ∀x : (R (x) ∧ ∀y: (Q (x,
y))) ∧ ∀z : (R (z))

Simplification of
∀ (y not free in R
(x))

7
≡ ∀x : (R (x) ∧ ∀y: (Q (x,
y))) ∧ ∀x : (R (x))

renaming

8
≡ ∀x : (R (x) ∧ ∀y : (Q
(x, y)) ∧ R (x))

Distribution of ∀
over ∧

9
≡ ∀x : (∀y: (Q (x, y)) ∧ R
(x)∧ R (x))

Commutativity of
∧

10
≡ ∀x : (∀y : (Q (x, y)) ∧
R (x)∧ R (x))

Associativity of ∧

11
≡ ∀x : (∀y: (Q (x, y)) ∧ R
(x))

Idempotency of ∧

Admittedly, some of these steps are rather small and obvious (e.g., our use of
commutativity and associativity); we include them to illustrate how the identities of
propositional logic are also used in first-order logic.

137

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Example 4.12
An example of ∀x :(ψ) ≡ ψ where ψ doesn't contain x occurring free:
Let ψ be the formula we've seen before (Exercise 4.1.1.3), asserting
that a positive integer n was noncomposite: ∀j : (∀k : ((jk = n) ⇒ (j =
1) ∨ (k = 1))). Since n occurs free, the truth of this formula depends
on the value of n. The formula ∀x :(ψ) really is equivalent to ψ: It's
true for exactly the same values of n. The use of x is essentially a bit
of a rus, since x plays no part of the meat of the ψ.

However, the following formula is certainly not equivalent: ∀n :(ψ).
This formula asserts that all elements of the domain are non-
composite (and it doesn't depend on choosing a particular
interpretation for n). Because n occurred free, we can't use the
"simplification of quantifiers" identity on it.

Finally, one more variant: ∀j :(ψ). This is equivalent to the original,
just like ∀x :(ψ) was. Why? The j that occurs inside ψ is a local
variable, and is different from any enclosing bindings’ j. As we saw,
local variables shadow less-local ones, just as in most programming
languages.

Exercise 4.2.1.1
The equivalences for distributing implication over equivalences seem
counterintuitive at first glance. Show that the following one holds,
given all the identities which don't involve both implication and
quantifiers.

Assuming that ψ does not have any free occurrences of variable x, ∀x
:(φ⇒ ψ) ≡∃x :(φ) ⇒ ψ.

Are the following two sentences true?

• "All flying pigs wear top hats." ∀p : (wears top hat (p)) (over the
domain of flying pigs).

• "All numbers in the empty set are even." ∀x : (even (x)) (over the
empty domain).

• "Every Pulitzer prize winner I've met thinks I'm smart, and cute,
tool" ∀x : (thinksImSmartAndCute (x)) (over the empty, since I
haven't met any Pulitzer prize winners).

Each sentence states that some property holds for every member of some set (flying
pigs or the empty set), but there are no such members. Such sentences are
considered vacuously true.

Okay, maybe you believe that the sentences aren't false, but you still want some
reason to consider them true. Well, think of their negations:

138

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

• "There exists a flying pig not wearing a top hat."∃∃p :(¬wears top hat), over the
(empty) domain of flying pigs. You can't go of and find a flying pig which
contradicts this, since you can't find any flying pig at all. (Note that the negation
isn't "No flying pigs wear top hats.")

• "There exists a number in the empty set that is even." ∃x :(¬even), over the
empty domain. (The negation isn't "No numbers in the empty set are even.")

Since these negations are false, the original sentences must be true. This is also
similar to the fact that a simple propositional implication,a⇒⇒bis true, if a is in fact
false, regardless of the truth of b; in this crude analogy, a corresponds to "in the
domain".

ASIDE: In boolean algebra, we only allow the values false and true, with no third
option. This is sometimes called the law of the excluded middle. Philosophers have
developed "trimodal" logics which have a third option, but everything in those logics
can be translated into something in traditional logic; such logics might be more
convenient in some cases, but they aren't more expressive. Fuzzy Logic, on the other
hand, is a variant where every proposition has a degree of truth (from zero to one).
While this is different than propositional logic (and, it is the right way to model many
real-world problems), as a logic it hasn't yielded interesting new mathematical results.

Even more silliness can ensue when the domain is empty: For example, not only is
every member of the empty set even, but every member is simultaneously odd! That
is, ∀x :(R (x)∧∧¬R (x)) is true (only) when the domain is the empty set. Even more
degenerately, ∀x : (false) is a true (only) on the empty domain.

4.2.1.2 Are we done yet?

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

While equivalences are very useful, we are often interested in implications such as the
one mentioned previously: ∀x :(φ) ⇒∃x :(φ). We could rephrase that as an
equivalence, ∀x :(φ) ⇒∃x :(φ) ≡ true. Informally, it should be clear that that is rather
awkward, and formally it is as well.

But such implications are exactly what inference rules are good for. So, let's continue
and consider what First-order inference rules (Page 139) should be.

4.3 Reasoning with inference rules

4.3.1 First-order inference rules

4.3.1.1 Inference with quantifiers

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Proving first-order sentences with inference rules is not too different than for
propositional ones. We have two slight twists to add: upgrading propositions to

139

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

relations, and quantifiers. We still keep all our Propositional inference rules (Page
166), but declare they can now be used on first-order WFFs. For our quantifiers, we
introduce new First-order inference rule (Page 169) for adding and eliminating
quantifiers from formulas. These four new rules look surprisingly simple, but they do
have a couple of subtleties we have to keep track of.

4.3.1.1.1 Exists-intro

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

What is the most natural way to prove an existential sentence, like "there exists a
prime num ber greater than 5"? That's easy you just mention such a number, like 11,
and show that it is indeed prime and greater than 5. In other words, once we prove

we can then conclude -- using the inference rule∃∃Intro that the formula ∃p : ((p> 5)
∧∀j :(∀k : ((p = jk) ⇒ (j = 1) ∨ (k = 1)))) is true. In general, to prove a for mula of the
form ∃x :(φ), we show that φ holds when x is replaced with some particular witness.
(The witness was 11 in this example.) The inference rule is

The notation "φ[v→w]" means the formula φ but with every occurrence of v replaced
by w. For example, we earlier wrote down the formula φ[p→11], and then decided
that this was sufcient to conclude ∃p :(φ).

Note: Observe that you'll never use the substitution-notation " φ[...→...]" as
part of a literal formula it is only used in the inference rule, as a shorthand to
describe the actual formula. (It's a pattern-matching metalanguagel)

Note: While it seems like substitution should be a simple textual search-and-
replace, it is sometimes more complicated. In the formula φ =(x> 5) ∧∃x :(R
(x)), we don't want φ[x→6] to try to mention R (6), much less generate
something nonsensical like ∀6:(...). In programming languages, we say we
want "hygienic macros", to respect our the language's notions of variables and
scope. E.g., the C pre-processor's #define and #include notably does not
respect hygiene, and can inadvertently lead to hard-to-find bugs. Solution: For
simplicity, we will always consistently rename variables (p. 94) so that each
quantifier binds a distinct variable.

How do you find a witness? That's the difficult part. You, the person creating the proof,
must grab a suitable example out of thin air, based on your knowledge of what you
want to prove about it. In our previous example, we used our knowledge about prime
numbers and about the greater-than relation to pick a witness that would work. In
essence, we fgured out what facts needed to be true about the witness for the
formula to hold, and used that to guide our choice of witness. Of course, this can
easily be more difcult, as when proving that there exists a prime greater than 6971 of
the form 4x− 1. (It turns out that 796751 will sufce as a witness here.) Another
approach is trial-and-error: Pick some candidate value, and see if it does indeed

140

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

witness what you're trying to prove. If you succeed, you're done. If not, pick another
candidate.

4.3.1.1.2 Exists-Elim

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The complementary ∃Elim rule corresponds to giving a (new) name to a witness. Thus
if you know "there exists some prime bigger than 5", then by ∃Elim we can think of
giving some witness the name (say) c, and end up concluding "c is a prime bigger than
5". The caveats are that c must be a new name not already used in the proof, and
different from any variables free in the conclusion we're aiming for. However, we will
be able to use that variable c along with universal formulas to get useful statements.

Thus the general form of the rule is that

. That is, we can rewrite the body of the exists, replacing the quantified variable p with
any new variable name c, subject to the restrictions just mentioned.

4.3.1.1.3 Forall-Intro

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Can we extend that idea to proving a universal sentence? One witness is certainly not
enough. We'd need to work with lots of witnesses, in fact, every single member of our
domain. That's not very practical, especially with infinitely large domains. We need to
show that no matter what domain element you choose, the formula holds.

Consider the statements "If n is prime, then we know that ..." and "A person X who
runs a business should always ...". Which n is being talked about, and which person?
Well, any number or person, respectively. After learning about quantifiers, you may
want to preface these sentences with "For all n" or "For all [any] persons X". But a
linguist might point out that while yes "for all" is related to the speaker's thought, they
are actually using a subtly different mode that of referring to a single person or
number, albeit an anonymous, arbitrary one. If "an arbitrary element" really is a
natural mode of thought, should our proof system reflect that?

If we choose an arbitrary member of the domain, and show that the sentence holds
for it, that is sufficient. But, what do we mean by "arbitrary"? In short, it means that we
have no control over what element is picked, or equivalently, that the proof must hold
regardless of what element is picked. More precisely, a variable is arbitraryunless:

• A variable is not arbitrary if it is free in (an enclosing) premise.
• A variable is not arbitrary if it is free after applying ∃Elim either as the introduced

witness c, or free anywhere else in the formula.

The usual way to introduce arbitrary variables is during ∀Elim (wjo later using it in
∃Elim). The formal inference rule for introduction of universal quantifcation will use
these cases as restrictions.

141

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.3.1.1.4 Forall-Elim

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Getting rid of universal quantifiers is easy: if you know ∀x :(φ) (where φ is a formula
presumably involving x), well then you can replace x with anything you want, and the
resulting formula will be true. We say

where t is any term. Any variables in t are arbitrary, unless it is an already-existing
non-arbitrary variable.

For example, suppose we know that

We can replace n with some term like m+4 to conclude

. The variable m is arbitrary, unless it already occurred in non-arbitrary in a previous
line of the proof (perhaps introduced via ∃Elim). A more usual step is to use a term
which is just a single variable, and (by coincidence) happens to have the same name as
the quantified variable we are eliminating. Thus we often conclude

(note the absence of the initial ∀); n is arbitrary (unless it had already been
confusingly in use as a non-arbitrary variable earlier). This is helpful when we'll be
later re-introducing the ∀ in a later step; see the example below.

4.3.1.2 Formal inference rules and proofs

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Recall the syllogisms from a previous lecture. The general form of a syllogism is

1. ∀x :(P (x) ⇒ Q (x)) [major premise]
2. P (c) [minor premise]
3. Q (c) [conclusion]

In our system, we don't have syllogism as a separate rule of inference, but it's easy to
see how to translate any syllogism into our system: (for specific relations P and Q, and
a specific constant c).

1 Premise

2 Premise

3 ∀Elim, by line 1, with x = c

4
⇒Elim, by lines 2,3, with φ = P
= c and ψ = Q = c

142

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Eliminating a quantifer via ∀Elim and ∃Elim is often merely an intermediate step,
where the quantifer will be reintroduced later. This moves the quantifcation from
being explicit to implicit, so that we can use other inference rules on the body of the
formula. When this is done, it is very important to pay attention to the restrictions on
∀Intro, so that we don't accidentally "prove" anything too strong.

Example 4.13

, for the particular case of φ = R (x, y) (other cases all similar).

1 Premise

2 ∃Elim, line 1

3 ∀Elim, line 2

4 ∃Intro, line 3

5 ∀Intro, line 4

Remember that in line 5, for ∀Intro, we must verify that q is arbitrary. It is, since it was
introduced in line 3 by ∀Elim, and there hasn't been an intervening ∃Elim between
lines 3 and 5.

We cannot instead conclude in line 4 that ∀x :(R (x, q)) by ∀Intro, since variable p was
introduced by ∃Elim in line 2, and therefore not arbitrary.

Exercise 4.3.1.1
Let's reverse the previous proof goal:

for the particular case of φ = R (x, y) (other cases all similar). This
statement does not hold in general. So, what's the problem with the
following "proof"?

143

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1 Premise

2 ∀Elim, line 1

3 ∃Elim, line 2

4 ∀Intro, line 3

5 ∃Intro, line 4

The ∀Intro principle is actually very familiar. For instance, after having shown

we then claimed this was really true for arbitrary propositions instead of just a,b. (We
actually went a bit further, generalizing individual propositions to entire (arbitrary)
WFFs φ,ψ. This could only be done because in any particular interpretation, a formula
φ will either be true or false, so replacing it by a proposition still preserves the
important part of the proof-of-equivalence.)

The ∀Intro is also used in many informal proofs. Consider: "If a number n is prime,
then ...". This translates to "prime (n)⇒ ...", where n is arbitrary. We are entirely used
to thinking of this as "∀n : (prime (n)⇒ ...)" even though "n" was introduced as if it
were a particular number.

4.3.1.3 Proofs and programming

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We previously saw (Proofs and programming (Page 66)) that the inference rules of
propositional logic are closely related to the process of type checking. The same holds
here. For example, in many programming languages, we can write a sorting function
that works on any type of data. It takes two arguments, a comparison function for the
type and a collection (array, list, ...) of data of that type. The type of the sorting
function can then be described as "for all types T , given a function of type (T and T) →
T , and data of type (collection T), it returns data of type (collection T)". This
polymorphic type-rule uses universal quantification.

Note that the details about substitutions and capture noted here arise in any kind of
program that manipulates expressions with bound variables. That includes not only
automated theorem provers, but compilers. To avoid such issues, many systems
essentially rename all variables by using pointers or some similar system of each
variable referring to its binding-site.

When people speak of proofs written by computerll , they're talking about this style of
inference rule proofs.

144

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.4 Exercises for First-Order Logic
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Throughout these exercises,

is simply a shorthand for ¬ (a = b).

4.4.1 Relations and Interpretations
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.4.1
Consider the binary relation is − a − factor − of on the domain {1, 2, 3,
4, 5, 6}.

1. List all the ordered pairs in the relation.
2. Display the relation as a directed graph.
3. Display the relation in tabular form.
4. Is the relation reflexive? symmetric? transitive?

Exercise 4.4.2
How would you define addsTo as a ternary relation?

1. Give a prose defnition of addsTo (x, y, z) in terms of the addition
function.

2. List the set of triples in the relation on the domain {1, 2, 3, 4}.

Exercise 4.4.3
Generalize the previous problem (Exercise 4.4.2) to describe how you
can represent any k-ary function as a (k + 1)-ary relation.

145

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 4.4.4
Are each of the following formulas valid, i.e., true for all
interpretations? (Remember that the relation names are just names
in the formula; don't assume the name has to have any bearing on
their interpretation.)

• For arbitrary a and b in the domain, atLeastAsWiseAs (a, b) ∨
atLeastAsWiseAs (b, a)

• For arbitrary a in the domain, prime (a) ⇒ (odd(a)⇒ prime (a))
• For arbitrary a and b in the domain, betterThan (a, b)
⇒¬betterThan (b, a)

For each, if it is true or false under all interpretations, prove that. For
these small examples, a truth table will probably be easier than using
Boolean algebra or inference rules. Otherwise, give an interpretation
in which it is true, and one in which it is false.

Note: As always, look at trivial and small test cases first. Here, try
domains with zero, one, or two elements, and small relations.

Exercise 4.4.5
Suppose we wanted to represent the count of neighboring pirates
with a binary relation, such that when location A has two neighboring
pirates, piratesNextTo (A, 2) will be true. Of course, piratesNextTo
(A, 1) would not be true in this situation. These would be analogous
with the propositional WaterWorld propositions A − has − 2 and A −
has − 1, respectively.

1. If we only allow binary relations to be subsets of a domain crossed
with itself, then what must the domain be for this new relation
piratesNextTo?

2. If we further introduced another relation, isNumber?, what is a
formula that would help distinguish intended interpretations from
unintended interpretations? That is, give a formula that is true
under all our intended interpretations of piratesNextTo but is not
true for some "nonsense" interpretations we want to exclude.
(This will be a formula without an analog in the WaterWorld
domain axioms (Propositional axioms for WaterWorld (Page 171)).)

146

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 4.4.6
Determine whether the relation R on the set of all people is reflexive,
antireflexive, symmetric, antisymmetric, andjor transitive, where (a,
b)∈∈ R if and only if ...

1. a is older than b.
2. a is at least as old as b.
3. a and b are exactly the same age.
4. a and b have a common grandparent.
5. a and b have a common grandchild.

Exercise 4.4.7
For each of the following, if the statement is true, explain why, and if
the statement is false, give a counter-example relation.

1. If R is reflexive, then R is symmetric.
2. If R is reflexive, then R is antisymmetric.
3. If R is reflexive, then R is not symmetric.
4. If R is reflexive, then R is not antisymmetric.
5. If R is symmetric, then R is reflexive.
6. If R is symmetric, then R is antireflexive.
7. If R is symmetric, then R is not antireflexive.

4.4.2 Quantifiers
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.4.8
Let P (x) be the statement "has been to Prague", where the domain
consists of your classmates.

1. Express each of these quantifcations in English.
◦ ∃x :(P (x))
◦ ∀x :(P (x))
◦ ¬∃x :(P (x))
◦ ¬∀x :(P (x))
◦ ∃x :(¬P (x))
◦ ∀x :(¬P (x))
◦ ¬∃x :(¬P (x))
◦ ¬∀x :(¬P (x))

2. Which of these mean the same thing?

147

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 4.4.9
Let C (x) be the statement "x has a cat", let D (x) be the statement "x
has a dog", and let F (x) be the statement "x has a ferret". Express
each of these statements in first-order logic using these relations.
Let the domain be your classmates.

1. A classmate has a cat, a dog, and a ferret.
2. All your classmates have a cat, a dog, or a ferret.
3. At least one of your classmates has a cat and a ferret, but not a

dog.
4. None of your classmates has a cat, a dog, and a ferret.
5. For each of the three animals, there is a classmate of yours that

has one.

Exercise 4.4.10
Determine the truth value of each of these statements if the domain
is all real numbers. Where appropriate, give a witness.

1.
2.
3.
4.

4.4.3 Interpreting First-order Formulas
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.4.11
Let P (x), Q (x), R (x), and S (x) be the statements "x is a duck", "x is
one of my poultry", "x is an officer", and "x is willing to waltz",
respectively. Express each of these statements using quantifiers,
logical connectives, and the relations P (x), Q (x), R (x), and S (x).

1. No ducks are willing to waltz.
2. No ofcers ever decline to waltz.
3. All my poultry are ducks.
4. My poultry are not ofcers.
5. Does the fourth item follow from the first three taken together?

Argue informally; you don't need to use the algebra or inference
rules for first-order logic here.

148

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 4.4.12
You come home one evening to find your roommate exuberant
because they have managed to prove that there is an even prime
number bigger than two. More precisely, they have a correct proof of
∃y :(P (y) ∧ (y> 2) ⇒ E (y)), for the domain of natural numbers, with P
interpreted as "is prime?" and E interpreted as "is even?". While
they are celebrating their imminent fame at this amazing
mathematical discovery, you ponder...

1. ...and realize the formula is indeed true for that interpretation.
Briefy explain why. You don't need to give a formal proof using
Boolean algebra or inference rules; just give a particular value for y
and explain why it satisfes the body of " ∃y :(y) ".

2. Is the formula still true when restricted to the domain of natural
numbers two or less? Briefy explain why or why not.

3. Is the formula still true when restricted to the empty domain?
Briefy explain why or why not.

4. Give a formula that correctly captures the notion " there is an even
prime number bigger than 2 ".

Exercise 4.4.13
For the sentence ∀x :(∀y :(A (x)∧ B (x, y)⇒ A (y))) state whether it is
true or false, relative to the following interpretations. If false, give
values for x and y witnessing that.

1. The domain of the natural numbers, where A is interpreted as
"even?", and B is interpreted as "equals"

2. The domain of the natural numbers, where A is interpreted as
"even?", and B is interpreted as "is an integer divisor of"

3. The domain of the natural numbers, where A is interpreted as
"even?", and B is interpreted as "is an integer multiple of"

4. The domain of the Booleans, {true, false}, where A is interpreted
as "false?", and B is inter preted as "equals"

5. The domain of WaterWorld locations in the particular board where
locations Y and Z contain pirates, but all other locations are safe,
the relation symbol A is interpreted as "unsafe?", and B is
interpreted as "neighbors"

6. All WaterWorld boards, where A is interpreted as "safe?” and B is
interpreted as "neighbors". (That is, is the formula valid for
WaterWorld?)

149

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 4.4.14
Translate the following conversational English statements into first-
order logic, using the suggested predicates, or inventing
appropriately-named ones if none provided. (You may also freely use
= which we'll choose to always interpret as the standard equality
relation.)

1. "All books rare and used". This is claimed by a local bookstore;
what is the intended domain? Do you believe they mean to claim
"all books rare or used"?

2. " Everybody who knows that UFOs have kidnapped people knows
that Agent Mulder has been kidnapped. " (Is this true, presuming
that no UFOs have actually visited Earth...yet?)

Exercise 4.4.15
Write a formula for each of the following. Use the two binary
relations isFor and isAgainst and domain of all people.

• "All for one, and one for alll" We'll take "one" to mean "one
particular person", and moreover, that both "one"s are referring
the same particular person, resulting in "There is one whom

everybody is for, and that one person is for everybody." 13

• "If you're not for us, you're against us." In aphorisms, "you" is
meant to be an arbitrary person; consider using the word "one"
instead. Furthermore, we'll interpret "us" as applying to
everybody. That is, " One always believes that 'if one is not for me,
then one is against me' ".

• "The enemy of your enemy is your friend." By "your enemy" we
mean "somebody you are against", and similarly, "your friend"
will mean "somebody you are for". (Be carefulel This may be
different than "somebody who is againstjfor you").

• "Somebody has an enemy." (We don't know of an aphorism

expressing this. 14)
• Two interpretations are considered fundamentally the same (or

isomorphic) if you can map one interpretation to the other simply
by a consistent renaming of domain elements.

Exercise 4.4.16
Find two fundamentally different interpretations that satisfy the
statement "There exists one person who is liked by two people".

150

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 4.4.17
For the four "Musketeer" formulas from a previous exercise (Exercise
4.4.15), find three fundamentally different interpretations of isFor
which satisfy all the formulas on a domain of three people.

Depict each of these interpretations as a graph. Draw three circles
(nodes) representing the three people, and an arrow (edge) from a
person to each person they like. (You can glance at Rosen Section 9.1,
Figure 8 for an example.)

Note: One of the interpretations is unintuitive in that isFor and
isAgainst don't correspond to what we probably mean in English.

Exercise 4.4.18
Translate the following statements into first-order logic. The domain
is the set of natural numbers, and the binary relationkth (k, n)
indicates whether or not the kth number of the sequence is n. For
example, the sequence (5, 7, 5), is represented by the relation kth =
{(0, 5) , (1, 7) , (2, 5)}. You can also use the binary relations =, <, and ≤,
but no others.

You may assume that kth models a sequence. No index k is occurs
multiple times, thus excluding kth = {(0, 5) , (1, 7) , (0, 9)}. Thus, kth
is a function, as in a previous example representing an array as a
function (Example 4.8). Also, no higher index k occurs without all
lower-numbered indices being present, thus excludingkth = {(0, 5) ,
(1, 7) , (3, 9)}.

1. The sequence is fnite.
2. The sequence contains at least three distinct numbers , e.g., (5, 6,

5, 6, 7, 8), but not (5, 6, 5, 6).
3. The sequence is sorted in non-decreasing order, e.g., (3, 5, 5, 6, 8,

10, 10, 12).
4. The sequence is sorted in non-decreasing order, except for exactly

one out-of-order element, e.g., (20, 30, 4, 50, 60).

151

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Exercise 4.4.19
Some binary relations can be viewed as the encoding of a unary
function, where the first element of the ordered pair represents the
function's value. For instance, in a previous exercise (Exercise 4.4.2)
we encoded the binary function addition as a ternary relation addsTo.

1. Give one example of a binary relation which does not correspond
to the encoding of a function.

2. Write a first-order formula describing the properties that a binary
relation R must have to correspond to a unary function.

Exercise 4.4.20
Alternation of quantifiers: Determine the truth of each of the
following sentences in each of the indicated domains.

Note: To help yourself, you might want to develop an English version
of what the logic sentences say. Start with the inner formula (talking
about people x,y,z), then add the quantifer for z to get a statement
about people x,y, and repeat for the other two quantifiers.

Four sentences:

1.
2.
3.
4.

Four domains:

1. The empty domain.
2. A world with one person, who likes herself.
3. A world with Yorick and Zelda, where Yorick likes Zelda, Zelda

likes herself, and that's all.
4. A world with many people, including CJ (Catherine Zeta-Jones), JC

(John Cusack), and JR (Julia Roberts). Everybody likes themselves;
everybody likes JC; everybody likes CJ except JR; everybody likes JR
except CJ and IB. Any others may or may not like each other, as
you choose, subject to the preceding. (You may wish to sketch a
graph of this likes relation, similar to Rosen Section 9.1 Figure 8.)

Determine the truth of all sixteen combinations of the four
statements and four domains.

152

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

4.4.4 Modeling
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.4.21
Translate the following into first-order logic: " Raspberry sherbet
with hot fudge (rshf) is the tastiest dessert. " Use tastier as your only
relation. What is the intended domain for your formula? What is a
relation which makes this statement true? One which makes it false?

Exercise 4.4.22
Even allowing for ellision, the list of WaterWorld domain axioms
(Section 6.6) is incomplete, in a sense. The game reports how many
pirates exist in total, but that global information is not refected in
the propositions or axioms. We had the same problem (Exercise
2.5.13) with the propositional logic domain axioms

1. First, assume we only use the default WaterWorld board size and
number of pirates, i.e., fve. What additional axiom or axioms do
we need?

2. Next, generalize your answer to model the program's ability to
play the game with a different number of pirates. What problem
do you encounter?

153

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 4.4.23
The puzzle game of Sudoku is played on a 9 × 9 grid, where each
square holds a number between 1 and 9. The positions of the numbers
must obey constraints. Each row and each column has each of the 9
numbers. Each of the 9 non-overlapping 3 ×3 square sub-grids has
each of the 9 numbers.

Like WaterWorld, throughout the game, some of the values have not
been discovered, although they are determined. You start with some
numbers revealed, enough to guarantee that the rest of the board is
uniquely determined by the constraints. Thus, like in WaterWorld,
when deducing the value of another location, what has been revealed
so far would serve as premises in a proof.

Fortunately, there are the same number of rows, columns, subgrids,
and values. So, our domain is {1, 2, 3, 4, 5, 6, 7, 8, 9}. To model the
game, we will use the following relations:

• value(r, c, v)indicates that at row r, column c is the value v.
• v = w is the standard equality relation.
• subgrid(g, r, c)indicates that subgrid g includes the location at row

r, column c.

Provide domain axioms for Sudoku, and briefy explain them. These
will model the row, column, and subgrid constraints. In addition, you
should include constraints on our above relations, such as that each
location holds one value.

4.4.5 Reasoning with Equivalences
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.4.24
Some of the first-order equivalences (First-order equivalences (Page
168)) are redundant. For each of the following, prove the equivalence
using the other equivalences.

1.
2. Assuming a non-empty domain,

154

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 4.4.25
We can characterize a prime number as a number n satisflying

. Using the equivalences for first-order logic, show step-by-step that
this is equivalent to the formula

. Do not use any arithmetic equivalences.

Exercise 4.4.26
A student claims that

by the "distribution of quantifiers". This is actually trying to do two
steps at once. Rewrite this as the two separate intended steps,
determine which is wrong, and describe why that step is wrong.

Exercise 4.4.27
Simplify the formula

, so that the body of each quantifier contains only a single atomic
formula (Definition : "Well-Formed Formula (WFF) for first-order
logic") involving that quantified variable. Provide reasoning for each
step of your simplification.

4.4.6 Reasoning with Inference Rules
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.4.28
Prove that syllogisms are valid inferences. In other words, show that
∀x :

155

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Exercise 4.4.29
What is wrong with the following "proof" of ∃x :(E (x)) ⇒ E (c)?

1
subproof:

1.a Premise for subproof

1.b E (c) ∃Elim, line 1.a

2 ⇒Intro, line 1

Exercise 4.4.30
Using the inference rules, formally prove the last part of the previous
problem about ducks and such (Exercise 4.4.11).

Exercise 4.4.31
Give an inference rule proof of ∀x : (Fruit (x) ⇒ hasMethod (tast y,x))
, ∀y : (Apple (y) ⇒ Fruit (y))

∀z : (Apple (z) ⇒ hasMethod (tast y,z)).

Exercise 4.4.32
1. Prove the following:∃∃x :(P (x)) ,∀∀y :(P (y)⇒⇒ Q (y))

∃∃z :(Q (z))
2. Your proof above used ∃Intro. Why can't we replace that step with

the formula ∀z :(Q (z)) with the justification "∀Intro"?
3. Describe an interpretation which satisfies the proof's premises,

but does not satisfy ∀z : (Q (z)).

4.4.7 Solutions to Exercises in Chapter .
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 4.1.1.1

The cue "Somebody ..." suggests one person who exists; we'll call them p for
"popular": ∃p :(...). Now we need to fill in the dots with "everybody likes p", to get: ∃p
:(∀x : (likes (x, p))).

Solution to Exercise 4.1.1.2

156

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The cue "Everybody ..." suggests a universal; we'll call them j for "J. Doe": ∀j :(...). Now
we need to fill in the dots with "somebody likes j", to get: ∀j :(∃x : (likes (x, j))). Note
that this formula is just like the preceding "Somebody likes everybody" example
(Example 4.3), except that the quantifiers have been swapped (and different variable
names were used, a superficial difference).

Solution to Exercise 4.1.1.3

"Evenness" is a straightforward translation from " An integer n is even, if it is twice
some other integer k ": even (n) ≡∃k :(n =2k). Note that by this standard definition,
zero is even.

There are many equivalent ways to define primality, just as there many algorithms for
checking primality. One straightforward solution is noncomposite (n) ≡∀j :(∀k : ((jk =
n) ⇒ (j = 1) ∨ (k = 1))). Well, this is almost expresses "prime", except that n =1 satisfes
this formula. A mathematician points out that just as 0 is neither positive nor negative,
1 is neither prime nor composite; as stated this formula actually captures
"noncomposite", oops. There are several ways to upgrade this to exactly capture
"prime".

ASIDE: 1 is called a "unit". If we consider the domain of all integers (not just natural
numbers), the idea of primality still makes sense; -17 is also prime; and -1 is also
another unit. Similarly, considering the domain of "complex integers" {a, b, a + bi | a∈
Z∧ b∈ Z} (could be written " Z+ Zi "), then i and −i are also units. How might we
generalize our defnition of prime, to work in these further interpretations?

A similar, equivalent formula to the above is noncomposite(n)

Solution to Exercise 4.1.1.4

Solution to Exercise 4.1.1.5

We need a new relation that combines the syntax of < and size. The result would look
like less − than − size (i, a). This assumes the new relation has the obvious intended
defnition.

Solution to Exercise 4.1.1.6

Solution to Exercise 4.1.1.7

There are various solutions, but they all must capture the same idea: there exists
exactly one unsafe neighbor. This solution states that in two parts:

• There exists an unsafe neighbor, u.
• Every unsafe neighbor is u.

Together, these two parts imply there is only one such u.

Solution to Exercise 4.2.1.1

157

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

1

2 Defnition of ⇒

3 Distribution of ∀ over ∨

4 Complementation of ∃

5 Defnition of ⇒

Solution to Exercise 4.3.1.1

In line 4, ∀Intro requires that variable being generalized, q, be arbitrary. It was
introduced in line 2 by ∀Elim, so that's OK. (E.g., we could've used ∀Intro on line 3 to
reintroduce the quantifer just eliminated.) But, q was free when we used ∃Elim on
line 3, and this makes the variable no longer arbitrary. Line 3's choice of p may depend
on q, and a variable is only arbitrary if it is free of any such constraints.

Solution to Exercise 4.4.5

1. The relation needs to accept locations as well as numbers, so the domain is L ∪
N, where L is the set of WaterWorld locations. Alternatively, you could use {0, 1, 2,
3} instead of N, the set of all natural numbers.

2. The difficulty is that it's possible to ask about nonsensical combinations like
piratesNextTo (17, 2) and piratesNextTo (W, B). Adding isNumber?, any
interpretation would be expected to satisfy, for arbitrary a and b, piratesNextTo
(a, b)⇒ isNumber? (b) ∧¬isNumber? (a, b).

ASIDE: More interestingly though, imagine we did interpret piratesNextTo over the
domain N only. We could then pretend that the locations, instead of being named
A,...,Z, were just numbered 1,...,24. While this representation doesn't refect how we
model the problem, it is legal. Exercise for the reader: Write a formula which excludes
relation piratesNextTo which can't match this convention!

Solution to Exercise 4.4.16

One interpretation that satisfes this is a domain of three people Alice, Bob, Charlie,
with the likes relation: {(Alice, Bob) , (Bob, Bob)}. Bob is liked by two people, so it
satisfies the statement.

Here's another interpretation that is the same except for renaming, and thus not
fundamentally different: a domain of three people Alyssa, Bobby, Chuck, with the
likes relation: {(Chuck, Alyssa) , (Alyssa, Alyssa)}. With the substitutions
[Chuck→Alice] and [Alyssa→Bob], we see that the underlying structure is the same
as before.

Here's an interpretation that is fundamentally different: a domain of three people
Alice, Bob, Charlie, with the likes relation: {(Charlie, Bob) , (Alice, Bob)}. No matter

158

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

how you rename, you don't get somebody liking themself, so you can see its
underlying structure is truly different than the preceding interpretations.

English is fuzzy enough that it is unclear whether "one" and "two" are meant as exact
counts. The above two examples each assumed they are.

ASIDE: If we change the statement slightly to add a comma: " There exists one person,
who is liked by two people ", we arguably change the meaning signifcantly. The now-
independent first clause arguably means there is only one person existent in total, so
the overall statement must be falsel There's a quick lesson in the diference between
English dependent and independent clauses.

Solution to Exercise 4.4.28

1 Premise

2 Premise

3 ∀Elim, line 1

4 ⇒Elim, lines 2,3

159

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

Chapter 5 Conclusion,
Acknowledgements

5.1 Logic: Looking Back

5.1.1 Why didn't we begin with quantifiers all along?
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We saw three stages of logics:

• Propositional logic, with formulas like DickLikesJane⇒¬JaneLikesDick. While
the propositions are named suggestively, nothing in the logic enforces a relation
among these; it is equivalent to A⇒¬B.

• Predicate logic, where variables (and constants) can express a connection
between different parts of the formula: likes (y, x)⇒⇒¬likes (x, y) Predicate logic
introduced the idea of variables, and required domains and interpretations to
determine truth. But it can't bind variables, and thus requires an interpretation of
x and y to evaluate.

• First-order logic, which included two quantifiers to bind variables: ∀y : (∃x : (likes
(y, x)⇒¬likes (x, y)))

So why, you might ask, didn't we just start out with first-order logic in the first lecture?
One reason, clearly, is to introduce concepts one at a time: everything you needed to
know about one level was needed in the next, and then some. But there's more: by
restricting our formalisms, we can't express all the concepts of the bigger formalism,
but we can have automated ways of checking statements or finding proofs.

In general, this is a common theme in the theory of any subject: determining when
and where you can (or, need to) trade of expressibility for predictive value. For
example, ...

• Linguistics: Having a set of precise rules for (say) Tagalog grammar allows you to
determine what is and isn't a valid sentence; details of the formal grammar can
reveal relations to other languages which aren't otherwise so apparent. On the
other hand, a grammar for any natural language is unlikely to exactly capture all
things which native speakers say and understand. If working with a formal
grammar, one needs to know what is being lost and what is being gained.
◦ Dismissing a grammar as irrelevant because it doesn't entirely refect usage is

missing the point of the grammar;
◦ Conversely, condemning some real-life utterances as ungrammatical (and

ignoring them) forgets that the grammar is a model which captures many (if
not all) important properties.

Of course, any reasonable debate on this topic respects these two poles and is
actually about where the best trade-of between them lies.

160

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Psychology: Say, Piaget2 might propose four stages of learning in children. It may
not trade of total accuracy, for (say) clues of what to look for in brain
development.

• Physics: Modern pedagogy must trade of quantum accuracy for Newtonian
approximations. Researchers exploring felds like particle physics must trade of
exact simulations for statistical ("stochastic") approximations.

Understanding the theoretical foundations of a feld is often critical for knowing how to
apply various techniques in practice.

5.1.2 Logic and everyday reasoning
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We've looked at the impreciseness and ambiguity of natural language statements, but
these are not the only problems hidden in natural language arguments. The following
illustrates a common form of hidden assumption: saying "the tenth reindeer of Santa
Claus is ..." implies the existence some tenth reindeer. More subtly, humans use much
more information than what is spoken in a conversation. Even aside from body
language, consider a friend asking you "Hey, are you hungry?" While as a formal
statement this doesn't have any information, in real life it highly suggests that your
friend is hungry.

A much more blatant form of missing information is when the speaker simply chooses
to omit it. When arguing for a cause it is standard practice to simply describe its
advantages, without any of its disadvantages or alternatives.

ASIDE: Economists measure things not in cost, but opportunity cost, the price of
something minus the benefits of what you'd get using the price for something else.
E.g., for $117 million the university can build a new research center. But what else
could you do on campus with $117m?

Historically, logic and rhetoric, the art of persuasion through language, are closely
linked.

5.1.3 Other logics
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You've now been introduced to two logics: propositional and first-order. But, the story
does not have to end here. There are many other logics, each with their uses.

161

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.1.3.1 Limitations of first-order logic's expressiveness

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We can make first-order sentences to express concepts as " vertices a and b are
connected by a path of length 2 ", as well as "...by a path of length 3", "length ≤ 4 ",
etc.

Note: Write a couple of these sentences!

But trying to write " vertices a and b are connected [by a path of any length] " isn't
obvious ... in fact, it can be proven that no first-order sentence can express this
property! Nor can it express the closely-related property "the graph is connected"
(without reference to two named vertices a and b).

Hmm, what about second-order logic? It has a bigger name; whatever it means,
perhaps it can express more properties?

What exactly is second-order logic? In first-order logic, quantifiers range over
elements of the domain: " there exist numbers x and y, ... ". In second-order logic, you
can additionally quantify over sets of elements of the domain: " there is a set of
numbers, such that ... ".

Example 5.1
For instance, " for all vertices x and y, there exists a set of vertices
(call the set "Red"), the red vertices include a path from x to y ". More
precisely, " every Red vertex has exactly two Red neighbors, or it is x
or y (which each have exactly 1 red neighbor) ". Is this sentence true
exactly when the graph is connected? Why does this description of
"red vertices" not quite correspond to " just the vertices on a path
from x to y "?

An interesting phenomenon: There are some relations between how difficult it is to
write down a property, and how difficult to compute it! How might you try to formalize
the statement "there is a winning strategy for chess"?

A shortcoming of first-order logic is that it is impossible to express the concept
"path". (This can be proven, though we won't do so here.)

Thus, some other logics used to formalize certain systems include:

• As mentioned, second-order logic is like first-order logic, but it also allows
quantification over entire relations. Thus, you can make formulas that state
things like " For all relations R, if R is symmetric and transitive, then ... ". While less
common, we could continue with third-order, fourth-order, etc.

• Temporal logic is based on quantifcation over time. This is useful to describe
how a program's state changes over time. In particular, it is used for describing
concurrent program specifcations and communication protocols, sequences of

162

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

communications steps used in security or networking. See, for example,
TeachLogic's Model-Checking module3 .

• Linear logic is a "resource-aware" logic. Every premise must be used, but it may
be used only once. This models, for example, how keyboard input is usually
handled: reading an input also removes it from the input stream, so that it can't
be read again.

5.1.4 Logic in computer science
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Logics provide us with a formal language useful for

• specifying properties unambiguously,
• proving that programs and systems do (or don't) have the claimed properties,

and

• gaining greater insight into other languages such as database queries.4

Programming language type systems are a great example of these first two points.
The connectives allow us to talk about pairs and structures (x and y), unions (x or y),
and functions (if you give the program a x, it produces a y). The "generics" in Java, C++,
and C are based upon universal quantification, while "wildcards" in Java are based
upon existential quantification. One formalization of this strong link between logic and
types is called the Curry-Howard isomorphism.

Compilers have very specific logics built into them. In order to optimize your code,
analyses check what properties your code has e.g., are variables b and c needed at the
same time, or can they be stored in the same hardware register?

More generally, it would be great to be able to verify that our hardware and software
designs were correct. First, specifying what "correct" means requires providing the
appropriate logical formulas. With hardware, automated verification is now part of the
regular practice. However, it is so computationally expensive that it can only be done
on pieces of a design, but not, say, a whole microprocessor. With software, we also
frequently work with smaller pieces of code, proving individual functions or algorithms
correct. However, there are two big inter-related problems. Many of the properties
we'd like to prove about our software are "undecidable" −−− it is impossible to check
the property accurately for every input. Also, specifying full correctness typically
requires extensions to first-order logic, most of which are incomplete. As we've seen,
that means that we cannot prove everything we want. While proving hardware and
software correct has its limitations, logic provides us with tools that are still quite
useful. For an introduction to one approach used in verifcation, see TeachLogic's
Model-Checking module.

163

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.2 Acknowledgements
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The TeachLogic Project is the work of many contributors, and was made possible
through an NSF CISE grant. Major contributors and grant Principle Investigators are

• Moshe Vardi, Rice University
• Matthias Felleisen, Northeastern University
• Ian Barland, Rice University
• Phokion Kolaitis, University of California at Santa Cruz
• John Greiner, Rice University

In addition, Paul Steckler implemented the Base module's Waterworld game10.

Students who helped contribute to various TeachLogic modules include
(chronologically)

• Peggy Fidelman
• Justin Garcia
• Brian Cohen
• Sarah Trowbridge
• Bryan Cash
• Fuching "Jack" Chi
• Ben McMahan

TeachLogic has also been infuenced by the Beseme project , headed by Rex Page of
Oklahoma University; in particular the Base module owes both some overall structure
and specifc details to Beseme.

Janice Bordeaux, from the Engineering Dean's office at Rice University, assisted with
developing classroom assessment tools.

164

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 6 Appendices and Reference
Sheets

6.1 Propositional equivalences
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The following lists some propositional formula equivalences. Remember that we use
the symbol ≡ as a relation between two WFFs, not as a connective inside a WFF. In
these, φ, ψ, and θ are meta-variables standing for any WFF. 　

Double
Complementation

¬¬φ ≡ φ

Complement φ∨ ¬φ ≡ true φ∧ ¬φ ≡ false

Identity φ∨ false ≡ φ φ∧ true ≡ φ

Dominance φ∨ true ≡ true φ∧ false ≡ false

Idempotency φ∨ φ ≡ φ φ∧ φ ≡ φ

Absorption φ∧ (φ∨ ψ) ≡ φ φ∨ φ∧ ψ ≡ φ

Redundancy
φ∧ (¬φ∨ ψ) ≡ φ∧
ψ

φ∨ ¬φ∧ ψ ≡ φ∨ ψ

DeMorgan's Laws ¬ (φ∧ ψ) ≡ ¬φ∨ ¬ψ ¬ (φ∨ ψ) ≡ ¬φ∧ ¬ψ

Associativity
φ∧ (ψ∧ θ) ≡ (φ∧
ψ) ∧ θ

φ∨ (ψ∨ θ) ≡ (φ∨ ψ)
∨ θ

Commutativity φ∧ ψ ≡ ψ∧ φ φ∨ ψ ≡ ψ∨ φ

Distributivity
φ∧ (ψ∨ θ) ≡ φ∧ ψ

∨ φ∧ θ

φ∨ ψ∧ θ ≡ (φ∨ ψ)
∧ (φ∨ θ)

Table 6.1 Propositional Logic Equivalences

165

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Equivalences for implication are omitted above for brevity and for tradition. They can
be derived, using the definition a⇒ b ≡¬a∨ b.

Example 6.1
For example, using Identity and Commutativity, we have true⇒ b
≡¬true∨ b ≡ false∨ b ≡ b∨ false ≡ b.

6.2 Propositional inference rules
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Abbreviation Name
If you know
all of. . .

. . .then
you can
infer

∧Intro
and-
introduction

∧Elim
and-
elimination
(left)

and-
elimination
(right)

∨Intro
or-
introduction
(left)

or-
introduction
(right)

∨Elim
or-
elimination

Table 6.2 Our propositional inference rules

166

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Abbreviation Name
If you know
all of. . .

. . .then
you can
infer

⇒Intro
if-
introduction

φ ∧ ψ ∧ .
. . ∧ θ ⇒
ω

⇒Elim
if-elimination
(modus
ponens)

falseIntro
false-
introduction

falseElim
false-
elimination

reductio ad
absurdum (v.
1)

RAA

reductio ad
absurdum (v.
2)

¬Intro
negation-
introduction

¬Elim
negation-
elimination

case-
elimination
(left)

CaseElim

case-
elimination
(right)

Table 6.2 Our propositional inference rules

167

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

As usual, φ, ψ, θ, ω are meta-variables standing for any WFF.

This is by no means the only possible inference system for propositional logic.

ASIDE: This set of inference rules is based upon DiscTete Mathematics with a
ComputeT by Hall and O'Donnell (Springer, 2000) and The Beseme Project .

6.3 First-order equivalences
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The following equivalences are in addition to those of propositional logic (Propositiona
l equivalences (Page 165)). In these, φ and ψ each stand for any WFF, but θ stands for
any WFFwith no free occurrences of x .

Equivalence ∀∀ Variant ∃∃ Variant

Complementation of
Quantifiers

∀x : (¬φ) ≡
¬∃x : (φ)

∃x : (¬φ) ≡
¬∀x : (φ)

Interchanging Quantifiers
∀x : (∀y : (φ))
≡ ∀y : (∀x :
(φ))

∃x : (∃y : (φ))
≡ ∃y : (∃x :
(φ))

∀x : (φ∧ ψ) ≡
∀x : (φ) ∧ ∀x
: (ψ)

∃x : (φ∨ ψ) ≡
∃x : (φ) ∨ ∃x
: (ψ)

∀x : (φ∨ θ) ≡
∀x : (φ) ∨ θ

∃x : (φ∧ θ) ≡
∃x : (φ) ∧ θ

∀x : (φ⇒ θ) ≡
∃x : (φ) ⇒ θ

Distribution of Quantifiers

∀x : (θ⇒ φ) ≡
θ⇒ ∀x : (φ)

∀x : (φ∧ θ) ≡
∀x : (φ) ∧ θ

∃x : (φ∨ θ) ≡
∃x : (φ) ∨ θ

Distribution of Quantifiers −
− − with non-empty domain

∃x : (φ⇒ θ) ≡
∀x : (φ) ⇒ θ

Table 6.3 First-order Logic Equivalences

168

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Equivalence ∀∀ Variant ∃∃ Variant

∃x : (θ⇒ φ) ≡
θ⇒ ∃x : (φ)

Renaming
∀x : (φ) ≡ ∀y :
(φ [x → y])

∃x : (φ) ≡ ∃y :
(φ [x → y])

Simplification of
Quantifiers − − − with non-
empty domain

∀x : (θ) ≡ θ ∃x : (θ) ≡ θ

Simplification of
Quantifiers − − − with empty
domain

∀x : (φ) ≡ true ∃x : (φ) ≡ false

Table 6.3 First-order Logic Equivalences

When citing Distribution of Quantifiers, say what you're distributing over what: e.g., "
distribute ∀ over ∨ (with θ being x-free) ".

In renaming, the notation φ [x → y] means " φ with each free occurrence of x replaced
by y ". It is a meta-formula; when writing any particular formula you don't write any
brackets, and instead just do the replacement.

This set of equivalences isn't actually quite complete. For instance,

is equivalent to true, but we can't show it using only the rules above. It does become

complete5 if we add some analogs of the First-order inference rule (Page 169),
replacing

with ⇒ (and carrying along their baggage of "arbitrary" and "free-to-substitute-in").

6.4 First-order inference rule
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The following are in addition to those of Propositional inference rules (Page 166).

169

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Abbreviation Name
If you know all
of. . .

. . .then
you can
infer

φ

∀Intro
∀-
introduction y arbitrary (p.

99).

∀x.φ[y→x]

∀x.φ

t is any term
that is free to
be replaced in
φ.

∀Elim
∀-
elimination

Domain non-
empty.

φ[x→t]

φ

t is any term in
φ that is free to
be replaced.

∃Intro
∃-
introduction

Domain non-
empty.

∃x.φ[t→x]
, where t is
arbitrary

∃x.φ

c is a new
constant in the
proof.∃Elim

∃-
elimination

c does not occur
in the proof's
conclusion.

φ[x→c]

Table 6.4 Our first-order inference rules

As usual, we use φ as a meta-variable to range over first-order WFFs. Similarly, t is a
meta-variable for first-order terms, and c is a meta-variable for domain constants. The

170

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

notation φ[v→w] means the formula φ but with every appropriate (Note, p. 99)
occurrence of v replaced by w.

As discussed in the lecture notes,a variable is arbitrary unless:

• A variable is not arbitrary if it is free in (an enclosing) premise.
• A variable is not arbitrary if it is free after applying ∃Elim either as the introduced

witness c, or free anywhere else in the formula.

The usual way to introduce arbitrary variables is during ∀Elim (wjo later using it in
∃Elim).

As a detail in ∀Elim and ∃Intro, the term t must be free to replace the variable x in
φ. This means that it is not the case that both t contains a variable quantifed in φ, and
that x occurs free within that quantifer. In short, the bound variable names should be
kept distinct from the free variable names. Also, only free occurrences x get replaced.
The restriction in ∃Elim on c being new is similar.

6.5 Propositional axioms for WaterWorld
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We summarize the details of how we choose to model WaterWorld boards in
propositional logic: exactly what propositions we make up, and the formal domain
axioms which capture the game's rules.

The board is fxed at 6×4, named A,...,Z (with I and O omitted).

171

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 6.1 A Sample WaterWorld board

6.5.1 Propositions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are a myriad of propositions for WaterWorld, which can be grouped:

• Whether or not a location contains a pirate: A − unsafe, B − unsafe, ..., Z −
unsafe.

• Whether or not a location contains no pirate: A − safe, B − safe, ..., Z − safe.

172

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

ASIDE: Yes, using the intended interpretation, these are redundant with the previous
ones. Some domain axioms below will formalize this.

• Propositions indicating the number of neighboring pirates, to a location: A − has
− 0, A − has − 1, A − has − 2, B − has − 0, B − has − 1, B − has − 2, ..., H − has − 0,
H − has − 1, H − has − 2, H − has − 3, ..., Z − has − 0, Z − has − 1. These are all
truejfalse propositions; there are no explicit numbers in the logic. A domain
axiom below will assert that whenever (say) B − has − 1 is true, then B − has − 0
and B − has − 2 are both false.

ASIDE: There is no proposition A − has − 3 since location A has only two neighbors.
Similarly, there is no proposition B − has − 3. We could have chosen to include those,
but under the intended interpretation they'd always be false.

These propositions describe the state of the underlying board -the model -and
not our particular view of it. Our particular view will be reflected in which formulas
we'll accept as premises. So we'll accept A − has − 2 as a premise only when A has
been exposed and shows a 2.

6.5.2 The domain axioms
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Axioms asserting that the neighbor counts are correct:

• Count of 0:
◦ "A0": A − has − 0⇒⇒ B − safe∧∧ G − safe
◦ ...
◦ "H0": H − has − 0⇒⇒ G − safe∧∧ J − safe∧∧ P − safe
◦ ...
◦ "Z0": Z − has − 0⇒⇒ Y − safe

• Count of 1:
◦ "A1": A − has − 1⇒⇒ B − safe∧∧ G − unsafe∨∨ B − unsafe∧∧ G − safe
◦ ...
◦ "H1": H − has − 1⇒⇒ G − safe∧∧ J − safe∧∧ P − unsafe∨∨ G − safe∧∧ J −

unsafe∧∧ P − safe∨∨
◦ G − unsafe∧∧ J − safe∧∧ P − safe
◦ ...
◦ "Z1": Z − has − 1 ⇒ Y − unsafe

• Count of 2:
◦ "A2": A − has − 2 ⇒ B − unsafe ∧ G − unsafe
◦ ...
◦ "H2": H − has − 2⇒⇒ G − safe∧∧ J − unsafe∧∧ P − unsafe∨∨ G − unsafe∧∧ J −

safe∧∧ P − unsafe∨∨
◦ G − unsafe∧∧ J − unsafe∧∧ P − safe
◦ ...

There aren't any such axioms for locations with only one neighbor.

173

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Count of 3:
◦ "H3": H − has − 3⇒⇒ G − unsafe∧∧ J − unsafe∧∧ P − unsafe
◦ ...

There aren't any such axioms for locations with only one or two neighbors.

Axioms asserting that the propositions for counting neighbors are consistent:

• A − has − 0∨∨ A − has − 1
• A − has − 0⇒⇒¬A − has − 1
• A − has − 1⇒⇒¬A − has − 0
• B − has − 0∨∨ B − has − 1∨∨ B − has − 2
• B − has − 0⇒⇒¬B − has − 1∧∧¬B − has − 2
• B − has − 1⇒⇒¬B − has − 0∧∧¬B − has − 2
• B − has − 2⇒⇒¬B − has − 0∧∧¬B − has − 1
• ...
• H − has − 0∨∨ H − has − 1∨∨ H − has − 2∨∨ H − has − 3
• H − has − 0⇒⇒¬H − has − 1∧∧¬H − has − 2∧∧¬H − has − 3
• H − has − 1⇒⇒¬H − has − 0∧∧¬H − has − 2∧∧¬H − has − 3
• H − has − 2⇒⇒¬H − has − 0∧∧¬H − has − 1∧∧¬H − has − 3
• H − has − 3⇒⇒¬H − has − 0∧∧¬H − has − 1∧∧¬H − has − 2
• ...

Axioms asserting that the safety propositions are consistent:

• A − safe⇒⇒¬A − unsafe,
• ¬A − safe⇒⇒ A − unsafe,
• ...
• Z − safe⇒⇒¬Z − unsafe,
• ¬Z − safe⇒⇒ Z − unsafe.

This set of axioms is not quite complete, as explored in an exercise (Exercise 2.5.13).

As mentioned, it is redundant to have both A − safe and A − unsafe as propositions.
Furthermore, having both allows us to express inconsistent states (ones that would
contradict the safety axioms). If implementing this in a program, you might use both
as variables, but have a safety-check function to make sure that a given board
representation is consistent. Even better, you could implement WaterWorld so that
these propositions wouldn't be variables, but instead be calls to a lookup (accessor)
functions. These would examine the same internal state, to eliminate the chance of
inconsistent data.

Using only truejfalse propositions; without recourse to numbers makes these domain
axioms unwieldy. Later, we'll see how Relations (Page 105) and Syntax and semantics
of quantifiers (Page 123) help us model the game of Water-World more concisely.

174

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

6.6 First-order axioms for WaterWorld
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We summarize the details of how we choose to model WaterWorld boards in first-
order logic: exactly what relations we make up, and the formal domain axioms which
capture the game's rules.

This will follow almost exactly the same pattern as our WaterWorld model in Propositi
onal axioms for WaterWorld (Page 171). However, we will take advantage of the
additional flexibility provided by first-order logic.

Rather than modeling only the default 6×4 WaterWorld board;, we will be able to
model any board representable by our relations. This will allow boards of any size and
configuration, with one major constraint each location can have at most three
neighboring pirates.

6.6.1 Domain and Relations
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Our domain is simply the set of all board locations. This set can be arbitrarily large
even infinite!

The board configuration is given by the binary "neighbor" relation nhbr.

The next relations correspond directly to the Propositions (Page 172) in the
propositional logic model.

• Whether or not a location contains a pirate: safe. This is a unary relation.
• ASIDE: We choose not to include a redundant relation unsafe.
• Unary relations indicating the number of neighboring pirates: has0, has1, has2,

and has3.

ASIDE: Thus, we have our restriction to three unsafe neighbors. This will also be
reflected in our domain axioms below. See also this problem (Exercise 3.5.1) for a
discussion of how to avoid this restriction.

In addition, to have encode the domain axioms for an arbitrary domain, we also need
an equality relation over our domain of locations. As is traditional, we will use infix
notation for this relation, for example, x = y. Furthermore, we will allow ourselves to
write x = y as shorthand for ¬ (x = y). Thus, we do not need a distinct inequality
relation.

Note that these relations describe the state of the underlying board the model and
not our particular view of it. Our particular view will be reflected in which formulas
we'll accept as premises. So we'll accept has2 (A) as a premise only when A has been
exposed and shows a 2.

175

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.6.2 The domain axioms
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many of our axioms correspond directly, albeit much more succinctly, with those
(Section 6.5.2: The domain axioms (Page 173)) of the propositional model. In addition,
we have axioms that specify that our neighbor and equality relations are self-
consistent.

Axioms asserting that the neighbor relation is anti-reflexive and symmetric:

• ∀x :(¬nhbr (x, x))
• ∀x :(∀y : (nhbr (x, y) ⇒ nhbr (y, x)))

Axioms asserting that "=" truly is an equality relation, i.e., it is reflexive, symmetric, and
transitive.

• ∀x :(x = x)
• ∀x :(∀y : ((x = y) ⇒ (y = x)))
• ∀x :(∀y :(∀z : ((x = y) ∧ (y = z) ⇒ (x = z))))

Axioms asserting that the neighbor counts are correct. Each of these is of the form "if
location x has n neighboring pirates, then there are n distinct unsafe neighbors of x,
and any other distinct neighbor x is safe." We use the equality relation to specify the
distinctness of each neighbor.

•

•

•

•

In addition, we want the implications to go the opposite way. Otherwise, each of has0,
has1, has2, and has3 could always be false, while still satisfying the above! For brevity,
we elide the details in the following list:

• ∀x :(∀y : (nhbr (x, y) ⇒ safe (y)) ⇒ has0 (x))
• ∀x :(... ⇒ has1 (x))
• ∀x :(... ⇒ has2 (x))
• ∀x :(... ⇒ has3 (x))

Axioms asserting that the neighbor counts are consistent. While redundant, including
axioms like the following can be convenient.

• ∀x : (has0 (x)⇒⇒¬ (has1 (x)∨ has2 (x)∨ has3 (x)))
• ∀x : (has1 (x)⇒⇒¬ (has0 (x)∨ has2 (x)∨ has3 (x)))

176

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• ∀x : (has2 (x)⇒⇒¬ (has0 (x)∨ has1 (x)∨ has3 (x)))
• ∀x : (has3 (x)⇒⇒¬ (has0 (x)∨ has1 (x)∨ has2 (x)))

Note that this set of axioms is not quite complete, as explored in an exercise (Exercise
4.4.22).

6.7 Browser supports
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Caution: The information in this module is outdated. Please see my coursel0

for a table of contents.

Note: This page meant to be viewed with a MathML-enabled browser. If you
see (∀x. (P(x) → (∃y. (P(y) ∨ φ)))) as a nice version of (forall x . (P(x) -> (exists
y . (P(y) v phi)))) you're doing okay; If you further see

as a nice version of (scriptA I-scriptB) you're setl If not, see our description of
browser support (Section 6.7) .

At Rice on the CSNet, use mozilla. Preferably, use version 1.1, as currently available on
Solaris 8 machines. On frosty.cs, version 1.1 is the default. On other Solaris 8
machines, version 1.1 is not yet the default, but available via
Iopt1Imozilla-1.1Isunos5IbinImozilla.

In general, to view TeachLogic web pages, you'll need a browser that supports the
following features:

• Cascading Style Sheets (CSS)11 Most recent browsers support CSS sufciently well.

• MathMLl2 Some browsers support MathML sufciently well. However, most (all?)
do not fully support Unicode Plane 1 numerical entity references, which includes
most mathematical alphanumeric characters.

• Math-oriented fontsl3

Which browsers support these features? The above links provide more details, but
here's a summary of some browsers.

• Mozilla14 and Netscape15 (version 7.0) Both work, except some characters
(Unicode Plane 1) don't appear correctly.

• Internet Explorerl6 is not yet an option, even with the MathPlayer plug-inl7 to view
MathML. IE won't display pages with some characters (Unicode Plane 1).

Alternatively, PDF versions of the web pages are also provided via the Base module's
index .

177

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Glossary
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

C completeness

If something really is true, the system is capable of proving it.

connective

1. The syntactic operator combining one or more logical expressions into a larger
expression.

1. Example: Two operators are ∧ and ∨.

2. A function with one or more Boolean inputs and a Boolean result. I.e., the
meaning of a syntactic operator.

1. Example: The meaning of ∧ and ∨, e.g., as described by their truth tables.
2. Example: nand (mnemonic: "not and"), written ↑, takes in two Boolean

values a and b, and returns true exactly when a∧∧ b is not true that is, a ↑ b
≡¬ (a∧∧ b).

I Interpretation

The interpretation of a formula is a domain, together with a mapping from the
formula's relation symbols to specifc relations on the domain.

P proposition

A statement which can be either true or false.

Example: "Your meal will include hashbrowns."

propositional variable

A variable that can either be true or false, representing whether a certain proposition
is true or not. Example: HB

S soundness

If the system (claims to) prove something is true, it really is true.

T tautology

A WFF which is true under any truth assignment (any way of assigning truejfalse to the
propositions).

Example: A − unsafe ⇒⇒ A − unsafe

Example: a⇒ a∨ b

term

1. A variable. Example: a, b, ...
2. A constant. Example: WaterWorld location F , Kevin Bacon, or the number 3.
3. A function applied to one or more terms.

178

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Example: successor (3)

truth assignment

An assignment of a value true or false to each proposition being used.

Example: For the formula a⇒ a∧ b, one possible truth assignment is a = true and b =
false. With that truth assignment, the formula is false.

truth table

A truth table for an expression has a column for each of its propositional variables. It
has a row for each different true/false combination of its propositional variables. It
has one more column for the expression itself, showing the truth of the entire
expression for that row.

U unsatisfable

A WFF which is false under any truth assignment.

Example: ¬ (A − unsafe⇒⇒ A − unsafe)

Example: a⇒¬a

W well-Formed formula (WFF)

1. A constant: true or false. (If you prefer brevity, you can write T or F.)
2. A propositional variable.

1. Example: a

3. A negation ¬φ, where φ is a WFF.
1. Example: ¬c

4. A conjunction φ∧ ψ, where φ and ψ are WFFs.
1. Example: a∧¬c

5. A disjunction φ∨ ψ, where φ and ψ are WFFs.
1. Example: ¬c∨ a∧¬c, or equivalently, (¬c) ∨ (a∧¬c)

6. An implication φ⇒ ψ, where φ and ψ are WFFs.
1. Example: ¬c∨ a∧¬c⇒ b, or equivalently, ((¬c) ∨ (a∧¬c)) ⇒ b

Well-Formed Formula (WFF) for first-order logic

• A constant: true or false.
• An atomic formula: a relation symbol applied to one or more terms.

◦ Example: nhbr (x, F)

• A negation of a WFF, ¬φ.
• A conjunction of WFFs, φ∧ ψ.
• A disjunction of WFFs, φ∨ ψ.
• An implication of WFFs, φ⇒ ψ.
• A universal quantifcation of a WFF, ∀x :(φ).

◦ Example: ∀x : (nhbr (x, F))

• An existential quantifcation of a WFF, ∃x :(φ).
◦ Example: ∃x : (nhbr (x, F))

179

Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

	Chapter 1 Introduction
	1.1 90 = 100: A Proof
	» Exercise 1.1.1

	1.2 The need for proofs
	1.2.1 WaterWorld
	1.2.1.1 Type Checking
	1.2.1.2 Circuit Verification

	1.3 Defining a proof
	1.3.1 What are proofs? (informal)
	» Example 1.1
	1.3.1.1 An argument by form
	» Example 1.2
	» Example 1.3
	» Example 1.4

	1.3.1.2 Some non-proofs
	» Example 1.5
	» Exercise 1.3.1
	» Example 1.6
	» Example 1.7
	» Example 1.8
	» Exercise 1.3.2

	1.3.1.3 Other Inference Rules
	1.3.1.4 The need for a precise language

	1.3.2 Solutions to Exercifes in Chapter 1

	Chapter 2 Propositional Logic
	2.1 A formal vocabulary
	2.1.1 Propositions
	2.1.1.1 A formal vocabulary
	2.1.1.1.1 A particular vocabulary for WaterWorld
	2.1.1.1.2 Connectives
	» Exercise 2.1.1.1
	» Exercise 2.1.1.2
	» Exercise 2.1.1.3
	» Example
	» Example
	» Example
	» Example 2.1
	» Exercise 2.1.1.4
	» Exercise 2.1.1.5

	2.1.2 Formulas
	2.1.2.1 Well-Formed Formulas
	» Example
	» Example
	» Example
	» Example
	» Example
	» Example 2.2
	» Example 2.3

	2.1.2.2 Some formulas are truer than others
	» Example
	» Example
	» Example
	» Example
	» Example
	» Exercise 2.1.2.1
	» Exercise 2.1.2.2
	» Exercise 2.1.2.3
	» Exercise 2.1.2.4
	» Exercise 2.1.2.5

	2.1.2.3 Finding Truth
	2.1.2.4 Game-specific rules

	2.2 Reasoning with truth tables
	2.2.1 Using truth tables
	2.2.1.1 Using Truth Tables
	» Tip
	» Exercise 2.2.1.2

	2.2.2 The limitations of truth tables
	2.2.2.1 Are we done yet?
	» Exercise 2.2.2.1
	» Exercise 2.2.2.2

	2.3 Reasoning with equivalences
	2.3.1 Propositional equivalences
	2.3.1.1 Propositional Equivalences
	» Example 2.4
	» Example 2.5
	» Example 2.6
	» Exercise 2.3.1.1
	» Exercise 2.3.1.2
	2.3.1.1.1 Duals (optional)

	2.3.2 Normal forms
	2.3.2.1 CNF, DNF, ... (ENufF already!)
	» Example 2.7
	» Example 2.8
	» Example 2.9
	» Example 2.10
	» Exercise 2.3.2.1
	2.3.2.1.1 Notation for DNF, CNF

	2.3.3 Soundness and completeness
	2.3.3.1 Are we done yet?
	» Exercise 2.3.3.1
	» Exercise 2.3.3.2

	2.4 Reasoning with inference rules
	2.4.1 Propositional inference rules
	2.4.1.1 Inference
	» Example 2.11
	» Exercise 2.4.1.1
	» Exercise 2.4.1.2
	2.4.1.1.1 Formal inference rules and proofs
	» Example 2.12
	» Example 2.13
	» Example 2.14
	» Example 2.15
	» Exercise 2.4.1.3
	» Example 2.16
	» Exercise 2.4.1.4

	2.4.2 Using subproofs
	2.4.2.1 Subproofs
	» Example 2.17
	» Example 2.18
	» Exercise 2.4.2.1
	» Example 2.19

	2.4.2.2 More examples
	» Example 2.20
	» Example 2.21
	» Example 2.22

	2.4.3 The soundness and completeness of inference rules
	» Exercise 2.4.3.1

	2.4.4 Proofs and programming
	2.4.4.1 Proofs and programming

	2.4.5 Conclusions
	2.4.5.1 Are we done yet?
	2.4.5.2 Distinctness of the approaches (optional)

	2.5 Exercises for Propositional Logic I
	2.5.1 Propositional Logic
	» Exercise 2.5.1
	» Exercise 2.5.2
	» Exercise 2.5.3
	» Exercise 2.5.4
	» Exercise 2.5.5
	» Exercise 2.5.6
	» Exercise 2.5.7
	» Exercise 2.5.8
	» Exercise 2.5.9
	» Exercise 2.5.10
	» Exercise 2.5.11
	» Exercise 2.5.12
	» Exercise 2.5.13
	» Exercise 2.5.14

	2.5.2 Reasoning with Truth Tables
	» Exercise 2.5.15
	» Exercise 2.5.16
	» Exercise 2.5.17
	» Exercise 2.5.18
	» Exercise 2.5.19
	» Exercise 2.5.20
	» Exercise 2.5.21
	» Exercise 2.5.22
	» Exercise 2.5.23
	» Exercise 2.5.24

	2.5.3 Reasoning with Equivalences
	» Exercise 2.5.25
	» Exercise 2.5.26
	» Exercise 2.5.27
	» Exercise 2.5.28
	» Exercise 2.5.29

	2.6 Exercises for Propositional Logic II
	2.6.1 Reasoning with Inference Rules
	» Exercise 2.6.1
	» Exercise 2.6.2
	» Exercise 2.6.3
	» Exercise 2.6.4
	» Exercise 2.6.5
	» Exercise 2.6.6
	» Exercise 2.6.7
	» Exercise 2.6.8
	» Exercise 2.6.9
	» Exercise 2.6.10
	» Exercise 2.6.11
	» Exercise 2.6.12
	» Exercise 2.6.13
	» Exercise 2.6.15
	» Exercise 2.6.16
	» Exercise 2.6.17
	» Exercise 2.6.18
	» Exercise 2.6.19
	» Exercise 2.6.20

	2.6.2 Solutions to Exercises in Chapter 2

	Chapter 3 Relations and Models
	3.1 Relations
	3.1.1 Relations: Building a better (representation of) WaterWorld
	» Exercise 3.1.1

	3.2 Properties of relations
	3.2.1 Relations as subsets
	» Example 3.1
	» Example 3.2
	» Example 3.3
	» Example 3.4
	» Example 3.5
	» Example 3.6
	» Example 3.7

	3.2.2 Relations as functions
	» Exercise 3.2.1
	» Exercise 3.2.2

	3.2.3 Functions as Relations
	3.2.4 Binary Relations
	3.2.4.1 Binary Relation Notation
	3.2.4.2 Binary Relations as Graphs

	3.3 Interpretations
	3.3.1 Needing Interpretations to Evaluate Formulas
	3.3.1.1 Using Truth Tables to Summarize Interpretations (Optional)
	3.3.1.2 Using Formulas to Classify Interpretations (Optional)
	3.3.1.3 Encoding Functions as Relations

	3.4 Nonstandard Interpretations (optional)
	3.4.1 Prime factorization
	3.4.2 The Poincare Disc
	3.4.3 P vs. NP and Oracles
	3.4.4 Lo¨wenheim-Skolem and the real numbers
	3.4.5 Object-oriented programming
	3.4.6 Real-World Arguments

	3.5 Modeling with relations
	3.5.1 Modeling with Relations
	» Exercise 3.5.1
	» Exercise 3.5.2
	» Exercise 3.5.3
	» Exercise 3.5.4

	3.5.2 A Case Study: iTunes
	» Exercise 3.5.5
	» Exercise 3.5.6
	» Exercise 3.5.7

	3.5.3 Solutions to Exercises in Chapter 3

	Chapter 4 First-Order Logic
	4.1 A formal vocabulary
	4.1.1 Syntax and semantics of quantifiers
	4.1.1.1 Talking about unnamed items
	4.1.1.1.1 Warning: The Ambiguous "Any"

	4.1.1.2 First-order logic: WFFs revisited
	» Definition 4.1: term
	» Definition 4.2: Well-Formed Formula (WFF) for first-order logic
	4.1.1.2.1 Examples
	» Example 4.1
	» Example 4.2
	» Example 4.3
	» Example 4.4
	» Exercise 4.1.1.1
	» Exercise 4.1.1.2
	» Example 4.5
	» Example 4.6
	» Exercise 4.1.1.3
	» Exercise 4.1.1.4
	» Example 4.7
	» Example 4.8
	» Exercise 4.1.1.5
	» Exercise 4.1.1.6
	» Exercise 4.1.1.7

	4.1.1.2.2 A hint on deciphering formulas' meanings
	4.1.1.2.3 "Forall"'s friend "if"

	4.1.2 Bound variables, free variables
	» Example 4.9

	4.1.3 Normal forms revisited
	4.1.3.1 CNF and DNF revisited (Optional)
	» Example 4.10

	4.2 Reasoning with equivalences
	4.2.1 First-order equivalences
	4.2.1.1 First-order Equivalences
	» Example 4.11
	» Example 4.12
	» Exercise 4.2.1.1

	4.2.1.2 Are we done yet?

	4.3 Reasoning with inference rules
	4.3.1 First-order inference rules
	4.3.1.1 Inference with quantifiers
	4.3.1.1.1 Exists-intro
	4.3.1.1.2 Exists-Elim
	4.3.1.1.3 Forall-Intro
	4.3.1.1.4 Forall-Elim

	4.3.1.2 Formal inference rules and proofs
	» Example 4.13
	» Exercise 4.3.1.1

	4.3.1.3 Proofs and programming

	4.4 Exercises for First-Order Logic
	4.4.1 Relations and Interpretations
	» Exercise 4.4.1
	» Exercise 4.4.2
	» Exercise 4.4.3
	» Exercise 4.4.4
	» Exercise 4.4.5
	» Exercise 4.4.6
	» Exercise 4.4.7

	4.4.2 Quantifiers
	» Exercise 4.4.8
	» Exercise 4.4.9
	» Exercise 4.4.10

	4.4.3 Interpreting First-order Formulas
	» Exercise 4.4.11
	» Exercise 4.4.12
	» Exercise 4.4.13
	» Exercise 4.4.14
	» Exercise 4.4.15
	» Exercise 4.4.16
	» Exercise 4.4.17
	» Exercise 4.4.18
	» Exercise 4.4.19
	» Exercise 4.4.20

	4.4.4 Modeling
	» Exercise 4.4.21
	» Exercise 4.4.22
	» Exercise 4.4.23

	4.4.5 Reasoning with Equivalences
	» Exercise 4.4.24
	» Exercise 4.4.25
	» Exercise 4.4.26
	» Exercise 4.4.27

	4.4.6 Reasoning with Inference Rules
	» Exercise 4.4.28
	» Exercise 4.4.29
	» Exercise 4.4.30
	» Exercise 4.4.31
	» Exercise 4.4.32

	4.4.7 Solutions to Exercises in Chapter .

	Chapter 5 Conclusion, Acknowledgements
	5.1 Logic: Looking Back
	5.1.1 Why didn't we begin with quantifiers all along?
	5.1.2 Logic and everyday reasoning
	5.1.3 Other logics
	5.1.3.1 Limitations of first-order logic's expressiveness
	» Example 5.1

	5.1.4 Logic in computer science

	5.2 Acknowledgements

	Chapter 6 Appendices and Reference Sheets
	6.1 Propositional equivalences
	» Example 6.1

	6.2 Propositional inference rules
	6.3 First-order equivalences
	6.4 First-order inference rule
	6.5 Propositional axioms for WaterWorld
	6.5.1 Propositions
	6.5.2 The domain axioms

	6.6 First-order axioms for WaterWorld
	6.6.1 Domain and Relations
	6.6.2 The domain axioms

	6.7 Browser supports

	Glossary

