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Chapter 1 Preface
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This textbook came from a frustration of its main author. Many authors chose to write
a textbook because there are no textbooks in their field or because they are not
satisfied with the existing textbooks. This frustration has produced several excellent
textbooks in the networking community. At a time when networking textbooks were
mainly theoretical, Douglas Comer (http://www.cs.purdue.edu/people/comer) chose to
write a textbook entirely focused on the TCP/IP protocol suite [Comer1988], a difficult
choice at that time. He later extended his textbook by describing a complete TCP/IP
implementation, adding practical considerations to the theoretical descriptions in
[Comer1988]. Richard Stevens (http://www.kohala.com/) approached the Internet like
an explorer and explained the operation of protocols by looking at all the packets that
were exchanged on the wire [Stevens1994]. Jim Kurose (http://www-net.cs.umass.edu/
personnel/kurose.html) and Keith Ross (http://cis.poly.edu/~ross/)reinvented the
networking textbooks by starting from the applications that the students use and later
explained the Internet protocols by removing one layer after the other
[KuroseRoss09].

The frustrations that motivated this book are different. When I started to teach
networking in the late 1990s, students were already Internet users, but their usage
was limited. Students were still using reference textbooks and spent time in the
library. Today’s students are completely different. They are avid and experimented
web users who find lots of information on the web. This is a positive attitude since
they are probably more curious than their predecessors. Thanks to the information
that is available on the Internet, they can check or obtain additional information about
the topics explained by their teachers. This abundant information creates several
challenges for a teacher. Until the end of the nineteenth century, a teacher was by
definition more knowledgeable than his students and it was very difficult for the
students to verify the lessons given by their teachers. Today, given the amount of
information available at the fingertips of each student through the Internet, verifying a
lesson or getting more information about a given topic is sometimes only a few clicks
away. Websites such as Wikipedia (http://wikipedia.org/) provide lots of information
on various topics and students often consult them. Unfortunately, the organisation of
the information on these websites is not well suited to allow students to learn from
them. Furthermore, there are huge differences in the quality and depth of the
information that is available for different topics.

The second reason is that the computer networking community is a strong participant
in the open-source movement. Today, there are high-quality and widely used open-
source implementations for most networking protocols. This includes the TCP/IP
implementations that are part of linux (http://www.linux.org), freebsd (http://www.free
sd.org) or the uIP (http://www.sics.se/~adam/uip/index.php/Main_Page) stack running
on 8bits con trollers, but also servers such as bind (https://www.isc.org/software/bin
d), unbound (http://www.unbound.net/), apache (http://www.apache.org/) or sendmail
(http://www.sendmail.com/sm/open_source/) and implementations of routing
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protocols such as xorp (http://www.xorp.org/) or quagga (http://www.nongnu.org/qua
gga/) . Furthermore, the documents that define almost all of the Internet protocols
have been developed within the Internet Engineering Task Force (IETF (http://www.non
gnu.org/quagga/)) using an open process. The IETF publishes its protocol
specifications in the publicly available RFC (http://www.ietf.org/rfc.html) and new
proposals are described in Internet drafts (http://www.ietf.org/id-info/).

This open textbook aims to fill the gap between the open-source implementations and
the open-source network specifications by providing a detailed but pedagogical
description of the key principles that guide the operation of the Internet. The book is
released under a creative commons licence (http://creativecommons.org/licenses/by-s
a/3.0/). Such an open-source license is motivated by two reasons. The first is that we
hope that this will allow many students to use the book to learn computer networks.
The second is that I hope that other teachers will reuse, adapt and improve it. Time
will tell if it is possible to build a community of contributors to improve and develop
the book further. As a starting point, the first release contains all the material for a
one-semester first upper undergraduate or a graduate networking course.

As of this writing, most of the text has been written by Olivier Bonaventure (http://inl.i
nfo.ucl.ac.be/obo). Laurent Vanbever (http://inl.info.ucl.ac.be/Ivanbeve), Virginie Van d
en Schriek (http://inl.info.ucl.ac.be/vvandens), and Mickael Hoerdt (http://inl.info.ucl.a
c.be/mhoerdt) have contributed to exercises. Pierre Reinbold designed the icons used
to represent switches and Nipaul Long has redrawn many figures in the SVG format.
Stephane Bortzmeyer sent many suggestions and corrections to the text. Additional
information about the textbook is available at here (http://inl.info.ucl.ac.be/CNP3).
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Chapter 2 Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When the first computers were built during the second world war, they were
expensive and isolated. However, after about twenty years, as their prices gradually
decreased, the first experiments began to connect computers together. In the early
1960s, researchers including Paul Baran (http://en.wikipedia.org/wiki/Paul_Baran), Do
nald Davies (http://en.wikipedia.org/wiki/Donald_Davies) or Joseph Licklider (http://e
n.wikipedia.org/wiki/J._C._R._Licklider) independently published the first papers
describing the idea of building computer networks [Baran] [Licklider1963] . Given the
cost of computers, sharing them over a long distance was an interesting idea. In the
US, the ARPANET started in 1969 and continued until the mid 1980s [LCCD09]. In
France, Louis Pouzin (http://conferences.sigcomm.org/sigcomm/1999/pouzin.html)
developed the Cyclades network [Pouzin1975]. Many other research networks were
built during the 1970s [Moore]. At the same time, the telecommunication and
computer industries became interested in computer networks. The
telecommunication industry bet on the X25. The computer industry took a completely
different approach by designing Local Area Networks (LAN). Many LAN technologies
such as Ethernet or Token Ring were designed at that time. During the 1980s, the
need to interconnect more and more computers led most computer vendors to
develop their own suite of networking protocols. Xerox developed [XNS] , DEC chose
DECNet [Malamud1991] , IBM developed SNA [McFadyen1976] , Microsoft introduced
NetBIOS [Winston2003] , Apple bet on Appletalk [SAO1990] . In the research
community, ARPANET was decommissioned and replaced by TCP/IP [LCCD09] and the
reference implementation was developed inside BSD Unix [McKusick1999].
Universities who were already running Unix could thus adopt TCP/IP easily and
vendors of Unix workstations such as Sun or Silicon Graphics included TCP/IP in their
variant of Unix. In parallel, the ISO, with support from the governments, worked on
developing an open Suite of networking protocols. In the end, TCP/IP became the de
facto standard that is not only used within the research community. During the 1990s
and the early 2000s, the growth of the usage of TCP/IP continued, and today
proprietary protocols are seldom used. As shown by the figure below, that provides
the estimation of the number of hosts attached to the Internet, the Internet has
sustained large growth throughout the last 20+ years.
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:

Figure 2.1 Internet Domain Survry Host Count Estimation of the number of hosts on the Internet

Recent estimations of the number of hosts attached to the Internet show a continuing
growth since 20+ years. However, although the number of hosts attached to the
Internet is high, it should be compared to the number of mobile phones that are in
use today. More and more of these mobile phones will be connected to the Internet.
Furthermore, thanks to the availability of TCP/IP implementations requiring limited
resources such as uIP [Dunkels2003], we can expect to see a growth of TCP/IP enabled
embedded devices.

:

Figure 2.2 Estimation of the number of mobile phones

Before looking at the services provided by computer networks, it is useful to agree on
some terminology that is widely used in networking literature. First of all, computer
networks are often classified in function of the geographical area that they cover

• LAN : a local area network typically interconnects hosts that are up to a few or
maybe a few tens of kilometers apart.

• MAN : a metropolitan area network typically interconnects devices that are up to a
few hundred kilometers apart

• WAN : a wide area network interconnect hosts that can be located anywhere on
Earth
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anywhere on Earth
In this book, we focus on networks that are used on Earth.
These networks sometimes include satellite links. Besides the
network technologies that are used on Earth, researchers
develop networking techniques that could be used between
nodes located on different planets. Such an Inter Planetary
Internet requires different techniques than the ones discussed
in this book. See RFC 4838 and the references therein for
information about these techniques.

Another classification of computer networks is based on their physical topology. In the
following figures, physical links are represented as lines while boxes show computers
or other types of networking equipment.

Computer networks are used to allow several hosts to exchange information between
themselves. To allow any host to send messages to any other host in the network, the
easiest solution is to organise them as a full-mesh, with a direct and dedicated link
between each pair of hosts. Such a physical topology is sometimes used, especially
when high performance and high redundancy is required for a small number of hosts.
However, it has two major drawbacks :

• for a network containing n hosts, each host must have n-1 physical interfaces. In
practice, the number of physical interfaces on a node will limit the size of a full-
mesh network that can be built

• for a network containing n hosts,

links are required. This is possible when there are a few nodes in the same room,
but rarely when they are located several kilometers apart

The second possible physical organisation, which is also used inside computers to
connect different extension cards, is the bus. In a bus network, all hosts are attached
to a shared medium, usually a cable through a single interface. When one host sends
an electrical signal on the bus, the signal is received by all hosts attached to the bus. A
drawback of bus-based networks is that if the bus is physically cut, then the network is
split into two isolated networks. For this reason, bus-based networks are sometimes
considered to be difficult to operate and maintain, especially when the cable is long
and there are many places where it can break. Such a bus-based topology was used in
early Ethernet networks.

Figure 2.3 A Full mesh network
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Figure 2.4 A network organised as a Bus

A third organisation of a computer network is a star topology. In such topologies,
hosts have a single physical interface and there is one physical link between each host
and the center of the star. The node at the center of the star can be either a piece of
equipment that amplifies an electrical signal, or an active device, such as a piece of
equipment that understands the format of the messages exchanged through the
network. Of course, the failure of the central node implies the failure of the network.
However, if one physical link fails (e.g. because the cable has been cut), then only one
node is disconnected from the network. In practice, star-shaped networks are easier
to operate and maintain than bus-shaped networks. Many network administrators
also appreciate the fact that they can control the network from a central point.
Administered from a Web interface, or through a console-like connection, the center
of the star is a useful point of control (enabling or disabling devices) and an excellent
observation point (usage statistics).

Figure 2.5 A network organised as a Star

A fourth physical organisation of a network is the Ring topology. Like the bus
organisation, each host has a single physical interface connecting it to the ring. Any
signal sent by a host on the ring will be received by all hosts attached to the ring. From
a redundancy point of view, a single ring is not the best solution, as the signal only
travels in one direction on the ring; thus if one of the links composing the ring is cut,
the entire network fails. In practice, such rings have been used in local area networks,
but are now often replaced by star-shaped networks. In metropolitan networks, rings
are often used to interconnect multiple locations. In this case, two parallel links,
composed of different cables, are often used for redundancy. With such a dual ring,
when one ring fails all the traffic can be quickly switched to the other ring.

A fifth physical organisation of a network is the tree. Such networks are typically used
when a large number of customers must be connected in a very cost-effective
manner. Cable TV networks are often organised as trees.

In practice, most real networks combine part of these topologies. For example, a
campus network can be organised as a ring between the key buildings, while smaller
buildings are attached as a tree or a star to important buildings.
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:

Figure 2.6 A network organised as a Ring

:

Figure 2.7 A network organised as a Tree

Or an ISP network may have a full mesh of devices in the core of its network, and trees
to connect remote users.

Throughout this book, our objective will be to understand the protocols and
mechanisms that are necessary for a network such as the one shown below.

:

Figure 2.8 A simple internetwork
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The figure above illustrates an internetwork, i.e. a network that interconnects other
networks. Each network is illustrated as an ellipse containing a few devices. We will
explain throughout the book the different types of devices and their respective roles
enabling all hosts to exchange information. As well as this, we will discuss how
networks are interconnected, and the rules that guide these interconnections. We will
also analyse how the bus, ring and mesh topologies are used to build real networks.

The last point of terminology we need to discuss is the transmission modes. When
exchanging information through a network, we often distinguish between three
transmission modes. In TV and radio transmission, broadcast is often used to indicate
a technology that sends a video or radio signal to all receivers in a given geographical
area. Broadcast is sometimes used in computer networks, but only in local area
networks where the number of recipients is limited.

The first and most widespread transmission mode is called unicast . In the unicast
transmission mode, information is sent by one sender to one receiver. Most of today’s
Internet applications rely on the unicast transmission mode. The example below
shows a network with two types of devices : hosts (drawn as computers) and
intermediate nodes (drawn as cubes). Hosts exchange information via the
intermediate nodes. In the example below, when host S uses unicast to send
information, it sends it via three intermediate nodes. Each of these nodes receives the
information from its upstream node or host, then processes and forwards it to its
downstream node or host. This is called store and forward and we will see later that
this concept is key in computer networks.

A second transmission mode is multicast transmission mode. This mode is used when
the same information must be sent to a set of recipients. It was first used in LANs but
later became supported in wide area networks. When a sender uses multicast to send
information to N receivers, the sender sends a single copy of the information and the
network nodes duplicate this information whenever necessary, so that it can reach all
recipients belonging to the destination group.

To understand the importance of multicast transmission, consider source S that sends
the same information to destinations A, C and E. With unicast, the same information
passes three times on intermediate nodes 1 and 2 and twice on node 4. This is a waste
of resources on the intermediate nodes and on the links between them. With
multicast transmission, host S sends the information to node 1 that forwards it
downstream to node 2. This node creates a copy of the received information and
sends one copy directly to host E and the other downstream to node 4. Upon
reception of the information, node 4 produces a copy and forwards one to node A and
another to node C. Thanks to multicast, the same information can reach a large
number of receivers while being sent only once on each link.

8



:

Figure 2.9 Unicast transmission

:

Figure 2.10 Multicast transmission

The last transmission mode is the anycast transmission mode. It was initially defined
in RFC 1542. In this transmission mode, a set of receivers is identified. When a source
sends information towards this set of receivers, the network ensures that the
information is delivered to one receiver that belongs to this set. Usually, the receiver
closest to the source is the one that receives the information sent by this particular
source. The anycast transmission mode is useful to ensure redundancy, as when one
of the receivers fails, the network will ensure that information will be delivered to
another receiver belonging to the same group. However, in practice supporting the
anycast transmission mode can be difficult.

9
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Figure 2.11 Anycast transmission

In the example above, the three hosts marked with * are part of the same anycast
group. When host S sends information to this anycast group, the network ensures that
it will reach one of the members of the anycast group. The dashed lines show a
possible delivery via nodes 1, 2 and 4. A subsequent anycast transmission from host S
to the same anycast group could reach the host attached to intermediate node 3 as
shown by the plain line. An anycast transmission reaches a member of the anycast
group that is chosen by the network in function of the current network conditions.

2.1 Services and protocols
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

An important aspect to understand before studying computer networks is the
difference between a service and a protocol.

In order to understand the difference between the two, it is useful to start with real
world examples. The traditional Post provides a service where a postman delivers
letters to recipients. The Post defines precisely which types of letters (size, weight, etc)
can be delivered by using the Standard Mail service. Furthermore, the format of the
envelope is specified (position of the sender and recipient addresses, position of the
stamp). Someone who wants to send a letter must either place the letter at a Post
Office or inside one of the dedicated mailboxes. The letter will then be collected and
delivered to its final recipient. Note that for the regular service the Post usually does
not guarantee the delivery of each particular letter, some letters may be lost, and
some letters are delivered to the wrong mailbox. If a letter is important, then the
sender can use the registered service to ensure that the letter will be delivered to its
recipient. Some Post services also provide an acknowledged service or an express mail
service that is faster than the regular service.

In computer networks, the notion of service is more formally defined in [X200] . It can
be better understood by considering a computer network, whatever its size or
complexity, as a black box that provides a service to users , as shown in the figure
below. These users could be human users or processes running on a computer
system.
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Many users can be attached to the same service provider. Through this provider, each
user must be able to exchange messages with any other user. To be able to deliver
these messages, the service provider must be able to unambiguously identify each
user. In computer networks, each user is identified by a unique address, we will
discuss later how these addresses are built and used. At this point, and when
considering unicast transmission, the main characteristic of these addresses is that
they are unique. Two different users attached to the network cannot use the same
address.

Figure 2.12 Users and service provider

Throughout this book, we will define a service as a set of capabilities provided by a
system (and its underlying elements) to its user. A user interacts with a service
through a service access point. Note that as shown in the figure above, users interact
with one service provider. In practice, the service provider is distributed over several
hosts, but these are implementation details that are not important at this stage. These
interactions between a user and a service provider are expressed in [X200] by using
primitives, as show in the figure below. These primitives are an abstract
representation of the interactions between a user and a service provider. In practice,
these interactions could be implemented as system calls for example.

:

Figure 2.13 The four types of primitives

Four types of primitives are defined :

• X.request. This type of primitive corresponds to a request issued by a user to a
service provider

• X.indication. This type of primitive is generated by the network provider and
delivered to a user (often related to an earlier and remote X.request primitive)

• X.response. This type of primitive is generated by a user to answer to an earlier
X.indication primitive

• X.confirm. This type of primitive is delivered by the service provide to confirm to a
user that a previous X.request primitive has been successfully processed.
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Primitives can be combined to model different types of services. The simplest service
in computer networks is called the connectionless service 1. This service can be
modelled by using two primitives :

• Data.request(source,destination,SDU). This primitive is issued by a user that
specifies, as parameters, its (source) address, the address of the recipient of the
message and the message itself. We will use Service Data Unit (SDU) to name the
message that is exchanged transparently between two users of a service.

• Data.indication(source,destination,SDU). This primitive is delivered by a service
provider to a user. It contains as parameters a Service Data Unit as well as the
addresses of the sender and the destination users.

When discussing the service provided in a computer network, it is often useful to be
able to describe the interactions between the users and the provider graphically. A
frequently used representation is the time-sequence diagram. In this chapter and later
throughout the book, we will often use diagrams such as the figure below. A time-
sequence diagram describes the interactions between two users and a service
provider. By convention, the users are represented in the left and right parts of the
diagram while the service provider occupies the middle of the diagram. In such a time-
sequence diagram, time flows from the top, to the bottom of the diagram. Each
primitive is represented by a plain horizontal arrow, to which the name of the
primitive is attached. The dashed lines are used to represent the possible relationship
between two (or more) primitives. Such a diagram provides information about the
ordering of the different primitives, but the distance between two primitives does not
represent a precise amount of time.

The figure below provides a representation of the connectionless service as a time-
sequence diagram. The user on the left, having address S, issues a Data.request
primitive containing SDU M that must be delivered by the service provider to
destination D. The dashed line between the two primitives indicates that the
Data.indication primitive that is delivered to the user on the right corresponds to the
Data.request primitive sent by the user on the left.

1. This service is called the connectionless service because there is no need to create a connection before transmitting any
data in contrast with the connection-oriented service.
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:

Figure 2.14 A simple connectionless service

There are several possible implementations of the connectionless service, which we
will discuss later in this book. Before studying these realisations, it is useful to discuss
the possible characteristics of the connectionless service. A reliable connectionless
service is a service where the service provider guarantees that all SDUs submitted in
Data.requests by a user will eventually be delivered to their destination. Such a service
would be very useful for users, but guaranteeing perfect delivery is difficult in practice.
For this reason, computer networks usually support an unreliable connectionless
service.

An unreliable connectionless service may suffer from various types of problems
compared to a reliable connectionless service. First of all, an unreliable connectionless
service does not guarantee the delivery of all SDUs. This can be expressed graphically
by using the time-sequence diagram below.

In practice, an unreliable connectionless service will usually deliver a large fraction of the
SDUs. However, since the delivery of SDUs is not guaranteed, the user must be able to
recover from the loss of any SDU.

A second imperfection that may affect an unreliable connectionless service is that it may
duplicate SDUs. Some unreliable connectionless service providers may deliver an SDU
sent by a user twice or even more. This is illustrated by the time-sequence diagram
below.

Finally, some unreliable connectionless service providers may deliver to a destination
a different SDU than the one that was supplied in the Data.request. This is illustrated in
the figure below.

When a user interacts with a service provider, it must precisely know the limitations of
the underlying service to be able to overcome any problem that may arise. This
requires a precise definition of the characteristics of the underlying service.

Another important characteristic of the connectionless service is whether it preserves
the ordering of the SDUs sent by one user. From the user’s viewpoint, this is often a
desirable characteristic. This is illustrated in the figure below.

13



However, many connectionless services, and in particular the unreliable services, do
not guarantee that they will always preserve the ordering of the SDUs sent by each
user. This is illustrated in the figure below.

:

Figure 2.15 An unreliable connectionless service may loose SDUs

:

Figure 2.16 An unreliable connectionless service may duplicate SDUs
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:

Figure 2.17 An unreliable connectionless service may deliver erroneous SDUs

: user

Figure 2.18 A connectionless service that preserves the ordering of SDUs sent by a given user

:

Figure 2.19 A connectionless service that does not preserve the ordering of SDUs sent by a given

user
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The connectionless service is widely used in computer networks as we will see later in
this book. Several variations to this basic service have been proposed. One of these is
the confirmed connectionless service. This service uses a Data.confirm primitive in
addition to the classical Data.request and Data.indication primitives. This primitive is
issued by the service provider to confirm to a user the delivery of a previously sent
SDU to its recipient. Note that, like the registered service of the post office, the
Data.confirm only indicates that the SDU has been delivered to the destination user.
The Data.confirm primitive does not indicate whether the SDU has been processed by
the destination user. This confirmed connectionless service is illustrated in the figure
below.

Figure 2.20 A confirmed connectionless service

The connectionless service we have described earlier is frequently used by users who
need to exchange small SDUs. Users needing to either send or receive several
different and potentially large SDUs, or who need structured exchanges often prefer
the connection-oriented service.

An invocation of the connection-oriented service is divided into three phases. The first
phase is the establishment of a connection.A connection is a temporary association
between two users through a service provider. Several connections may exist at the
same time between any pair of users. Once established, the connection is used to
transfer SDUs. Connections usually provide one bidirectional stream supporting the
exchange of SDUs between the two users that are associated through the connection.
This stream is used to transfer data during the second phase of the connection called
the data transfer phase. The third phase is the termination of the connection. Once the
users have finished exchanging SDUs, they request to the service provider to
terminate the connection. As we will see later, there are also some cases where the
service provider may need to terminate a connection itself.

The establishment of a connection can be modelled by using four primitives :
Connect.request, Connect.indication, Connect.response and Connect.confirm. The
Connect.request primitive is used to request the establishment of a connection. The
main parameter of this primitive is the address of the destination user. The service
provider delivers a Connect.indication primitive to inform the destination user of the
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connection attempt. If it accepts to establish a connection, it responds with a
Connect.response primitive. At this point, the connection is considered to be open and
the destination user can start sending SDUs over the connection. The service provider
processes the Connect.response and will deliver a Connect.confirm to the user who
initiated the connection. The delivery of this primitive terminates the connection
establishment phase. At this point, the connection is considered to be open and both
users can send SDUs. A successful connection establishment is illustrated below.

The example above shows a successful connection establishment. However, in
practice not all connections are successfully established. One reason is that the
destination user may not agree, for policy or performance reasons, to establish a
connection with the initiating user at this time. In this case, the destination user
responds to the Connect.indication primitive by a Disconnect.request primitive that
contains a parameter to indicate why the connection has been refused. The service
provider will then deliver a Disconnect.indication primitive to inform the initiating
user. A second reason is when the service provider is unable to reach the destination
user. This might happen because the destination user is not currently attached to the
network or due to congestion. In these cases, the service provider responds to the
Connect.request with a Disconnect.indication primitive whose reason parameter
contains additional information about the failure of the connection.

:

Figure 2.21 Connection establishment
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:

Figure 2.22 Two types of rejection for a connection establishment attempt

Once the connection has been established, the service provider supplies two data
streams to the communicating users. The first data stream can be used by the
initiating user to send SDUs. The second data stream allows the responding user to
send SDUs to the initiating user. The data streams can be organised in different ways.
A first organisation is the message-mode transfer. With the message-mode transfer, the
service provider guarantees that one and only one Data.indication will be delivered to
the endpoint of the data stream for each Data.request primitive issued by the other
endpoint. The message-mode transfer is illustrated in the figure below. The main
advantage of the message-transfer mode is that the recipient receives exactly the SDUs
that were sent by the other user. If each SDU contains a command, the receiving user
can process each command as soon as it receives a SDU.

Unfortunately, the message-mode transfer is not widely used on the Internet. On the
Internet, the most popular connection-oriented service transfers SDUs in stream-mode.
With the stream-mode, the service provider supplies a byte stream that links the two
communicating users. The sending user sends bytes by using Data.request primitives
that contain sequences of bytes as SDUs. The service provider delivers SDUs
containing consecutive bytes to the receiving user by using Data.indication primitives.
The service provider ensures that all the bytes sent at one end of the stream are
delivered correctly in the same order at the other endpoint. However, the service
provider does not attempt to preserve the boundaries of the SDUs. There is no
relation enforced by the service provider between the number of Data.request and the
number of Data.indication primitives. The stream-mode is illustrated in the figure
below. In practice, a consequence of the utilisation of the stream-mode is that if the
users want to exchange structured SDUs, they will need to provide the mechanisms
that allow the receiving user to separate successive SDUs in the byte stream that it
receives. As we will see in the next chapter, application layer protocols often use
specific delimiters such as the end of line character to delineate SDUs in a bytestream.
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:

Figure 2.23 Message-mode transfer in a connection oriented service

:

Figure 2.24 Stream-mode transfer in a connection oriented service

The third phase of a connection is when it needs to be released. As a connection
involves three parties (two users and one service provider), any of them can request
the termination of the connection. Usually, connections are terminated upon request
of one user once the data transfer is finished. However, sometimes the service
provider may be forced to terminate a connection. This can be due to lack of
resources inside the service provider or because one of the users is not reachable
anymore through the network. In this case, the service provider will issue
Disconnect.indication primitives to both users. These primitives will contain, as
parameter, some information about the reason for the termination of the connection.
Unfortunately, as illustrated in the figure below, when a service provider is forced to
terminate a connection it cannot guarantee that all SDUs sent by each user have been
delivered to the other user. This connection release is said to be abrupt as it can cause
losses of data.
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:

Figure 2.25 Abrupt connection release initiated by the service provider

An abrupt connection release can also be triggered by one of the users. If a user
needs, for any reason, to terminate a connection quickly, it can issue a
Disconnect.request primitive and to request an abrupt release. The service provider will
process the request, stop the two data streams and deliver the Disconnect.indication
primitive to the remote user as soon as possible. As illustrated in the figure below, this
abrupt connection release may cause losses of SDUs.

:

Figure 2.26 Abrupt connection release initiated by a user

To ensure a reliable delivery of the SDUs sent by each user over a connection, we
need to consider the two streams that compose a connection as independent. A user
should be able to release the stream that it uses to send SDUs once it has sent all the
SDUs that it planned to send over this connection, but still continue to receive SDUs
over the opposite stream. This graceful connection release is usually performed as
shown in the figure below. One user issues a Disconnect.request primitive to its
provider once it has issued all its Data.request primitives. The service provider will wait
until all Data.indication primitives have been delivered to the receiving user before
issuing the Disconnnect.indication primitive. This primitive informs the receiving user
that it will no longer receive SDUs over this connection, but it is still able to issue
Data.request primitives on the stream in the opposite direction. Once the user has
issued all of its Data.request primitives, it issues a Disconnnect.request primitive to
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request the termination of the remaining stream. The service provider will process the
request and deliver the corresponding Disconnect.indication to the other user once it
has delivered all the pending Data.indication primitives. At this point, all data has been
delivered and the two streams have been released successfully and the connection is
completely closed.

:

Figure 2.27 Graceful connection release

Note: Reliability of the connection-oriented service
An important point to note about the connection-oriented service is its
reliability. A connection-oriented service can only guarantee the correct
delivery of all SDUs provided that the connection has been released gracefully.
This implies that while the connection is active, there is no guarantee for the
actual delivery of the SDUs exchanged as the connection may need to be
released abruptly at any time.

2.2 The reference models
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Given the growing complexity of computer networks, during the 1970s network
researchers proposed various reference models to facilitate the description of
network protocols and services. Of these, the Open Systems Interconnection (OSI)
model [Zimmermann80] was probably the most influential. It served as the basis for
the standardisation work performed within the ISO to develop global computer
network standards. The reference model that we use in this book can be considered
as a simplified version of the OSI reference model. 2

2. An interesting historical discussion of the OSI-TCP/IP debate may be found in [Russel06]
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2.2.1 The five layers reference model
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Our reference model is divided into five layers, as shown in the figure below.

Starting from the bottom, the first layer is the Physical layer. Two communicating
devices are linked through a physical medium. This physical medium is used to
transfer an electrical or optical signal between two directly connected devices. Several
types of physical mediums are used in practice :

• electrical cable. Information can be transmitted over different types of electrical
cables. The most common ones are the twisted pairs that are used in the
telephone network, but also in enterprise networks and coaxial cables. Coaxial
cables are still used in cable TV networks, but are no longer used in enterprise
networks. Some networking technologies operate over the classical electrical
cable.

• optical fiber. Optical fibers are frequently used in public and enterprise networks
when the distance between the communication devices is larger than one
kilometer. There are two main types of optical fibers : multimode and
monomode. Multimode is much cheaper than monomode fiber because a LED
can be used to send a signal over a multimode fiber while a monomode fiber
must be driven by a laser. Due to the different modes of propagation of light,
monomode fibers are limited to distances of a few kilometers while multimode
fibers can be used over distances greater than several tens of kilometers. In both
cases, repeaters can be used to regenerate the optical signal at one endpoint of a
fiber to send it over another fiber.

• wireless. In this case, a radio signal is used to encode the information exchanged
between the communicating devices. Many types of modulation techniques are
used to send information over a wireless channel and there is lot of innovation in
this field with new techniques appearing every year. While most wireless
networks rely on radio signals, some use a laser that sends light pulses to a
remote detector. These optical techniques allow to create point-to-point links
while radio-based techniques, depending on the directionality of the antennas,
can be used to build networks containing devices spread over a small
geographical area.
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:

Figure 2.28 The five layers of the reference model

An important point to note about the Physical layer is the service that it provides. This
service is usually an unreliable connection-oriented service that allows the users of the
Physical layer to exchange bits. The unit of information transfer in the Physical layer is
the bit. The Physical layer service is unreliable because :

• the Physical layer may change, e.g. due to electromagnetic interferences, the
value of a bit being transmitted

• the Physical layer may deliver more bits to the receiver than the bits sent by the
sender

• the Physical layer may deliver fewer bits to the receiver than the bits sent by the
sender

The last two points may seem strange at first glance. When two devices are attached
through a cable, how is it possible for bits to be created or lost on such a cable ?

This is mainly due to the fact that the communicating devices use their own clock to
transmit bits at a given bit rate. Consider a sender having a clock that ticks one million
times per second and sends one bit every tick. Every microsecond, the sender sends
an electrical or optical signal that encodes one bit. The sender’s bit rate is thus 1
Mbps. If the receiver clock ticks exactly 5 every microsecond 3, it will also deliver 1
Mbps to its user. However, if the receiver’s clock is slightly faster (resp. slower), than it
will deliver slightly more (resp. less) than one million bits every second. This explains
why the physical layer may lose or create bits.

Note: Bit rate
In computer networks, the bit rate of the physical layer is always expressed in
bits per second. One Mbps is one million bits per second and one Gbps is one
billion bits per second. This is in contrast with memory specifications that are
usually expressed in bytes (8 bits), KiloBytes ( 1024 bytes) or MegaBytes
(1048576 bytes). Thus transferring one MByte through a 1 Mbps link lasts 8.39
seconds.

3. Having perfectly synchronised clocks running at a high frequency is very difficult in practice. However, some physical
layers introduce a feedback loop that allows the receiver’s clock to synchronise itself automatically to the sender’s clock.
However, not all physical layers include this kind of synchronisation.
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Figure 2.29 The Physical layer

The physical layer allows thus two or more entities that are directly attached to the
same transmission medium to exchange bits. Being able to exchange bits is important
as virtually any information can be encoded as a sequence of bits. Electrical engineers
are used to processing streams of bits, but computer scientists usually prefer to deal
with higher level concepts. A similar issue arises with file storage. Storage devices such
as hard-disks also store streams of bits. There are hardware devices that process the
bit stream produced by a hard-disk, but computer scientists have designed filesystems
to allow applications to easily access such storage devices. These filesystems are
typically divided into several layers as well. Hard-disks store sectors of 512 bytes or
more. Unix filesystems group sectors in larger blocks that can contain data or inodes
representing the structure of the filesystem. Finally, applications manipulate files and
directories that are translated in blocks, sectors and eventually bits by the operating
system.

Computer networks use a similar approach. Each layer provides a service that is built
above the underlying layer and is closer to the needs of the applications.

The Datalink layer builds on the service provided by the underlying physical layer. The
Datalink layer allows two hosts that are directly connected through the physical layer
to exchange information. The unit of information exchanged between two entities in
the Datalink layer is a frame. A frame is a finite sequence of bits. Some Datalink layers
use variable-length frames while others only use fixed-length frames. Some Datalink
layers provide a connection-oriented service while others provide a connectionless
service. Some Datalink layers provide reliable delivery while others do not guarantee
the correct delivery of the information.

An important point to note about the Datalink layer is that although the figure below
indicates that two entities of the Datalink layer exchange frames directly, in reality this
is slightly different. When the Datalink layer entity on the left needs to transmit a
frame, it issues as many Data.request primitives to the underlying physical layer as
there are bits in the frame. The physical layer will then convert the sequence of bits in
an electromagnetic or optical signal that will be sent over the physical medium. The
physical layer on the right hand side of the figure will decode the received signal,
recover the bits and issue the corresponding Data.indication primitives to its Datalink
layer entity. If there are no transmission errors, this entity will receive the frame sent
earlier.
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Figure 2.30 The Datalink layer

The Datalink layer allows directly connected hosts to exchange information, but it is
often necessary to exchange information between hosts that are not attached to the
same physical medium. This is the task of the network layer. The network layer is built
above the datalink layer. Network layer entities exchange packets.A packet is a finite
sequence of bytes that is transported by the datalink layer inside one or more frames.
A packet usually contains information about its origin and its destination, and usually
passes through several intermediate devices called routers on its way from its origin
to its destination.

:

Figure 2.31 The network layer

Most realisations of the network layer, including the internet, do not provide a reliable
service. However, many applications need to exchange information reliably and so
using the network layer service directly would be very difficult for them. Ensuring the
reliable delivery of the data produced by applications is the task of the transport layer.
Transport layer entities exchange segments. A segment is a finite sequence of bytes
that are transported inside one or more packets. A transport layer entity issues
segments (or sometimes part of segments) as Data.request to the underlying network
layer entity.

There are different types of transport layers. The most widely used transport layers on
the Internet are TCP ,that provides a reliable connection-oriented bytestream
transport service, and UDP ,that provides an unreliable connection-less transport
service.

:

Figure 2.32 The transport layer

The upper layer of our architecture is the Application layer. This layer includes all the
mechanisms and data structures that are necessary for the applications. We will use
Application Data Unit (ADU) to indicate the data exchanged between two entities of
the Application layer.
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Figure 2.33 The Application layer

2.2.2 The TCP/IP reference model
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In contrast with OSI, the TCP/IP community did not spend a lot of effort defining a
detailed reference model; in fact, the goals of the Internet architecture were only
documented after TCP/IP had been deployed [Clark88]. 1122 (http://tools.ietf.org/htm
l/rfc1122.htm), which defines the requirements for Internet hosts, mentions four
different layers. Starting from the top, these are :

• an Application layer
• a Transport layer
• an Internet layer which is equivalent to the network layer of our reference model
• a Link layer which combines the functionalities of the physical and datalink layers

of our five-layer reference model

Besides this difference in the lower layers, the TCP/IP reference model is very close to
the five layers that we use throughout this document.

2.2.3 The OSI reference model
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Compared to the five layers reference model explained above, the OSI reference
model defined in [X200] is divided in seven layers. The four lower layers are similar to
the four lower layers described above. The OSI reference model refined the
application layer by dividing it in three layers :

• the Session layer. The Session layer contains the protocols and mechanisms that
are necessary to organize and to synchronize the dialogue and to manage the
data exchange of presentation layer entities. While one of the main functions of
the transport layer is to cope with the unreliability of the network layer, the
session’s layer objective is to hide the possible failures of transport-level
connections to the upper layer higher. For this, the Session Layer provides
services that allow to establish a session-connection, to support orderly data
exchange (including mechanisms that allow to recover from the abrupt release of
an underlying transport connection), and to release the connection in an orderly
manner.

• the Presentation layer was designed to cope with the different ways of
representing information on computers. There are many differences in the way
computer store information. Some computers store integers as 32 bits field,
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others use 64 bits field and the same problem arises with floating point number.
For textual information, this is even more complex with the many different
character codes that have been used 4. The situation is even more complex when
considering the exchange of structured information such as database records. To
solve this problem, the Presentation layer contains provides for a common
representation of the data transferred. The ASN.1 notation was designed for the
Presentation layer and is still used today by some protocols.

• the Application layer that contains the mechanisms that do not fit in neither the
Presentation nor the Session layer. The OSI Application layer was itself further
divided in several generic service elements.

Note: Where are the missing layers in TCP/IP reference model ?
The TCP/IP reference places the Presentation and the Session layers implicitly
in the Application layer. The main motivations for simplifying the upper layers
in the TCP/IP reference model were pragmatic. Most Internet applications
started as prototypes that evolved and were later standardised. Many of these
applications assumed that they would be used to exchange information written
in American English and for which the 7 bits US-ASCII character code was
sufficient. This was the case for email, but as we’ll see in the next chapter,
email was able to evolve to support different character encodings. Some
applications considered the different data representations explicitly. For
example, ftp contained mechanisms to convert a file from one format to
another and the HTML language was defined to represent web pages. On the
other hand, many ISO specifications were developed by committees composed
of people who did not all participate in actual implementations. ISO spent a lot
of effort analysing the requirements and defining a solution that meets all of
these requirements. Unfortunately, some of the specifications were so
complex that it was difficult to implement them completely and the
standardisation bodies defined recommended profiles that contained the
implemented sets of options...

Figure 2.34 The seven layers of the OSI reference model

4. There is now a rough consensus for the greater use of the Unicode character format. Unicode can represent more than
100,000 different characters from the known written languages on Earth. Maybe one day, all computers will only use
Unicode to represent all their stored characters and Unicode could become the standard format to exchange characters,
but we are not yet at this stage today.
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2.3 Organisation of the book
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This document is organised according to the TCP/IP reference model and follows a top-
down approach. Most of the classical networking textbooks chose a bottom-up
approach, i.e. they first explained all the electrical and optical details of the physical
layer then moved to the datalink layer. This approach worked well during the infancy
of computer networks and until the late 1990s. At that time, most students were not
users of computer networks and it was useful to explain computer networks by
building the corresponding protocols from the simplest, in the physical layer, up to the
application layer. Today, all students are active users of Internet applications, and
starting to learn computer networking by looking at bits is not very motivating.
Starting from [KuroseRoss09], many textbooks and teachers have chosen a top-down
approach. This approach starts from applications such as email and web that students
already know and explores the different layers, starting from the application layer.
This approach works quite well with today’s students. The traditional bottom-up
approach could in fact be considered as an engineering approach as it starts from the
simple network that allows the exchange of bits, and explains how to combine
different protocols and mechanisms to build the most complex applications. The top-
down approach could on the other hand be considered as a scientific approach. Like
biologists, it starts from an existing (manbuilt) system and explores it layer by layer.

Besides the top-down versus bottom-up organisation, computer networking books
can either aim at having an in-depth coverage of a small number of topics, or at
having a limited coverage of a wide range of topics. Covering a wide range of topics is
interesting for introductory courses or for students who do not need a detailed
knowledge of computer networks. It allows the students to learn a little about
everything and then start from this basic knowledge later if they need to understand
computer networking in more detail. This books chose to cover, in detail, a smaller
number of topics than other textbooks. This is motivated by the fact that computer
networks often need to be pushed to their limits. Understanding the details of the
main networking protocols is important to be able to fully grasp how a network
behaves or extend it to provide innovative services 5.

The book is organised as follows: We first describe the application layer in chapter The
application Layer. Given the large number of Internet-based applications, it is of
course impossible to cover them all in detail. Instead we focus on three types of
Internet-based applications. We first study the Domain Name System (DNS) and then
explain some of the protocols involved in the exchange of electronic mail. The
discussion of the application layer ends with a description of the key protocols of the
world wide web.

All these applications rely on the transport layer that is explained in chapter The
transport layer. This is a key layer in today’s networks as it contains all the

5. A popular quote says, the devil is in the details (URL: http://en.wikipedia.org/wiki/The_Devil_is_in_the_details). This quote
reflects very well the operation of many network protocols, where the change of a single bit may have huge
consequences. In computer networks, understanding all the details is sometimes necessary.
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mechanisms necessary to provide a reliable delivery of data over an unreliable
network. We cover the transport layer by first developing a simple reliable transport
layer protocol and then explain the details of the TCP and UDP protocols used in TCP/
IP networks.

After the transport layer, we analyse the network layer in chapter The network layer.
This is also a very important layer as it is responsible for the delivery of packets from
any source to any destination through intermediate routers. In the network layer, we
describe the two possible organisations of the network layer and the routing protocols
based on link-state and distance vectors. Then we explain in detail the IPv4, IPv6, RIP,
OSPF and BGP protocols that are actually used in today’s Internet.

The last chapter of the book is devoted to the datalink layer. In chapter The datalink
layer and the Local Area Networks, we begin by explaining the principles of the datalink
layers on point-to-point links. Then, we focus on the Local Area Networks. We first
describe the Medium Access Control algorithms that allow multiple hosts to share one
transmission medium. We consider both opportunistic and deterministic techniques.
We then explain in detail two types of LANs that are important from a deployment
viewpoint today : Ethernet and WiFi.
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Chapter 3 The application Layer
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Application Layer is the most important and most visible layer in computer
networks. Applications reside in this layer and human users interact via those
applications through the network.

In this chapter, we first briefly describe the main principles of the application layer and
focus on the two most important application models : the client-server and the peer-
to-peer models. Then, we review in detail two families of protocols that have proved to
be very useful in the Internet : electronic mail and the protocols that allow access to
information on the world wide web. We also describe the Domain Name System that
allows humans to use user-friendly names while the hosts use 32 bits or 128 bits long
IP addresses.

3.1 Principles
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two important models used to organise a networked application. The first
and oldest model is the client-server model. In this model, a server provides services
to clients that exchange information with it. This model is highly asymmetrical : clients
send requests and servers perform actions and return responses. It is illustrated in
the figure below.

:

Figure 3.1 The client-server model

The client-server model was the first model to be used to develop networked
applications. This model comes naturally from the mainframes and minicomputers
that were the only networked computers used until the 1980s. A minicomputer (htt
p://en.wikipedia.org/wiki/Minicomputer) is a multi-user system that is used by tens or
more users at the same time. Each user interacts with the minicomputer by using a
terminal. Those terminals, were mainly a screen, a keyboard and a cable directly
connected to the minicomputer.
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There are various types of servers as well as various types of clients. A web server
provides information in response to the query sent by its clients. A print server prints
documents sent as queries by the client. An email server will forward towards their
recipient the email messages sent as queries while a music server will deliver the
music requested by the client. From the viewpoint of the application developer, the
client and the server applications directly exchange messages (the horizontal arrows
labelled Queries and Responses in the above figure), but in practice these messages are
exchanged thanks to the underlying layers (the vertical arrows in the above figure). In
this chapter, we focus on these horizontal exchanges of messages.

Networked applications do not exchange random messages. In order to ensure that
the server is able to understand the queries sent by a client, and also that the client is
able to understand the responses sent by the server, they must both agree on a set of
syntactical and semantic rules. These rules define the format of the messages
exchanged as well as their ordering. This set of rules is called an application-level
protocol.

An application-level protocol is similar to a structured conversation between humans.
Assume that Alice wants to know the current time but does not have a watch. If Bob
passes close by, the following conversation could take place :

• Alice : Hello
• Bob : Hello
• Alice : What time is it ?
• Bob : 11:55
• Alice : Thank you
• Bob : You’re welcome

Such a conversation succeeds if both Alice and Bob speak the same language. If Alice
meets Tchang who only speaks Chinese, she won’t be able to ask him the current time.
A conversation between humans can be more complex. For example, assume that
Bob is a security guard whose duty is to only allow trusted secret agents to enter a
meeting room. If all agents know a secret password, the conversation between Bob
and Trudy could be as follows :

• Bob : What is the secret password ?
• Trudy : 1234
• Bob : This is the correct password, you’re welcome

If Alice wants to enter the meeting room but does not know the password, her
conversation could be as follows :

• Bob : What is the secret password ?
• Alice : 3.1415
• Bob : This is not the correct password.

Human conversations can be very formal, e.g. when soldiers communicate with their
hierarchy, or informal such as when friends discuss. Computers that communicate are
more akin to soldiers and require well-defined rules to ensure an successful exchange
of information. There are two types of rules that define how information can be
exchanged between computers :
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• syntactical rules that precisely define the format of the messages that are
exchanged. As computers only process bits, the syntactical rules specify how
information is encoded as bit strings

• organisation of the information flow. For many applications, the flow of
information must be structured and there are precedence relationships between
the different types of information. In the time example above, Alice must greet
Bob before asking for the current time. Alice would not ask for the current time
first and greet Bob afterwards. Such precedence relationships exist in networked
applications as well. For example, a server must receive a username and a valid
password before accepting more complex commands from its clients.

Let us first discuss the syntactical rules. We will later explain how the information flow
can be organised by analysing real networked applications.

Application-layer protocols exchange two types of messages. Some protocols such as
those used to support electronic mail exchange messages expressed as strings or
lines of characters. As the transport layer allows hosts to exchange bytes, they need to
agree on a common representation of the characters. The first and simplest method
to encode characters is to use the ASCII table. RFC 20 provides the ASCII table that is
used by many protocols on the Internet. For example, the table defines the following
binary representations :

• A : 1000011b
• 0 : 0110000b
• z : 1111010b
• @ : 1000000b
• space : 0100000b

In addition, the ASCII table also defines several non-printable or control characters.
These characters were designed to allow an application to control a printer or a
terminal. These control characters include CR and LF, that are used to terminate a line,
and the Bell character which causes the terminal to emit a sound.

• carriage return (CR): 0001101b
• line feed (LF): 0001010b
• Bell: 0000111b

The ASCII characters are encoded as a seven bits field, but transmitted as an eight-bits
byte whose high order bit is usually set to 0. Bytes are always transmitted starting
from the high order or most significant bit.

Most applications exchange strings that are composed of fixed or variable numbers of
characters. A common solution to define the character strings that are acceptable is to
define them as a grammar using a Backus-Naur Form (BNF) such as the Augmented
BNF defined in RFC 5234 (http://tools.ietf.org/html/rfc5234.html). A BNF is a set of
production rules that generate all valid character strings. For example, consider a
networked application that uses two commands, where the user can supply a
username and a password. The BNF for this application could be defined as shown in
the figure below.
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:

Figure 3.2 A simple BNF specification

The example above defines several terminals and two commands : usercommand and
passwordcommand. The ALPHA terminal contains all letters in upper and lower case.
In the ALPHA rule, %x41 corresponds to ASCII character code 41 in hexadecimal, i.e.
capital A. The CR and LF terminals correspond to the carriage return and linefeed
control characters. The CRLF rule concatenates these two terminals to match the
standard end of line termination. The DIGIT terminal contains all digits. The SP
terminal corresponds to the white space characters. The usercommand is composed of
two strings separated by white space. In the ABNF rules that define the messages
used by Internet applications, the commands are case-insensitive. The rule “user”
corresponds to all possible cases of the letters that compose the word between
brackets, e.g. user, uSeR, USER, usER, ... A username contains at least one letter and up
to 8 letters. User names are case-sensitive as they are not defined as a string between
brackets. The password rule indicates that a password starts with a letter and can
contain any number of letters or digits. The white space and the control characters
cannot appear in a password defined by the above rule.

Besides character strings, some applications also need to exchange 16 bits and 32 bits
fields such as integers. A naive solution would have been to send the 16-or 32-bits
field as it is encoded in the host’s memory. Unfortunately, there are different methods
to store 16-or 32-bits fields in memory. Some CPUs store the most significant byte of a
16-bits field in the first address of the field while others store the least significant byte
at this location. When networked applications running on different CPUs exchange 16
bits fields, there are two possibilities to transfer them over the transport service :

• send the most significant byte followed by the least significant byte
• send the least significant byte followed by the most significant byte

The first possibility was named big-endian in a note written by Cohen [Cohen1980]
while the second was named little-endian. Vendors of CPUs that used big-endian in
memory insisted on using big-endian encoding in net-worked applications while
vendors of CPUs that used little-endian recommended the opposite. Several studies
were written on the relative merits of each type of encoding, but the discussion
became almost a religious issue [Cohen1980]. Eventually, the Internet chose the big-
endian encoding, i.e. multi-byte fields are always transmitted by sending the most
significant byte first, RFC 791 (http://tools.ietf.org/html/rfc791.html) refers to this
encoding as the network-byte order. Most libraries 1 used to write networked

1. For example, the htonl(3) (resp. ntohl(3)) function the standard C library converts a 32-bits unsigned integer from the
byte order used by the CPU to the network byte order (resp. from the network byte order to the CPU byte order). Similar
functions exist in other programming languages.
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applications contain functions to convert multi-byte fields from memory to the
network byte order and vice versa.

Besides 16 and 32 bit words, some applications need to exchange data structures
containing bit fields of various lengths. For example, a message may be composed of a
16 bits field followed by eight, one bit flags, a 24 bits field and two 8 bits bytes.
Internet protocol specifications will define such a message by using a representation
such as the one below. In this representation, each line corresponds to 32 bits and the
vertical lines are used to delineate fields. The numbers above the lines indicate the bit
positions in the 32-bits word, with the high order bit at position 0.

Figure 3.3 Message format

The message mentioned above will be transmitted starting from the upper 32-bits
word in network byte order. The first field is encoded in 16 bits. It is followed by eight
one bit flags (A-H), a 24 bits field whose high order byte is shown in the first line and
the two low order bytes appear in the second line followed by two one byte fields. This
ASCII representation is frequently used when defining binary protocols. We will use it
for all the binary protocols that are discussed in this book.

We will discuss several examples of application-level protocols in this chapter.

3.1.1 The peer-to-peer model
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The peer-to-peer model emerged during the last ten years as another possible
architecture for networked applications. In the traditional client-server model, hosts
act either as servers or as clients and a server serves a large number of clients. In the
peer-to-peer model, all hosts act as both servers and clients and they play both roles.
The peer-to-peer model has been used to develop various networked applications,
ranging from Internet telephony to file sharing or Internet-wide filesystems. A detailed
description of peer-to-peer applications may be found in [BYL2008]. Surveys of peer-
to-peer protocols and applications may be found in [AS2004] and [LCP2005].

3.1.2 The transport services
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Networked applications are built on top of the transport service. As explained in the
previous chapter, there are two main types of transport services :

• the connectionless or datagram service
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• the connection-oriented or byte-stream service

The connectionless service allows applications to easily exchange messages or Service
Data Units. On the Internet, this service is provided by the UDP protocol that will be
explained in the next chapter. The connectionless transport service on the Internet is
unreliable, but is able to detect transmission errors. This implies that an application
will not receive an SDU that has been corrupted due to transmission errors.

The connectionless transport service allows networked application to exchange
messages. Several networked applications may be running at the same time on a
single host. Each of these applications must be able to exchange SDUs with remote
applications. To enable these exchanges of SDUs, each networked application running
on a host is identified by the following information :

• the host on which the application is running
• the port number on which the application listens for SDUs

On the Internet, the port number is an integer and the host is identified by its network
address. As we will see in chapter The network layer there are two types of Internet
Addresses :

1. IP version 4 addresses that are 32 bits wide
2. IP version 6 addresses that are 128 bits wide

IPv4 addresses are usually represented by using a dotted decimal representation
where each decimal number corresponds to one byte of the address, e.g.
203.0.113.56. IPv6 addresses are usually represented as a set of hexadecimal
numbers separated by semicolons, e.g. 2001:db8:3080:2:217:f2ff:fed6:65c0. Today,
most Internet hosts have one IPv4 address. A small fraction of them also have an IPv6
address. In the future, we can expect that more and more hosts will have IPv6
addresses and that some of them will not have an IPv4 address anymore. A host that
only has an IPv4 address cannot communicate with a host having only an IPv6
address. The figure below illustrates two that are using the datagram service provided
by UDP on hosts that are using IPv4 addresses.

:

Figure 3.4 The connectionless or datagram service

The second transport service is the connection-oriented service. On the Internet, this
service is often called the byte-stream service as it creates a reliable byte stream
between the two applications that are linked by a transport connection. Like the
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datagram service, the networked applications that use the byte-stream service are
identified by the host on which they run and a port number. These hosts can be
identified by an IPv4 address, an IPv6 address or a name. The figure below illustrates
two applications that are using the byte-stream service provided by the TCP protocol
on IPv6 hosts. The byte stream service provided by TCP is reliable and bidirectional.

:

Figure 3.5 The connection-oriented or byte-stream service

3.2 Application-level protocols
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many protocols have been defined for networked applications. In this section, we
describe some of the important applications that are used on the Internet. We first
explain the Domain Name System (DNS) that enables hosts to be identified by human-
friendly names instead of the IPv4 or IPv6 addresses that are used by the network.
Then, we describe the operation of electronic mail, one of the first killer applications
on the global Internet, and the protocols used on world wide web.

3.2.1 The Domain Name System
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the early days of the Internet, there were only a few number of hosts (mainly
minicomputers) connected to the network. The most popular applications were
remote login and file transfer. By 1983, there were already five hundred hosts
attached to the Internet. Each of these hosts were identified by a unique IPv4 address.
Forcing human users to remember the IPv4 addresses of the remote hosts that they
want to use was not user-friendly. Human users prefer to remember names, and use
them when needed. Using names as aliases for addresses is a common technique in
Computer Science. It simplifies the development of applications and allows the
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developer to ignore the low level details. For example, by using a programming
language instead of writing machine code, a developer can write software without
knowing whether the variables that it uses are stored in memory or inside registers.

Because names are at a higher level than addresses, they allow (both in the example
of programming above, and on the Internet) to treat addresses as mere technical
identifiers, which can change at will. Only the names are stable. On today’s Internet,
where switching to another ISP means changing your IP addresses, the user-
friendliness of domain names is less important (they are not often typed by users) but
their stability remains a very important, may be their most important property.

The first solution that allowed applications to use names was the hosts.txt file. This file
is similar to the symbol table found in compiled code. It contains the mapping
between the name of each Internet host and its associated IP address 2. It was
maintained by SRI (http://www.sri.com/) International that coordinated the Network
Information Center (NIC). When a new host was connected to the network, the system
administrator had to register its name and IP address at the NIC. The NIC updated the
hosts.txt file on its server. All Internet hosts regularly retrieved the updated hosts.txt file
from the server maintained by SRI. This file was stored at a well-known location on
each Internet host (see RFC 952 (http://tools.ietf.org/html/rfc952.html)) and networked
applications could use it to find the IP address corresponding to a name.

A hosts.txt file can be used when there are up to a few hundred hosts on the network.
However, it is clearly not suitable for a network containing thousands or millions of
hosts. A key issue in a large network is to define a suitable naming scheme. The
ARPANet initially used a flat naming space, i.e. each host was assigned a unique name.
To limit collisions between names, these names usually contained the name of the
institution and a suffix to identify the host inside the institution (a kind of poor man’s
hierarchical naming scheme). On the ARPANet few institutions had several hosts
connected to the network.

However, the limitations of a flat naming scheme became clear before the end of the
ARPANet and RFC 819 (http://tools.ietf.org/html/rfc819.html) proposed a hierarchical
naming scheme. While RFC 819 discussed the possibility of organising the names as a
directed graph, the Internet opted eventually for a tree structure capable of containing
all names. In this tree, the top-level domains are those that are directly attached to the
root. The first top-level domain was .arpa 3. This top-level name was initially added as a
suffix to the names of the hosts attached to the ARPANet and listed in the hosts.txt file.
In 1984, the .gov, .edu, .com, .mil and .org generic top-level domain names were added
and RFC 1032 (http://tools.ietf.org/html/rfc1032.html) proposed the utilisation of the
two letter ISO-3166 country codes as top-level domain names. Since ISO-3166 defines a
two letter code for each country recognised by the United Nations, this allowed all
countries to automatically have a top-level domain. These domains include .be for
Belgium, .fr for France, .us for the USA, .ie for Ireland or .tv for Tuvalu, a group of small
islands in the Pacific and .tm for Turkmenistan. Today, the set of top-level domain-
names is managed by the Internet Corporation for Assigned Names and Numbers
(ICANN). Recently, ICANN added a dozen of generic top-level domains that are not

2. The hosts.txt file is not maintained anymore. A historical snapshot retrieved on April 15th, 1984 is available from
http://ftp.univie.ac.at/netinfo/netinfo/hosts.txt

3. See http://www.donelan.com/dnstimeline.html for a time line of DNS related developments.
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related to a country and the .cat top-level domain has been registered for the Catalan
language. There are ongoing discussions within ICANN to increase the number of top-
level domains.

Each top-level domain is managed by an organisation that decides how sub-domain
names can be registered. Most top-level domain names use a first-come first served
system, and allow anyone to register domain names, but there are some exceptions.
For example, .gov is reserved for the US government, .int is reserved for international
organisations and names in the .ca are mainly reserved (http://en.wikipedia.org/wiki/.c
a) for companies or users who are present in Canada.

:

Figure 3.6 The tree of domain names

RFC 1035 (http://tools.ietf.org/html/rfc1035.html) recommended the following BNF for
fully qualified domain names, to allow host names with a syntax which works with all
applications (the domain names themselves have a much richer syntax).

:

Figure 3.7 BNF of the fully qualified host names

This grammar specifies that a host name is an ordered list of labels separated by the
dot (.) character. Each label can contain letters, numbers and the hyphen character (-)
4. Fully qualified domain names are read from left to right. The first label is a
hostname or a domain name followed by the hierarchy of domains and ending with
the root implicitly at the right. The top-level domain name must be one of the
registered TLDs 5. For example, in the above figure, www.whitehouse.gov corresponds
to a host named www inside the whitehouse domain that belongs to the gov top-level
domain. info.ucl.ac.be corresponds to the info domain inside the ucl domain that is
included in the ac sub-domain of the be top-level domain.

This hierarchical naming scheme is a key component of the Domain Name System
(DNS). The DNS is a distributed database that contains mappings between fully

4. This specification evolved later to support domain names written by using other character sets than us-ASCII RFC 5890.
This extension is important to support languages other than English, but a detailed discussion is outside the scope of
this document.

5. The official list of top-level domain names is maintained by :term:‘IANA at http://data.iana.org/TLD/tlds-alpha-by-
domain.txt Additional information about these domains may be found at http://en.wikipedia.org/wiki/
List_of_Internet_top-level_domains
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qualified domain names and IP addresses. The DNS uses the client-server model. The
clients are hosts that need to retrieve the mapping for a given name. Each nameserver
stores part of the distributed database and answers the queries sent by clients. There
is at least one nameserver that is responsible for each domain. In the figure below,
domains are represented by circles and there are three hosts inside domain dom (h1,
h2 and h3) and three hosts inside domain a.sdom1.dom. As shown in the figure below,
a sub-domain may contain both host names and sub-domains.

Figure 3.8 A simple tree of domain names

A nameserver that is responsible for domain dom can directly answer the following
queries :

• the IP address of any host residing directly inside domain dom (e.g. h2.dom in the
figure above)

• the nameserver(s) that are responsible for any direct sub-domain of domain dom
(i.e. sdom1.dom and sdom2.dom in the figure above, but not z.sdom1.dom)

To retrieve the mapping for host h2.dom, a client sends its query to the name server
that is responsible for domain .dom. The name server directly answers the query. To
retrieve a mapping for h3.a.sdom1.dom a DNS client first sends a query to the name
server that is responsible for the .dom domain. This nameserver returns the
nameserver that is responsible for the sdom1.dom domain. This nameserver can now
be contacted to obtain the nameserver that is responsible for the a.sdom1.dom
domain. This nameserver can be contacted to retrieve the mapping for the
h3.a.sdom1.dom name. Thanks to this organisation of the nameservers, it is possible for
a DNS client to obtain the mapping of any host inside the .dom domain or any of its
subdomains. To ensure that any DNS client will be able to resolve any fully qualified
domain name, there are special nameservers that are responsible for the root of the
domain name hierarchy. These nameservers are called root nameserver. There are
currently about a dozen root nameservers 6.

6. There are currently 13 root servers. In practice, some of these root servers are themselves implemented as a set of
distinct physical servers. See http://www.root-servers.org/ for more information about the physical location of these
servers.
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Each root nameserver maintains the list 7 of all the nameservers that are responsible
for each of the top-level domain names and their IP addresses 8. All root nameservers
are synchronised and provide the same answers. By querying any of the root
nameservers, a DNS client can obtain the nameserver that is responsible for any top-
level-domain name. From this nameserver, it is possible to resolve any domain name.

To be able to contact the root nameservers, each DNS client must know their IP
addresses. This implies, that DNS clients must maintain an up-to-date list of the IP
addresses of the root nameservers 9. Without this list, it is impossible to contact the
root nameservers. Forcing all Internet hosts to maintain the most recent version of
this list would be difficult from an operational point of view. To solve this problem, the
designers of the DNS introduced a special type of DNS server : the DNS resolvers. A
resolver is a server that provides the name resolution service for a set of clients. A
network usually contains a few resolvers. Each host in these networks is configured to
send all its DNS queries via one of its local resolvers. These queries are called
recursive queries as the resolver must recurse through the hierarchy of nameservers
to obtain the answer.

DNS resolvers have several advantages over letting each Internet host query directly
nameservers. Firstly, regular Internet hosts do not need to maintain the up-to-date list
of the IP addresses of the root servers. Secondly, regular Internet hosts do not need to
send queries to nameservers all over the Internet. Furthermore, as a DNS resolver
serves a large number of hosts, it can cache the received answers. This allows the
resolver to quickly return answers for popular DNS queries and reduces the load on
all DNS servers [JSBM2002].

The last component of the Domain Name System is the DNS protocol. The DNS
protocol runs above both the datagram service and the bytestream services. In
practice, the datagram service is used when short queries and responses are
exchanged, and the bytestream service is used when longer responses are expected.
In this section, we will only discuss the utilisation of the DNS protocol above the
datagram service. This is the most frequent utilisation of the DNS.

DNS messages are composed of five parts that are named sections in RFC 1035 (htt
p://tools.ietf.org/html/rfc1035.html). The first three sections are mandatory and the
last two sections are optional. The first section of a DNS message is its Header. It
contains information about the type of message and the content of the other sections.
The second section contains the Question sent to the name server or resolver. The
third section contains the Answer to the Question. When a client sends a DNS query,
the Answer section is empty. The fourth section, named Authority, contains
information about the servers that can provide an authoritative answer if required.
The last section contains additional information that is supplied by the resolver or
server but was not requested in the question.

7. A copy of the information maintained by each root nameserver is available at http://www.internic.net/zones/root.zone
8. Until February 2008, the root DNS servers only had IPv4 addresses. IPv6 addresses were added to the root DNS servers

slowly to avoid creating problems as discussed in http://www.icann.org/en/committees/security/sac018.pdf In 2010,
several DNS root servers are still not reachable by using IPv6.

9. The current list of the IP addresses of the root nameservers is maintained at http://www.internic.net/zones/named.root .
These IP addresses are stable and root nameservers seldom change their IP addresses. DNS resolvers must however
maintain an up-to-date copy of this file.
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The header of DNS messages is composed of 12 bytes and its structure is shown in
the figure below.

The ID (identifier) is a 16-bits random value chosen by the client. When a client sends a
question to a DNS server, it remembers the question and its identifier. When a server
returns an answer, it returns in the ID field the identifier chosen by the client. Thanks
to this identifier, the client can match the received answer with the question that it
sent.

:

Figure 3.9 DNS header

The QR flag is set to 0 in DNS queries and 1 in DNS answers. The Opcode is used to
specify the type of query. For instance, a standard query is when a client sends a
name and the server returns the corresponding data and an update request is when
the client sends a name and new data and the server then updates its database.

The AA bit is set when the server that sent the response has authority for the domain
name found in the question section. In the original DNS deployments, two types of
servers were considered : authoritative servers and non-authoritative servers. The
authoritative servers are managed by the system administrators responsible for a
given domain. They always store the most recent information about a domain. Non-
authoritative servers are servers or resolvers that store DNS information about
external domains without being managed by the owners of a domain. They may thus
provide answers that are out of date. From a security point of view, the authoritative
bit is not an absolute indication about the validity of an answer. Securing the Domain
Name System is a complex problem that was only addressed satisfactorily recently by
the utilisation of cryptographic signatures in the DNSSEC extensions to DNS described
in RFC 4033 (http://tools.ietf.org/html/rfc4033.html). However, these extensions are
outside the scope of this chapter.

The RD (recursion desired) bit is set by a client when it sends a query to a resolver.
Such a query is said to be recursive because the resolver will recurse through the DNS
hierarchy to retrieve the answer on behalf of the client. In the past, all resolvers were
configured to perform recursive queries on behalf of any Internet host. However, this
exposes the resolvers to several security risks. The simplest one is that the resolver
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could become overloaded by having too many recursive queries to process. As of this
writing, most resolvers 10 only allow recursive queries from clients belonging to their
company or network and discard all other recursive queries. The RA bit indicates
whether the server supports recursion. The RCODE is used to distinguish between
different types of errors. See RFC 1035 (http://tools.ietf.org/html/rfc1035.html) for
additional details. The last four fields indicate the size of the Question, Answer, Authority
and Additional sections of the DNS message.

The last four sections of the DNS message contain Resource Records (RR). All RRs have
the same top level format shown in the figure below.

In a Resource Record (RR), the Name indicates the name of the node to which this
resource record pertains. The two bytes Type field indicate the type of resource
record. The Class field was used to support the utilisation of the DNS in other
environments than the Internet.

The TTL field indicates the lifetime of the Resource Record in seconds. This field is set
by the server that returns an answer and indicates for how long a client or a resolver
can store the Resource Record inside its cache. A long TTL indicates a stable RR. Some
companies use short TTL values for mobile hosts and also for popular servers.

Figure 3.10 DNS Resource Records

For example, a web hosting company that wants to spread the load over a pool of
hundred servers can configure its nameservers to return different answers to
different clients. If each answer has a small TTL, the clients will be forced to send DNS
queries regularly. The nameserver will reply to these queries by supplying the address
of the less loaded server.

The RD Length field is the length of the RData field that contains the information of the
type specified in the Type field.

10. Some DNS resolvers allow any host to send queries. OpenDNS and GoogleDNS are example of open resolvers.
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Several types of DNS RR are used in practice. The A type is used to encode the IPv4
address that corresponds to the specified name. The AAAA type is used to encode the
IPv6 address that corresponds to the specified name. A NS record contains the name
of the DNS server that is responsible for a given domain. For example, a query for the
A record associated to the www.ietf.org name returns the following answer.

This answer contains several pieces of information. First, the name www.ietf.org is
associated to IP address 64.170.98.32. Second, the ietf.org domain is managed by six
different nameservers. Three of these nameservers are reachable via IPv4 and IPv6.
Two of them are not reachable via IPv6 and ns0.ietf.org is only reachable via IPv6. A
query for the AAAA record associated to www.ietf.org returns 2001:1890:1112:1::20
and the same authority and additional sections.

CNAME (or canonical names) are used to define aliases. For example www.example.com
could be a CNAME for pc12.example.com that is the actual name of the server on
which the web server for www.example.com runs.

Note: Reverse DNS and in-addr.arpa
The DNS is mainly used to find the IP address that correspond to a given name.
However, it is sometimes useful to obtain the name that corresponds to an IP
address. This done by using the PTR (pointer) RR. The RData part of a PTR RR
contains the name while the Name part of the RR contains the IP address
encoded in the in-addr.arpa domain. IPv4 addresses are encoded in the in-
addr.arpa by reversing the four digits that compose the dotted decimal
representation of the address. For example, consider IPv4 address 192.0.2.11.
The hostname associated to this address can be found by requesting the PTR
RR that corresponds to 11.2.0.192.in-addr.arpa. A similar solution is used to
support IPv6 addresses, see RFC 3596.
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:

Figure 3.11 Query for the A record of www.ietf.org

An important point to note regarding the Domain Name System is its extensibility.
Thanks to the Type and RDLength fields, the format of the Resource Records can
easily be extended. Furthermore, a DNS implementation that receives a new Resource
Record that it does not understand can ignore the record while still being able to
process the other parts of the message. This allows, for example, a DNS server that
only supports IPv4 to ignore the IPv6 addresses listed in the DNS reply for
www.ietf.org while still being able to correctly parse the Resource Records that it
understands. This extensibility allowed the Domain Name System to evolve over the
years while still preserving the backward compatibility with already deployed DNS
implementations.

3.2.2 Electronic mail
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Electronic mail, or email, is a very popular application in computer networks such as
the Internet. Email appeared (http://openmap.bbn.com/~tomlinso/ray/firstemailfram
e.html) in the early 1970s and allows users to exchange text based messages. Initially,
it was mainly used to exchange short messages, but over the years its usage has
grown. It is now not only used to exchange small, but also long messages that can be
composed of several parts as we will see later.

Before looking at the details of Internet email, let us consider a simple scenario
illustrated in the figure below, where Alice sends an email to Bob. Alice prepares her
email by using an email clients (http://en.wikipedia.org/wiki/Comparison_of_email_clie
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nts) and sends it to her email server (http://en.wikipedia.org/wiki/Comparison_of_mai
l_servers). Alice’s email server extracts Bob’s address from the email and delivers the
message to Bob’s server. Bob retrieves Alice’s message on his server and reads it by
using his favourite email client or through his webmail interface.

:

Figure 3.12 Simplified architecture of the Internet email

The email system that we consider in this book is composed of four components :

• a message format, that defines how valid email messages are encoded
• protocols, that allow hosts and servers to exchange email messages
• client software, that allows users to easily create and read email messages
• software, that allows servers to efficiently exchange email messages

We will first discuss the format of email messages followed by the protocols that are
used on today’s Internet to exchange and retrieve emails. Other email systems have
been developed in the past [Bush1993] [Genilloud1990] [GC2000], but today most
email solutions have migrated to the Internet email. Information about the software
that is used to compose and deliver emails may be found on wikipedia (http://en.wikip
edia.org/) among others, for both email clients and email servers. More detailed
information about the full Internet Mail Architecture may be found in RFC 5598 (htt
p://tools.ietf.org/html/rfc5598.html).

Email messages, like postal mail, are composed of two parts :

• a header that plays the same role as the letterhead in regular mail. It contains
metadata about the message.

• the body that contains the message itself.

Email messages are entirely composed of lines of ASCII characters. Each line can
contain up to 998 characters and is terminated by the CR and LF control characters RF
C 5322 (http://tools.ietf.org/html/rfc5322.html). The lines that compose the header
appear before the message body. An empty line, containing only the CR and LF
characters, marks the end of the header. This is illustrated in the figure below.
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:

Figure 3.13 The structure of email messages

The email header contains several lines that all begin with a keyword followed by a
colon and additional information. The format of email messages and the different
types of header lines are defined in RFC 5322. Two of these header lines are
mandatory and must appear in all email messages :

• The sender address. This header line starts with From:. This contains the
(optional) name of the sender followed by its email address between < and >.
Email addresses are always composed of a username followed by the @ sign and
a domain name.

• The date. This header line starts with Date:. RFC 5322 (http://tools.ietf.org/html/rfc
5322.html) precisely defines the format used to encode a date.

Other header lines appear in most email messages. The Subject: header line allows
the sender to indicate the topic discussed in the email. Three types of header lines can
be used to specify the recipients of a message :

• the To: header line contains the email addresses of the primary recipients of the
message 11. Several addresses can be separated by using commas.

• the cc: header line is used by the sender to provide a list of email addresses that
must receive a carbon copy of the message. Several addresses can be listed in
this header line, separated by commas. All recipients of the email message
receive the To: and cc: header lines.

• the bcc: header line is used by the sender to provide a list of comma separated
email addresses that must receive a blind carbon copy of the message. The bcc:
header line is not delivered to the recipients of the email message.

A simple email message containing the From:, To:, Subject: and Date: header lines and
two lines of body is shown below.

11. It could be surprising that the To: is not mandatory inside an email message. While most email messages will contain
this header line an email that does not contain a To: header line and that relies on the bcc: to specify the recipient is
valid as well.
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From: Bob Smith <Bob@machine.example>

To: Alice Doe <alice@example.net>, Alice Smith

<Alice@machine.example>

Subject: Hello

Date: Mon, 8 Mar 2010 19:55:06 -0600

This is the "Hello world" of email messages.

This is the second line of the body

Note the empty line after the Date: header line; this empty line contains only the CR
and LF characters, and marks the boundary between the header and the body of the
message.

Several other optional header lines are defined in RFC 5322 (http://tools.ietf.org/html/r
fc5322.html) and elsewhere 12. Furthermore, many email clients and servers define
their own header lines starting from X-. Several of the optional header lines defined in
RFC 5322 (http://tools.ietf.org/html/rfc5322.html) are worth being discussed here :

• the Message-Id: header line is used to associate a “unique” identifier to each email.
Email identifiers are usually structured like string@domain where string is a
unique character string or sequence number chosen by the sender of the email
and domain the domain name of the sender. Since domain names are unique, a
host can generate globally unique message identifiers concatenating a locally
unique identifier with its domain name.

• the In-reply-to: is used when a message was created in reply to a previous
message. In this case, the end of the In-reply-to: line contains the identifier of the
original message.

• the Received: header line is used when an email message is processed by several
servers before reaching its destination. Each intermediate email server adds a
Received: header line. These header lines are useful to debug problems in
delivering email messages.

The figure below shows the header lines of one email message. The message
originated at a host named wira.firstpr.com.au and was received by
smtp3.sgsi.ucl.ac.be. The Received: lines have been wrapped for readability.

Received: from smtp3.sgsi.ucl.ac.be (Unknown [10.1.5.3])

by mmp.sipr-dc.ucl.ac.be

(Sun Java(tm) System Messaging Server 7u3-15.01 64bit (built Feb

12 2010))

with ESMTP id <0KYY00L85LI5JLE0@mmp.sipr-dc.ucl.ac.be>; Mon,

08 Mar 2010 11:37:17 +0100 (CET)

Received: from mail.ietf.org (mail.ietf.org [64.170.98.32])

by smtp3.sgsi.ucl.ac.be (Postfix) with ESMTP id B92351C60D7; Mon,

08 Mar 2010 11:36:51 +0100 (CET)

12. The list of all standard email header lines may be found at http://www.iana.org/assignments/message-headers/
message-header-index.html
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Received: from [127.0.0.1] (localhost [127.0.0.1]) by core3.amsl.com

(Postfix)

with ESMTP id F066A3A68B9; Mon, 08 Mar 2010 02:36:38 -0800 (PST)

Received: from localhost (localhost [127.0.0.1]) by core3.amsl.com

(Postfix)

with ESMTP id A1E6C3A681B for <rrg@core3.amsl.com>; Mon,

08 Mar 2010 02:36:37 -0800 (PST)

Received: from mail.ietf.org ([64.170.98.32])

by localhost (core3.amsl.com [127.0.0.1]) (amavisd-new, port

10024)

with ESMTP id erw8ih2v8VQa for <rrg@core3.amsl.com>; Mon,

08 Mar 2010 02:36:36 -0800 (PST)

Received: from gair.firstpr.com.au (gair.firstpr.com.au

[150.101.162.123])

by core3.amsl.com (Postfix) with ESMTP id 03E893A67ED for

<rrg@irtf.org>; Mon,

08 Mar 2010 02:36:35 -0800 (PST)

Received: from [10.0.0.6] (wira.firstpr.com.au [10.0.0.6])

by gair.firstpr.com.au (Postfix) with ESMTP id D0A49175B63; Mon,

08 Mar 2010 21:36:37 +1100 (EST)

Date: Mon, 08 Mar 2010 21:36:38 +1100

From: Robin Whittle <rw@firstpr.com.au>

Subject: Re: [rrg] Recommendation and what happens next

In-reply-to: <C7B9C21A.4FAB%tony.li@tony.li>

To: RRG <rrg@irtf.org>

Message-id: <4B94D336.7030504@firstpr.com.au>

Message content removed

Initially, email was used to exchange small messages of ASCII text between computer
scientists. However, with the growth of the Internet, supporting only ASCII text
became a severe limitation for two reasons. First of all, non-English speakers wanted
to write emails in their native language that often required more characters than
those of the ASCII character table. Second, many users wanted to send other content
than just ASCII text by email such as binary files, images or sound.

To solve this problem, the IETF (http://tools.ietf.org/html/rfc5598.html) developed the
Multipurpose Internet Mail Extensions (MIME). These extensions were carefully
designed to allow Internet email to carry non-ASCII characters and binary files without
breaking the email servers that were deployed at that time. This requirement for
backward compatibility forced the MIME designers to develop extensions to the
existing email message format RFC 822 (http://tools.ietf.org/html/rfc822.html) instead
of defining a completely new format that would have been better suited to support
the new types of emails.
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RFC 2045 (http://tools.ietf.org/html/rfc2045.html) defines three new types of header
lines to support MIME :

• The MIME-Version: header indicates the version of the MIME specification that was
used to encode the email message. The current version of MIME is 1.0. Other
versions of MIME may be defined in the future. Thanks to this header line, the
software that processes email messages will be able to adapt to the MIME version
used to encode the message. Messages that do not contain this header are
supposed to be formatted according to the original RFC 822 (http://tools.ietf.org/h
tml/rfc822.html) specification.

• The Content-Type: header line indicates the type of data that is carried inside the
message (see below)

• The Content-Transfer-Encoding: header line is used to specify how the message has
been encoded. When MIME was designed, some email servers were only able to
process messages containing characters encoded using the 7 bits ASCII character
set. MIME allows the utilisation of other character encodings.

• Inside the email header, the Content-Type: header line indicates how the MIME
email message is structured. RFC 2046 (http://tools.ietf.org/html/rfc2046.html)
defines the utilisation of this header line. The two most common structures for
MIME messages are :

• Content-Type: multipart/mixed. This header line indicates that the MIME message
contains several independent parts. For example, such a message may contain a
part in plain text and a binary file.

• Content-Type: multipart/alternative. This header line indicates that the MIME
message contains several representations of the same information. For example,
a multipart/alternative message may contain both a plain text and an HTML
version of the same text.

To support these two types of MIME messages, the recipient of a message must be
able to extract the different parts from the message. In RFC 822 (http://tools.ietf.org/h
tml/rfc822.html), an empty line was used to separate the header lines from the body.
Using an empty line to separate the different parts of an email body would be difficult
as the body of email messages often contains one or more empty lines. Another
possible option would be to define a special line, e.g. *-LAST_LINE-* to mark the
boundary between two parts of a MIME message. Unfortunately, this is not possible as
some emails may contain this string in their body (e.g. emails sent to students to
explain the format of MIME messages). To solve this problem, the Content-Type:
header line contains a second parameter that specifies the string that has been used
by the sender of the MIME message to delineate the different parts. In practice, this
string is often chosen randomly by the mail client.

The email message below, copied from RFC 2046 (http://tools.ietf.org/html/rfc2046.ht
ml) shows a MIME message containing two parts that are both in plain text and
encoded using the ASCII character set. The string simple boundary is defined in the
Content-Type: header as the marker for the boundary between two successive parts.
Another example of MIME messages may be found in RFC 2046 (http://tools.ietf.org/ht
ml/rfc2046.html).
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Date: Mon, 20 Sep 1999 16:33:16 +0200

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Test

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="simple boundary"

preamble, to be ignored

--simple boundary

Content-Type: text/plain; charset=us-ascii

First part

--simple boundary

Content-Type: text/plain; charset=us-ascii

Second part

--simple boundary

The Content-Type: header can also be used inside a MIME part. In this case, it indicates
the type of data placed in this part. Each data type is specified as a type followed by a
subtype. A detailed description may be found in RFC 2046 (http://tools.ietf.org/html/rf
c2046.html). Some of the most popular Content-Type: header lines are :

• text. The message part contains information in textual format. There are several
subtypes : text/plain for regular ASCII text, text/html defined in RFC 2854 (http://to
ols.ietf.org/html/rfc2854.html) for documents in HTML format or the text/
enriched format defined in RFC 1896 (http://tools.ietf.org/html/rfc1896.html). The
Content-Type: header line may contain a second parameter that specifies the
character set used to encode the text. charset=us-ascii is the standard ASCII
character table. Other frequent character sets include charset=UTF8 or
charset=iso-8859-1. The list of standard character sets (http://www.iana.org/assign
ments/character-sets) is maintained by IANA

• image. The message part contains a binary representation of an image. The
subtype indicates the format of the image such as gif (http://en.wikipedia.org/wik
i/Graphics_Interchange_Format), jpg (http://en.wikipedia.org/wiki/Jpeg) or png (htt
p://en.wikipedia.org/wiki/Portable_Network_Graphics).

• audio. The message part contains an audio clip. The subtype indicates the format
of the audio clip like wav (http://en.wikipedia.org/wiki/Wav) or mp3 (http://en.wiki
pedia.org/wiki/Mp3)

• video. The message part contains a video clip. The subtype indicates the format of
the video clip like avi (http://en.wikipedia.org/wiki/Audio_Video_Interleave) or mp
4 (http://en.wikipedia.org/wiki/Mp4)

• application. The message part contains binary information that was produced by
the particular application listed as the subtype. Email clients use the subtype to
launch the application that is able to decode the received binary information.
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Note: From ASCII to Unicode
The first computers used different techniques to represent characters in
memory and on disk. During the 1960s, computers began to exchange
information via tape or telephone lines. Unfortunately, each vendor had its
own proprietary character set and exchanging data between computers from
different vendors was often difficult. The 7 bits ASCII character table RFC 20 (h
ttp://tools.ietf.org/html/rfc20.html) set was adopted by several vendors and by
many Internet protocols. However, ASCII became a problem with the
internationalisation of the Internet and the desire of more and more users to
use character sets that support their own written language. A first attempt at
solving this problem was the definition of the ISO-8859 (http://en.wikipedia.or
g/wiki/ISO_8859) character sets by ISO. This family of standards specified
various character sets that allowed the representation of many European
written languages by using 8 bits characters. Unfortunately, an 8-bits
character set is not sufficient to support some widely used languages, such as
those used in Asian countries. Fortunately, at the end of the 1980s, several
computer scientists proposed to develop a standard that supports all written
languages used on Earth today. The Unicode standard [Unicode] has now been
adopted by most computer and software vendors. For example, Java uses
Unicode natively to manipulate characters, Python can handle both ASCII and
Unicode characters. Internet applications are slowly moving towards complete
support for the Unicode character sets, but moving from ASCII to Unicode is an
important change that can have a huge impact on current deployed
implementations. See for example, the work to completely internationalise
email RFC 4952 (http://tools.ietf.org/html/rfc4952.html) and domain names R
FC 5890 (http://tools.ietf.org/html/rfc5890.html).

The last MIME header line is Content-Transfer-Encoding:. This header line is used after
the Content-Type: header line, within a message part, and specifies how the message
part has been encoded. The default encoding is to use 7 bits ASCII. The most frequent
encodings are quoted-printable and Base64. Both support encoding a sequence of
bytes into a set of ASCII lines that can be safely transmitted by email servers. quoted-
printable is defined in RFC 2045 (http://tools.ietf.org/html/rfc2045.html). We briefly
describe base64 which is defined in RFC 2045 (http://tools.ietf.org/html/rfc2045.html)
and RFC 4648 (http://tools.ietf.org/html/rfc4648.html).

Base64 divides the sequence of bytes to be encoded into groups of three bytes (with
the last group possibly being partially filled). Each group of three bytes is then divided
into four six-bit fields and each six bit field is encoded as a character from the table
below.

51

http://tools.ietf.org/html/rfc20.html
http://tools.ietf.org/html/rfc20.html
http://tools.ietf.org/html/rfc20.html
http://en.wikipedia.org/wiki/ISO_8859
http://en.wikipedia.org/wiki/ISO_8859
http://en.wikipedia.org/wiki/ISO_8859
http://tools.ietf.org/html/rfc4952.html
http://tools.ietf.org/html/rfc4952.html
http://tools.ietf.org/html/rfc5890.html
http://tools.ietf.org/html/rfc5890.html
http://tools.ietf.org/html/rfc5890.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc4648.html
http://tools.ietf.org/html/rfc4648.html


Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z

1 B 18 S 35 j 52 0

2 C 19 T 36 k 53 1

3 D 20 U 37 l 54 2

4 E 21 V 38 m 55 3

5 F 22 W 39 n 56 4

6 G 23 X 40 o 57 5

7 H 24 Y 41 p 58 6

8 I 25 Z 42 q 59 7

9 J 26 a 43 r 60 8

10 K 27 b 44 s 61 9

11 L 28 c 45 t 62 +

12 M 29 d 46 u 63 /

13 N 30 e 47 v

14 O 31 f 48 w

15 P 32 g 49 x

16 Q 33 h 50 y

Table 3.1 Value and Encoding

The example below, from RFC 4648 (http://tools.ietf.org/html/rfc4648.html), illustrates
the Base64 encoding.
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Input
data

8-bit

6-bit

Decimal

Encoding

0x14fb9c06d97e

00010100 11111011 10011100 00000011 11011001
01111110

000101 001111 101110 011100 000000 111101 100101
111110

5 15 46 28 0 61 37 62

F P u c A 9 l +

Table 3.2 Base64 encoding

The last point to be discussed about base64 is what happens when the length of the
sequence of bytes to be encoded is not a multiple of three. In this case, the last group
of bytes may contain one or two bytes instead of three. Base64 reserves the =
character as a padding character. This character is used twice when the last group
contains two bytes and once when it contains one byte as illustrated by the two
examples below.

Input
data

8-bit

6-bit

Decimal

Encoding

0x14

00010100

000101 000000

5 0

F A = =

Table 3.3 Example of padding character

Input data

8-bit

6-bit

Decimal

Encoding

0x14b9

00010100 11111011

000101 001111 101100

5 15 44

F P s =

Now that we have explained the format of the email messages, we can discuss how
these messages can be exchanged through the Internet. The figure below illustrates
the protocols that are used when Alice sends an email message to Bob. Alice prepares
her email with an email client or on a webmail interface. To send her email to Bob,
Alice‘s client will use the Simple Mail Transfer Protocol (SMTP) to deliver her message
to her SMTP server. Alice‘s email client is configured with the name of the default
SMTP server for her domain. There is usually at least one SMTP server per domain. To
deliver the message, Alice‘s SMTP server must find the SMTP server that contains
Bob‘s mailbox. This can be done by using the Mail eXchange (MX) records of the DNS.
A set of MX records can be associated to each domain. Each MX record contains a
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numerical preference and the fully qualified domain name of a SMTP server that is
able to deliver email messages destined to all valid email addresses of this domain.
The DNS can return several MX records for a given domain. In this case, the server
with the lowest preference is used first. If this server is not reachable, the second most
preferred server is used etc. Bob‘s SMTP server will store the message sent by Alice
until Bob retrieves it using a webmail interface or protocols such as the Post Office
Protocol (POP) or the Internet Message Access Protocol (IMAP).

:

Figure 3.14 Email delivery protocols

The Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) defined in RFC 5321 (http://tools.ietf.org/ht
ml/rfc5321.html) is a client-server protocol. The SMTP specification distinguishes
between five types of processes involved in the delivery of email messages. Email
messages are composed on a Mail User Agent (MUA). The MUA is usually either an
email client or a webmail. The MUA sends the email message to a Mail Submission
Agent (MSA). The MSA processes the received email and forwards it to the Mail
Transmission Agent (MTA). The MTA is responsible for the transmission of the email,
directly or via intermediate MTAs to the MTA of the destination domain. This
destination MTA will then forward the message to the Mail Delivery Agent (MDA)
where it will be accessed by the recipient’s MUA. SMTP is used for the interactions
between MUA and MSA 13, MSA-MTA and MTA-MTA.

SMTP is a text-based protocol like many other application-layer protocols on the
Internet. It relies on the byte-stream service. Servers listen on port 25. Clients send
commands that are each composed of one line of ASCII text terminated by CR+LF.
Servers reply by sending ASCII lines that contain a three digit numerical error/success
code and optional comments.

The SMTP protocol, like most text-based protocols, is specified as a BNF. The full BNF is
defined in RFC 5321 (http://tools.ietf.org/html/rfc5321.html). The main SMTP
commands are defined by the BNF rules shown in the figure below.

13. During the last years, many Internet Service Providers, campus and enterprise networks have deployed SMTP extensions
RFC 4954 on their MSAs. These extensions force the MUAs to be authenticated before the MSA accepts an email
message from the MUA.
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Figure 3.15 BNF specification of the SMTP commands

In this BNF, atext corresponds to printable ASCII characters. This BNF rule is defined in
RFC 5322 (http://tools.ietf.org/html/rfc5322.html). The five main commands are EHLO,
MAIL FROM:, RCPT TO:, DATA and QUIT 14. Postmaster is the alias of the system
administrator who is responsible for a given domain or SMTP server. All domains must
have a Postmaster alias.

The SMTP responses are defined by the BNF shown in the figure below.

Figure 3.16 BNF specification of the SMTP responses

SMTP servers use structured reply codes containing three digits and an optional
comment. The first digit of the reply code indicates whether the command was
successful or not. A reply code of 2xy indicates that the command has been accepted.
A reply code of 3xy indicates that the command has been accepted, but additional
information from the client is expected. A reply code of 4xy indicates a transient
negative reply. This means that for some reason, which is indicated by either the other
digits or the comment, the command cannot be processed immediately, but there is
some hope that the problem will only be transient. This is basically telling the client to
try the same command again later. In contrast, a reply code of 5xy indicates a
permanent failure or error. In this case, it is useless for the client to retry the same
command later. Other application layer protocols such as FTP RFC 959 (http://tools.iet
f.org/html/rfc959.html) or HTTP RFC 2616 (http://tools.ietf.org/html/rfc2616.html) use
a similar structure for their reply codes. Additional details about the other reply codes
may be found in RFC 5321 (http://tools.ietf.org/html/rfc5321.html).

Examples of SMTP reply codes include the following :

500 Syntax error, command unrecognized

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

14. The first versions of SMTP used HELO as the first command sent by a client to a SMTP server. When SMTP was extended to
support newer features such as 8 bits characters, it was necessary to allow a server to recognise whether it was interacting with
a client that supported the extensions or not. EHLO became mandatory with the publication of RFC 2821.
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220 <domain> Service ready

221 <domain> Service closing transmission channel

421 <domain> Service not available, closing transmission channel

250 Requested mail action okay, completed

450 Requested mail action not taken: mailbox unavailable

452 Requested action not taken: insufficient system storage

550 Requested action not taken: mailbox unavailable

354 Start mail input; end with <CRLF>.<CRLF>

The first four reply codes correspond to errors in the commands sent by the client.
The fourth reply code would be sent by the server when the client sends commands in
an incorrect order (e.g. the client tries to send an email before providing the
destination address of the message). Reply code 220 is used by the server as the first
message when it agrees to interact with the client. Reply code 221 is sent by the server
before closing the underlying transport connection. Reply code 421 is returned when
there is a problem (e.g. lack of memory/disk resources) that prevents the server from
accepting the transport connection. Reply code 250 is the standard positive reply that
indicates the success of the previous command. Reply codes 450 and 452 indicate that
the destination mailbox is temporarily unavailable, for various reasons, while reply
code 550 indicates that the mailbox does not exist or cannot be used for policy
reasons. Reply code 354 indicates that the client can start transmitting its email
message.

The transfer of an email message is performed in three phases. During the first phase,
the client opens a transport connection with the server. Once the connection has been
established, the client and the server exchange greetings messages (EHLO command).
Most servers insist on receiving valid greeting messages and some of them drop the
underlying transport connection if they do not receive a valid greeting. Once the
greetings have been exchanged, the email transfer phase can start. During this phase,
the client transfers one or more email messages by indicating the email address of the
sender (MAIL FROM: command), the email address of the recipient (RCPT TO:
command) followed by the headers and the body of the email message (DATA
command). Once the client has finished sending all its queued email messages to the
SMTP server, it terminates the SMTP association (QUIT command).

A successful transfer of an email message is shown below

S: 220 smtp.example.com ESMTP MTA information

C: EHLO mta.example.org

S: 250 Hello mta.example.org, glad to meet you

C: MAIL FROM:<alice@example.org>

S: 250 Ok

C: RCPT TO:<bob@example.com>

S: 250 Ok

C: DATA
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S: 354 End data with <CR><LF>.<CR><LF>

C: From: "Alice Doe" <alice@example.org>

C: To: Bob Smith <bob@example.com>

C: Date: Mon, 9 Mar 2010 18:22:32 +0100

C: Subject: Hello

C:

C: Hello Bob

C: This is a small message containing 4 lines of text.

C: Best regards,

C: Alice

C:

S: 250 Ok: queued as 12345

C: QUIT

S: 221 Bye

In the example above, the MTA running on mta.example.org opens a TCP connection to
the SMTP server on host smtp.example.com. The lines prefixed with S: (resp. C:) are
the responses sent by the server (resp. the commands sent by the client). The server
sends its greetings as soon as the TCP connection has been established. The client
then sends the EHLO command with its fully qualified domain name. The server
replies with reply-code 250 and sends its greetings. The SMTP association can now be
used to exchange an email.

To send an email, the client must first provide the address of the recipient with RCPT
TO:. Then it uses the MAIL FROM: with the address of the sender. Both the recipient
and the sender are accepted by the server. The client can now issue the DATA
command to start the transfer of the email message. After having received the 354
reply code, the client sends the headers and the body of its email message. The client
indicates the end of the message by sending a line containing only the . (dot) character
15. The server confirms that the email message has been queued for delivery or
transmission with a reply code of 250. The client issues the QUIT command to close
the session and the server confirms with reply-code 221, before closing the TCP
connection.

Note: Open SMTP relays and spam
Since its creation in 1971, email has been a very useful tool that is used by
many users to exchange lots of information. In the early days, all SMTP servers
were open and anyone could use them to forward emails towards their final
destination. Unfortunately, over the years, some unscrupulous users have
found ways to use email for marketing purposes or to send malware. The first
documented abuse of email for marketing purposes occurred in 1978 when a
marketer who worked for a computer vendor sent a marketing email (http://w
ww.templetons.com/brad/spamreact.html#msg) to many ARPANET users. At
that time, the ARPANET could only be used for research purposes and this was

15. This implies that a valid email message cannot contain a line with one dot followed by CR and LF. If a user types such a
line in an email, his email client will automatically add a space character before or after the dot when sending the
message over SMTP.
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an abuse of the acceptable use policy. Unfortunately, given the extremely low
cost of sending emails, the problem of unsolicited emails has not stopped.
Unsolicited emails are now called spam and a study (http://www.enisa.europ
a.eu/act/res/other-areas/anti-spam-measures) carried out by ENISA (http://w
ww.enisa.europa.eu/) in 2009 reveals that 95% of email was spam and this
number seems to continue to grow. This places a burden on the email
infrastructure of Internet Service Providers and large companies that need to
process many useless messages.
Given the amount of spam messages, SMTP servers are no longer open RFC 506
8 (http://tools.ietf.org/html/rfc5068.html). Several extensions to SMTP have
been developed in recent years to deal with this problem. For example, the
SMTP authentication scheme defined in RFC 4954 can be used by an SMTP
server to authenticate a client. Several techniques have also been proposed to
allow SMTP servers to authenticate the messages sent by their users RFC 4870
(http://tools.ietf.org/html/rfc4870.html%20RFC%204871%20http://tools.ietf.o
rg/html/rfc4871.html) RFC 4871 (http://tools.ietf.org/html/rfc5068.html).

The Post Office Protocol

When the first versions of SMTP were designed, the Internet was composed of
minicomputers that were used by an entire university department or research lab.
These minicomputers were used by many users at the same time. Email was mainly
used to send messages from a user on a given host to another user on a remote host.
At that time, SMTP was the only protocol involved in the delivery of the emails as all
hosts attached to the network were running an SMTP server. On such hosts, an email
destined to local users was delivered by placing the email in a special directory or file
owned by the user. However, the introduction of personal computers in the 1980s,
changed this environment. Initially, users of these personal computers used
applications such as telnet to open a remote session on the local minicomputer to
read their email. This was not user-friendly. A better solution appeared with the
development of user friendly email client applications on personal computers. Several
protocols were designed to allow these client applications to retrieve the email
messages destined to a user from his/her server. Two of these protocols became
popular and are still used today. The Post Office Protocol (POP), defined in RFC 1939 (h
ttp://tools.ietf.org/html/rfc1939.html), is the simplest one. It allows a client to
download all the messages destined to a given user from his/her email server. We
describe POP briefly in this section. The second protocol is the Internet Message
Access Protocol (IMAP), defined in RFC 3501 (http://tools.ietf.org/html/rfc3501.html).
IMAP is more powerful, but also more complex than POP. IMAP was designed to allow
client applications to efficiently access in real-time to messages stored in various
folders on servers. IMAP assumes that all the messages of a given user are stored on a
server and provides the functions that are necessary to search, download, delete or
filter messages.

POP is another example of a simple line-based protocol. POP runs above the
bytestream service. A POP server usually listens to port 110. A POP session is
composed of three parts : an authorisation phase during which the server verifies the
client’s credential, a transaction phase during which the client downloads messages
and an update phase that concludes the session. The client sends commands and the
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server replies are prefixed by +OK to indicate a successful command or by -ERR to
indicate errors.

When a client opens a transport connection with the POP server, the latter sends as
banner an ASCII-line starting with +OK. The POP session is at that time in the
authorisation phase. In this phase, the client can send its username (resp. password)
with the USER (resp. PASS) command. The server replies with +OK if the username
(resp. password) is valid and -ERR otherwise.

Once the username and password have been validated, the POP session enters in the
transaction phase. In this phase, the client can issue several commands. The STAT
command is used to retrieve the status of the server. Upon reception of this
command, the server replies with a line that contains +OK followed by the number of
messages in the mailbox and the total size of the mailbox in bytes. The RETR
command, followed by a space and an integer, is used to retrieve the nth message of
the mailbox. The DELE command is used to mark for deletion the nth message of the
mailbox.

Once the client has retrieved and possibly deleted the emails contained in the
mailbox, it must issue the QUIT command. This command terminates the POP session
and allows the server to delete all the messages that have been marked for deletion
by using the DELE command.

The figure below provides a simple POP session. All lines prefixed with C: (resp. S:) are
sent by the client (resp. server).

S: +OK POP3 server ready

C: USER alice

S: +OK C PASS 12345pass

S: +OK alice’s maildrop has 2 messages (620 octets)

C: STAT

S: +OK2620

C: LIST

S: +OK 2 messages (620 octets)

S: 1120

S: 2500

S:

C: RETR 1

S: +OK 120 octets

S: <the POP3 server sends message 1>

S:

C: DELE 1

S: +OK message 1 deleted

C: QUIT

S: +OK POP3 server signing off (1 message left)

In this example, a POP client contacts a POP server on behalf of the user named alice.
Note that in this example, Alice’s password is sent in clear by the client. This implies
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that if someone is able to capture the packets sent by Alice, he will know Alice’s
password 16. Then Alice’s client issues the STAT command to know the number of
messages that are stored in her mailbox. It then retrieves and deletes the first
message of the mailbox.

3.2.3 The HyperText Transfer Protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the early days of the Internet was mainly used for remote terminal access with telne
t (http://en.wikipedia.org/wiki/Telnet), email and file transfer. The default file transfer
protocol, FTP, defined in RFC 959 (http://tools.ietf.org/html/rfc959.html) was widely
used and FTP clients and servers are still included in most operating systems.

Many FTP clients offer a user interface similar to a Unix shell and allow the client to
browse the file system on the server and to send and retrieve files. FTP servers can be
configured in two modes :

• authenticated : in this mode, the ftp server only accepts users with a valid user
name and password. Once authenticated, they can access the files and directories
according to their permissions

• anonymous : in this mode, clients supply the anonymous user id and their email
address as password. These clients are granted access to a special zone of the file
system that only contains public files.

ftp was very popular in the 1990s and early 2000s, but today it has mostly been
superseded by more recent protocols. Authenticated access to files is mainly done by
using the Secure Shell (ssh (http://en.wikipedia.org/wiki/Secure_Shell)) protocol
defined in RFC 4251 (http://en.wikipedia.org/wiki/Secure_Shell) and supported by
clients such as scp (http://www.openssh.com/) or sftp (http://www.openssh.org/).
Nowadays, anonymous access is mainly provided by web protocols.

In the late 1980s, high energy physicists working at CERN (http://www.cern.ch/) had to
efficiently exchange documents about their ongoing and planned experiments. Tim (ht
tp://www.w3.org/People/Berners-Lee/) Berners-Lee (http://www.w3.org/People/Berne
rs-Lee/) evaluated several of the documents sharing techniques that were available at
that time [B1989]. As none of the existing solutions met CERN’s requirements, they
choose to develop a completely new document sharing system. This system was
initially called the mesh, but was quickly renamed the world wide web. The starting
point for the world wide web are hypertext documents. An hypertext document is a
document that contains references (hyperlinks) to other documents that the reader
can immediately access. Hypertext was not invented for the world wide web. The idea
of hypertext documents was proposed in 1945 [Bush1945] and the first experiments
were done during the 1960s [Nelson1965] [Myers1998] . Compared to the hypertext
documents that were used in the late 1980s, the main innovation introduced by the
world wide web was to allow hyperlinks to reference documents stored on remote
machines.

16. RFC 1939 defines the APOP authentication scheme that is not vulnerable to such attacks.
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:

Figure 3.17 World-wide web clients and servers

A document sharing system such as the world wide web is composed of three
important parts.

1. A standardised addressing scheme that allows unambiguous identification of
documents

2. A standard document format : the HyperText Markup Language (http://www.w3.o
rg/MarkUp/)

3. A standardised protocol that facilitates efficient retrieval of documents stored on
a server

Note: Open standards and open implementations
Open standards have, and are still playing a key role in the success of the world
wide web as we know it today. Without open standards, the world wide web
would never have reached its current size. In addition to open standards,
another important factor for the success of the web was the availability of open
and efficient implementations of these standards. When CERN started to work
on the web, their objective was to build a running system that could be used by
physicists. They developed open-source implementations of the first web serv
ers (http://www.w3.org/Daemon/)and web clients (http://www.w3.org/Library/
Activity.html). These open-source implementations were powerful and could
be used as is, by institutions willing to share information on the web. They
were also extended by other developers who contributed to new features. For
example, NCSA (http://www.ncsa.illinois.edu/) added support for images in
their Mosaic browser that was eventually used to create Communications (htt
p://en.wikipedia.org/wiki/Netscape).
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The first components of the world wide web are the Uniform Resource Identifiers (URI),
defined in RFC 3986 (http://tools.ietf.org/html/rfc3986.html).A URI is a character string
that unambiguously identifies a resource on the world wide web. Here is a subset of
the BNF for URIs

URI = scheme ":" "//" authority path [ "?" query ] [ "#" fragment ]

scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / "." )

authority = [ userinfo "@" ] host [ ":" port ]

query = *( pchar / "/" / "?" )

fragment = *( pchar / "/" / "?" )

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

query = *( pchar / "/" / "?" )

fragment = *( pchar / "/" / "?" )

pct-encoded = "%" HEXDIG HEXDIG

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

reserved = gen-delims / sub-delims

gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"

sub-delims ="!"/"$"/"&"/"’"/"("/")"/ "*"/"+"/","/";"/"="

The first component of a URI is its scheme. A scheme can be seen as a selector,
indicating the meaning of the fields after it. In practice, the scheme often identifies the
application-layer protocol that must be used by the client to retrieve the document,
but it is not always the case. Some schemes do not imply a protocol at all and some do
not indicate a retrievable document 17. The most frequent scheme is http that will be
described later. A URI scheme can be defined for almost any application layer protocol
[#furilist]_. The characters ‘: and // follow the scheme of any URI.

The second part of the URI is the authority. With retrievable URI, this includes the DNS
name or the IP address of the server where the document can be retrieved using the
protocol specified via the scheme. This name can be preceded by some information
about the user (e.g. a user name) who is requesting the information. Earlier definitions
of the URI allowed the specification of a user name and a password before the @
character ( RFC 1738), but this is now deprecated as placing a password inside a URI is
insecure. The host name can be followed by the semicolon character and a port
number. A default port number is defined for some protocols and the port number
should only be included in the URI if a non-default port number is used (for other
protocols, techniques like service DNS records are used).

The third part of the URI is the path to the document. This path is structured as
filenames on a Unix host (but it does not imply that the files are indeed stored this
way on the server). If the path is not specified, the server will return a default
document. The last two optional parts of the URI are used to provide a query and

17. An example of a non-retrievable URI is urn:isbn:0-380-81593-1 which is an unique identifier for a book, through the urn
scheme (see RFC 3187). Of course, any URI can be make retrievable via a dedicated server or a new protocol but this one
has no explicit protocol. Same thing for the scheme tag (see RFC 4151), often used in Web syndication (see RFC 4287
about the Atom syndication format). Even when the scheme is retrievable (for instance with http‘), it is often used only as
an identifier, not as a way to get a resource. See http://norman.walsh.name/2006/07/25/namesAndAddresses for a good
explanation.
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indicate a specific part (e.g. a section in an article) of the requested document. Sample
URIs are shown below.

http://tools.ietf.org/html/rfc3986.html

mailto:infobot@example.com?subject=current-issue

http://docs.python.org/library/

basehttpserver.html?highlight=http#BaseHTTPServer.BaseHTTPRequestHandl

er

telnet://[2001:6a8:3080:3::2]:80/

ftp://cnn.example.com&story=breaking_news@10.0.0.1/top_story.htm

The first URI corresponds to a document named rfc3986.html that is stored on the
server named tools.ietf.org and can be accessed by using the http protocol on its
default port. The second URI corresponds to an email message, with subject current-
issue, that will be sent to user infobot in domain example.com. The mailto: URI scheme
is defined in RFC 6068. The third URI references the portion
BaseHTTPServer.BaseHTTPRequestHandler of the document basehttpserver.html that is
stored in the library directory on server docs.python.org. This document can be
retrieved by using the http protocol. The query highlight=http is associated to this URI.
The fourth example is a server that operates the telnet (http://en.wikipedia.org/wiki/Te
lnet) protocol, uses IPv6 address 2001:6a8:3080:3::2 and is reachable on port 80. The
last URI is somewhat special. Most users will assume that it corresponds to a
document stored on the cnn.example.com server. However, to parse this URI, it is
important to remember that the @ character is used to separate the user name from
the host name in the authorisation part of a URI. This implies that the URI points to a
document named top_story.htm on host having IPv4 address 10.0.0.1. The document
will be retrieved by using the ftp protocol with the user name set to
cnn.example.com&story=breaking_news.

The second component of the word wide web is the HyperText Markup Language
(HTML). HTML defines the format of the documents that are exchanged on the web.
The first version of HTML (http://www.w3.org/History/19921103-hypertext/hypertext/
WWW/MarkUp/Tags.html) was derived from the Standard Generalized Markup
Language (SGML) that was standardised in 1986 by ISO. SGML (http://en.wikipedia.or
g/wiki/Standard_Generalized_Markup_Language) was designed to allow large project
documents in industries such as government, law or aerospace to be shared
efficiently in a machine-readable manner. These industries require documents to
remain readable and editable for tens of years and insisted on a standardised format
supported by multiple vendors. Today, SGML (http://en.wikipedia.org/wiki/Standard_G
eneralized_Markup_Language) is no longer widely used beyond specific applications,
but its descendants including HTML and XML are now widespread.

A markup language is a structured way of adding annotations about the formatting of
the document within the document itself. Example markup languages include troff (htt
p://en.wikipedia.org/wiki/Troff) , which is used to write the Unix man pages or Latex (h
ttp://en.wikipedia.org/wiki/Latex). HTML uses markers to annotate text and a
document is composed of HTML elements. Each element is usually composed of three
items: a start tag that potentially includes some specific attributes, some text (often
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including other elements), and an end tag. A HTML tag is a keyword enclosed in angle
brackets. The generic form of a HTML element is

<tag>Some text to be displayed</tag>

More complex HTML elements can also include optional attributes in the start tag

<tag attribute1="value1" attribute2="value2">some text to be

displayed</tag>

The HTML document shown below is composed of two parts : a header, delineated by
the <head> and </head> markers, and a body (between the <body> and </body>

markers). In the example below, the header only contains a title, but other types of
information can be included in the header. The body contains an image, some text
and a list with three hyperlinks. The image is included in the web page by indicating its
URI between brackets inside the <img src=”...”> marker. The image can, of course,
reside on any server and the client will automatically download it when rendering the
web page. The <h1>...</h1> marker is used to specify the first level of headings. The
<ul> marker indicates an unnumbered list while the <li> marker indicates a list

item. The <a href=”URI”>text</a> indicates a hyperlink. The text will be underlined in
the rendered web page and the client will fetch the specified URI when the user clicks
on the link.

Figure 3.18 A simple HTML page

Additional details about the various extensions to HTML may be found in the official s
pecifications (http://en.wikipedia.org/wiki/Latex) maintained by W3C (http://www.w3.o
rg).

The third component of the world wide web is the HyperText Transport Protocol
(HTTP). HTTP is a text-based protocol, in which the client sends a request and the
server returns a response. HTTP runs above the bytestream service and HTTP servers
listen by default on port 80. The design of HTTP has largely been inspired by the
Internet email protocols. Each HTTP request contains three parts :

• a method , that indicates the type of request, a URI, and the version of the HTTP
protocol used by the client
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• a header , that is used by the client to specify optional parameters for the request.
An empty line is used to mark the end of the header

• an optional MIME document attached to the request The response sent by the
server also contains three parts :

• a status line , that indicates whether the request was successful or not
• a header , that contains additional information about the response. The response

header ends with an empty line.
• a MIME document

Figure 3.19 TTP requests and responses

Several types of method can be used in HTTP requests. The three most important
ones are :

• the GET method is the most popular one. It is used to retrieve a document from a
server. The GET method is encoded as GET followed by the path of the URI of the
requested document and the version of HTTP used by the client. For example, to
retrieve the http://www.w3.org/MarkUp/ URI, a client must open a TCP on port 80
with host www.w3.org and send a HTTP request containing the following line

GET /MarkUp/ HTTP/1.0
• – the HEAD method is a variant of the GET method that allows the retrieval of the

header lines for a given URI without retrieving the entire document. It can be
used by a client to verify if a document exists, for instance.

• the POST method can be used by a client to send a document to a server. The
sent document is attached to the HTTP request as a MIME document.

HTTP clients and servers can include many different HTTP headers in HTTP requests
and responses. Each HTTP header is encoded as a single ASCII-line terminated by CR
and LF. Several of these headers are briefly described below. A detailed discussion of
all standard headers may be found in RFC 1945 (http://tools.ietf.org/html/rfc1945.htm
l). The MIME headers can appear in both HTTP requests and HTTP responses.
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• the Content-Length: header is the MIME header that indicates the length of the
MIME document in bytes.

• the Content-Type: header is the MIME header that indicates the type of the
attached MIME document. HTML pages use the text/html type.

• the Content-Encoding: header indicates how the MIME document has been
encoded. For example, this header would be set to x-gzip for a document
compressed using the gzip software.

RFC 1945 (http://tools.ietf.org/html/rfc1945.html) and RFC 2616 (http://tools.ietf.org/ht
ml/rfc2616.html) define headers that are specific to HTTP responses. These server
headers include :

• the Server: header indicates the version of the web server that has generated the
HTTP response. Some servers provide information about their software release
and optional modules that they use. For security reasons, some system
administrators disable these headers to avoid revealing too much information
about their server to potential attackers.

• the Date: header indicates when the HTTP response has been produced by the
server.

• the Last-Modified: header indicates the date and time of the last modification of
the document attached to the HTTP response.

Similarly, the following header lines can only appear inside HTTP requests sent by a
client :

• the User-Agent: header provides information about the client that has generated
the HTTP request. Some servers analyse this header line and return different
headers and sometimes different documents for different user agents.

• the If-Modified-Since: header is followed by a date. It enables clients to cache in
memory or on disk the recent or most frequently used documents. When a client
needs to request a URI from a server, it first checks whether the document is
already in its cache. If it is, the client sends a HTTP request with the If-Modified-
Since: header indicating the date of the cached document. The server will only
return the document attached to the HTTP response if it is newer than the
version stored in the client’s cache.

• the Referrer: header is followed by a URI. It indicates the URI of the document that
the client visited before sending this HTTP request. Thanks to this header, the
server can know the URI of the document containing the hyperlink followed by
the client, if any. This information is very useful to measure the impact of
advertisements containing hyperlinks placed on websites.

• the Host: header contains the fully qualified domain name of the URI being
requested.

Note: The importance of the Host: header line
The first version of HTTP did not include the Host: header line. This was a
severe limitation for web hosting companies. For example consider a web
hosting company that wants to serve both web.example.com and
www.example.net on the same physical server. Both web sites contain a
/index.html document. When a client sends a request for either
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http://web.example.com/index.html or http://www.example.net/index.html, the
HTTP 1.0 request contains the following line :

GET /index.html HTTP/1.0

By parsing this line, a server cannot determine which index.html file is
requested. Thanks to the Host: header line, the server knows whether the
request is for http://web.example.com/index.html or http://www.dummy.net/
index.html. Without the Host: header, this is impossible. The Host: header line
allowed web hosting companies to develop their business by supporting a large
number of independent web servers on the same physical server.

The status line of the HTTP response begins with the version of HTTP used by the
server (usually HTTP/1.0 defined in RFC 1945 (http://tools.ietf.org/html/rfc1945.html)
or HTTP/1.1 defined in RFC 2616 (http://tools.ietf.org/html/rfc2616.html)) followed by a
three digit status code and additional information in English. HTTP status codes have a
similar structure as the reply codes used by SMTP.

• All status codes starting with digit 2 indicate a valid response. 200 Ok indicates
that the HTTP request was successfully processed by the server and that the
response is valid.

• All status codes starting with digit 3 indicate that the requested document is no
longer available on the server. 301 Moved Permanently indicates that the
requested document is no longer available on this server. A Location: header
containing the new URI of the requested document is inserted in the HTTP
response. 304 Not Modified is used in response to an HTTP request containing the
If-Modified-Since: header. This status line is used by the server if the document
stored on the server is not more recent than the date indicated in the If-Modified-
Since: header.

• All status codes starting with digit 4 indicate that the server has detected an error
in the HTTP request sent by the client. 400 Bad Request indicates a syntax error in
the HTTP request. 404 Not Found indicates that the requested document does not
exist on the server.

• All status codes starting with digit 5 indicate an error on the server. 500 Internal
Server Error indicates that the server could not process the request due to an
error on the server itself.

In both the HTTP request and the HTTP response, the MIME document refers to a
representation of the document with the MIME headers indicating the type of
document and its size.

As an illustration of HTTP/1.0, the transcript below shows a HTTP request for
http://www.ietf.org and the corresponding HTTP response. The HTTP request was sent
using the curl command line tool. The User-Agent: header line contains more
information about this client software. There is no MIME document attached to this
HTTP request, and it ends with a blank line.
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GET / HTTP/1.0

User-Agent: curl/7.19.4 (universal-apple-darwin10.0) libcurl/7.19.4

OpenSSL/0.9.8l zlib/1.2.3

Host: www.ietf.org

The HTTP response indicates the version of the server software used with the
modules included. The Last-Modified: header indicates that the requested document
was modified about one week before the request. A HTML document (not shown) is
attached to the response. Note the blank line between the header of the HTTP
response and the attached MIME document. The Server: header line has been
truncated in this output.

HTTP/1.1 200 OK

Date: Mon, 15 Mar 2010 13:40:38 GMT

Server: Apache/2.2.4 (Linux/SUSE) mod_ssl/2.2.4 OpenSSL/0.9.8e

(truncated) Last-Modified: Tue, 09 Mar 2010 21:26:53 GMT

Content-Length: 17019

Content-Type: text/html

<!DOCTYPE HTML PUBLIC .../HTML>

HTTP was initially designed to share self-contained text documents. For this reason,
and to ease the implementation of clients and servers, the designers of HTTP chose to
open a TCP connection for each HTTP request. This implies that a client must open
one TCP connection for each URI that it wants to retrieve from a server as illustrated
on the figure below. For a web page containing only text documents this was a
reasonable design choice as the client usually remains idle while the (human) user is
reading the retrieved document.

:

Figure 3.20 HTTP 1.0 and the underlying TCP connection

However, as the web evolved to support richer documents containing images, opening
a TCP connection for each URI became a performance problem [Mogul1995]. Indeed,
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besides its HTML part, a web page may include dozens of images or more. Forcing the
client to open a TCP connection for each component of a web page has two important
drawbacks. First, the client and the server must exchange packets to open and close a
TCP connection as we will see later. This increases the network overhead and the total
delay of completely retrieving all the components of a web page. Second, a large
number of established TCP connections may be a performance bottleneck on servers.

This problem was solved by extending HTTP to support persistent TCP connections RF
C 2616 (http://tools.ietf.org/html/rfc2616.html). A persistent connection is a TCP
connection over which a client may send several HTTP requests. This is illustrated in
the figure below.

:

Figure 3.21 HTTP 1.1 persistent connections

To allow the clients and servers to control the utilisation of these persistent TCP
connections, HTTP 1.1 RFC 2616 (http://tools.ietf.org/html/rfc2616.html) defines
several new HTTP headers:

• The Connection: header is used with the Keep-Alive argument by the client to
indicate that it expects the underlying TCP connection to be persistent. When this
header is used with the Close argument, it indicates that the entity that sent it will
close the underlying TCP connection at the end of the HTTP response.

• The Keep-Alive: header is used by the server to inform the client about how it
agrees to use the persistent connection. A typical Keep-Alive: contains two
parameters : the maximum number of requests that the server agrees to serve
on the underlying TCP connection and the timeout (in seconds) after which the
server will close an idle connection

The example below shows the operation of HTTP/1.1 over a persistent TCP connection
to retrieve three URIs stored on the same server. Once the connection has been
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established, the client sends its first request with the Connection: keep-alive header to
request a persistent connection.

GET / HTTP/1.1

Host: www.kame.net

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)

Connection: keep-alive

The server replies with the Connection: Keep-Alive header and indicates that it accepts a
maximum of 100 HTTP requests over this connection and that it will close the
connection if it remains idle for 15 seconds.

HTTP/1.1 200 OK

Date: Fri, 19 Mar 2010 09:23:37 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Length: 3462

Content-Type: text/html

<html>... </html>

The client sends a second request for the style sheet of the retrieved web page.

GET /style.css HTTP/1.1

Host: www.kame.net

Referer: http://www.kame.net/

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)

Connection: keep-alive

The server replies with the requested style sheet and maintains the persistent
connection. Note that the server only accepts 99 remaining HTTP requests over this
persistent connection.

HTTP/1.1 200 OK

Date: Fri, 19 Mar 2010 09:23:37 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch

Last-Modified: Mon, 10 Apr 2006 05:06:39 GMT

Content-Length: 2235

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/css

...
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Then the client automatically requests the web server’s icon 18, that could be displayed
by the browser. This server does not contain such URI and thus replies with a 404
HTTP status. However, the underlying TCP connection is not closed immediately.

GET /favicon.ico HTTP/1.1

Host: www.kame.net

Referer: http://www.kame.net/

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)

Connection: keep-alive

HTTP/1.1 404 Not Found

Date: Fri, 19 Mar 2010 09:23:40 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch

Content-Length: 318

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> ...

As illustrated above, a client can send several HTTP requests over the same persistent
TCP connection. However, it is important to note that all of these HTTP requests are
considered to be independent by the server. Each HTTP request must be self-
contained. This implies that each request must include all the header lines that are
required by the server to understand the request. The independence of these
requests is one of the important design choices of HTTP. As a consequence of this
design choice, when a server processes a HTTP request, it doesn’t’ use any other
information than what is contained in the request itself. This explains why the client
adds its User-Agent: header in all of the HTTP requests it sends over the persistent
TCP connection.

However, in practice, some servers want to provide content tuned for each user. For
example, some servers can provide information in several languages or other servers
want to provide advertisements that are targeted to different types of users. To do
this, servers need to maintain some information about the preferences of each user
and use this information to produce content matching the user’s preferences. HTTP
contains several mechanisms that enable to solve this problem. We discuss three of
them below.

A first solution is to force the users to be authenticated. This was the solution used by
FTP to control the files that each user could access. Initially, user names and
passwords could be included inside URIsRFC 1738 (http://tools.ietf.org/html/rfc1738.ht
ml). However, placing passwords in the clear in a potentially publicly visible URI is
completely insecure and this usage has now been deprecated RFC 3986 (http://tools.ie
tf.org/html/rfc3986.html). HTTP supports several extension headers RFC 2617 (http://t
ools.ietf.org/html/rfc2617.html)that can be used by a server to request the
authentication of the client by providing his/her credentials. However, user names and

18. Favorite icons are small icons that are used to represent web servers in the toolbar of Internet browsers. Microsoft
added this feature in their browsers without taking into account the W3C standards. See http://www.w3.org/2005/10/
howto-favicon for a discussion on how to cleanly support such favorite icons.
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passwords have not been popular on web servers as they force human users to
remember one user name and one password per server. Remembering a password is
acceptable when a user needs to access protected content, but users will not accept
the need for a user name and password only to receive targeted advertisements from
the web sites that they visit.

A second solution to allow servers to tune that content to the needs and capabilities of
the user is to rely on the different types of Accept-* HTTP headers. For example, the
Accept-Language: can be used by the client to indicate its preferred languages.
Unfortunately, in practice this header is usually set based on the default language of
the browser and it is not possible for a user to indicate the language it prefers to use
by selecting options on each visited web server.

The third, and widely adopted, solution are HTTP cookies. HTTP cookies were initially
developed as a private extension by Netscape (http://en.wikipedia.org/wiki/Netscape).
They are now part of the standard RFC 6265 (http://tools.ietf.org/html/rfc1738.html).
In a nutshell, a cookie is a short string that is chosen by a server to represent a given
client. Two HTTP headers are used : Cookie: and Set-Cookie:. When a server receives an
HTTP request from a new client (i.e. an HTTP request that does not contain the Cookie:
header), it generates a cookie for the client and includes it in the Set-Cookie: header of
the returned HTTP response. The Set-Cookie: header contains several additional
parameters including the domain names for which the cookie is valid. The client stores
all received cookies on disk and every time it sends a HTTP request, it verifies whether
it already knows a cookie for this domain. If so, it attaches the Cookie: header to the
HTTP request. This is illustrated in the figure below with HTTP 1.1, but cookies also
work with HTTP 1.0.

Figure 3.22 HTTP cookies

Note: Privacy issues with HTTP cookies
The HTTP cookies introduced by Netscape (http://en.wikipedia.org/wiki/Netsca
pe) are key for large e-commerce websites. However, they have also raised
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many discussions concerning their potential misuses (http://www.nytimes.co
m/2001/09/04/technology/04COOK.html). Consider ad.com, a company that
delivers lots of advertisements on web sites. A web site that wishes to include
ad.com‘s advertisements next to its content will add links to ad.com inside its
HTML pages. If ad.com is used by many web sites, ad.com could be able to track
the interests of all the users that visit its client websites and use this
information to provide targeted advertisements. Privacy advocates have even s
ued (http://epic.org/privacy/internet/cookies/) online advertisement
companies to force them to comply with the privacy regulations. More recent
related technologies also raise privacy concerns (http://www.eff.org/deeplink
s/2009/09/new-cookie-technologies-harder-see-and-remove-wide)

3.3 Writing simple networked applications
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Networked applications were usually implemented by using the socket API. This API
was designed when TCP/IP was first implemented in the Unix BSD (http://en.wikipedi
a.org/wiki/Berkeley_Software_Distribution) operating system [Sechrest] [LFJLMT], and
has served as the model for many APIs between applications and the networking stack
in an operating system. Although the socket API is very popular, other APIs have also
been developed. For example, the STREAMS API has been added to several Unix
System V variants [Rago1993]. The socket API is supported by most programming
languages and several textbooks have been devoted to it. Users of the C language can
consult [DC2009], [Stevens1998], [SFR2004] or [Kerrisk2010]. The Java implementation
of the socket API is described in [CD2008] and in the Java tutorial. In this section, we
will use the python implementation of the socket (http://en.wikipedia.org/wiki/Berkele
y_sockets) API to illustrate the key concepts. Additional information about this API may
be found in the socket section (http://en.wikipedia.org/wiki/Berkeley_sockets) of the p
hython documentation (https://docs.python.org/3/).

The socket API is quite low-level and should be used only when you need a complete
control of the network access. If your application simply needs, for instance, to
retrieve data with HTTP, there are much simpler and higher-level APIs.

A detailed discussion of the socket API is outside the scope of this section and the
references cited above provide a detailed discussion of all the details of the socket
API. As a starting point, it is interesting to compare the socket API with the service
primitives that we have discussed in the previous chapter. Let us first consider the
connectionless service that consists of the following two primitives :

• DATA.request(destination,message) is used to send a message to a specified
destination. In this socket API, this corresponds to the send method.

• DATA.indication(message) is issued by the transport service to deliver a message to
the application. In the socket API, this corresponds to the return of the recv
method that is called by the application.
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The DATA primitives are exchanged through a service access point. In the socket API,
the equivalent to the service access point is the socket. A socket is a data structure
which is maintained by the networking stack and is used by the application every time
it needs to send or receive data through the networking stack. The socket method in
the python (http://www.python.org/) API takes two main arguments :

• an address family that specifies the type of address family and thus the underlying
networking stack that will be used with the socket. This parameter can be either
socket.AF_INET or socket.AF_INET6. socket.AF_INET , which corresponds to the

TCP/IPv4 protocol stack is the default. socket.AF_INET6 corresponds to the TCP/
IPv6 protocol stack.

• a type indicates the type of service which is expected from the networking stack.
socket.STREAM (the default) corresponds to the reliable bytestream connection-

oriented service. socket.DGRAM corresponds to the connectionless service.

A simple client that sends a request to a server is often written as follows in
descriptions of the socket API.

# A simple client of the connectionless service

import socket

import sys

HOSTIP=sys.argv[1]

PORT=int(sys.argv[2])

MSG="Hello, World!"

s = socket.socket( socket.AF_INET, socket.SOCK_DGRAM )

s.sendto( MSG, (HOSTIP, PORT) )

A typical usage of this application would be

python client.py 127.0.0.1 12345

where 127.0.0.1 is the IPv4 address of the host (in this case the localhost) where the
server is running and 12345 the port of the server.

The first operation is the creation of the socket . Two parameters must be specified
while creating a socket . The first parameter indicates the address family and the
second the socket type. The second operation is the transmission of the message by
using sendto to the server. It should be noted that sendto takes as arguments the
message to be transmitted and a tuple that contains the IPv4 address of the server
and its port number.

The code shown above supports only the TCP/IPv4 protocol stack. To use the TCP/IPv6
protocol stack the socket must be created by using the socket.AF_INET6 address
family. Forcing the application developer to select TCP/IPv4 or TCP/IPv6 when creating
a socket is a major hurdle for the deployment and usage of TCP/IPv6 in the global
Internet [Cheshire2010]. While most operating systems support both TCP/IPv4 and
TCP/IPv6, many applications still only use TCP/IPv4 by default. In the long term, the
socket API should be able to handle TCP/IPv4 and TCP/IPv6 transparently and should
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not force the application developer to always specify whether it uses TCP/IPv4 or TCP/
IPv6.

Another important issue with the socket API as supported by python (http://www.pyth
on.org/) is that it forces the application to deal with IP addresses instead of dealing
directly with domain names. This limitation dates from the early days of the socket

API in Unix 4.2BSD. At that time, the DNS was not widely available and only IP
addresses could be used. Most applications rely on DNS names to interact with
servers and this utilisation of the DNS plays a very important role to scale web servers
and content distribution networks. To use domain names, the application needs to
perform the DNS resolution by using the getaddrinfo method. This method queries
the DNS and builds the sockaddr data structure which is used by other methods of the
socket API. In , getaddrinfo takes several arguments :

• a name that is the domain name for which the DNS will be queried
• an optional port number which is the port number of the remote server
• an optional address family which indicates the address family used for the DNS

request. socket.AF_INET (resp. socket.AF_INET6 ) indicates that an IPv4 (IPv6)
address is expected. Furthermore, the python (https://www.python.org/) socket
API allows an application to use socket.AF_UNSPEC to indicate that it is able to use
either IPv4 or IPv6 addresses.

• an optional socket type which can be either socket.SOCK_DGRAM or

socket.SOCK_STREAM

In today’s Internet hosts that are capable of supporting both IPv4 and IPv6, all
applications should be able to handle both IPv4 and IPv6 addresses. When used with
the socket.AF_UNSPEC parameter, the socket.getaddrinfo method returns a list of
tuples containing all the information to create a socket.

import socket

socket.getaddrinfo(’www.example.net’,80,socket.AF_UNSPEC,socket.SOCK_S

TREAM) [ (30, 1, 6, ’’, (’2001:db8:3080:3::2’, 80, 0, 0)),

(2, 1, 6, ’’, (’203.0.113.225’, 80))]

In the example above, socket.getaddrinfo returns two tuples. The first one
corresponds to the sockaddr containing the IPv6 address of the remote server and the
second corresponds to the IPv4 information. Due to some peculiarities of IPv6 and
IPv4, the format of the two tuples is not exactly the same, but the key information in
both cases are the network layer address ( 2001:db8:3080:3::2 and 203.0.113.225 ) and
the port number (80). The other parameters are seldom used.

socket.getaddrinfo can be used to build a simple client that queries the DNS and
contact the server by using either IPv4 or IPv6 depending on the addresses returned
by the socket.getaddrinfo method. The client below iterates over the list of addresses
returned by the DNS and sends its request to the first destination address for which it
can create a socket . Other strategies are of course possible. For example, a host
running in an IPv6 network might prefer to always use IPv6 when IPv6 is available 19.

19. Most operating systems today by default prefer to use IPv6 when the DNS returns both an IPv4 and an IPv6 address for
a name. See http://ipv6int.net/systems/ for more detailed information.
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Another example is the happy eyeballs approach which is being discussed within the
IETF [WY2011]. For example, [WY2011] mentions that some web browsers try to use
the first address returned by socket.getaddrinfo . If there is no answer within some
small delay (e.g. 300 milliseconds), the second address is tried.

import socket

import sys

HOSTNAME=sys.argv[1]

PORT=int(sys.argv[2])

MSG="Hello, World!"

for a in socket.getaddrinfo(HOSTNAME, PORT,

socket.AF_UNSPEC,socket.SOCK_DGRAM,0, socket.AI_PASSIVE)

address_family,sock_type,protocol,canonicalname, sockaddr=a

try:

s = socket.socket(address_family, sock_type)

except socket.error:

s = None

print "Could not create socket"

continue

if s is not None:

s.sendto(MSG, sockaddr)

break

Now that we have described the utilisation of the socket API to write a simple client
using the connectionless transport service, let us have a closer look at the reliable byte
stream transport service. As explained above, this service is invoked by creating a
socket of type socket.SOCK_STREAM . Once a socket has been created, a client will

typically connect to the remote server, send some data, wait for an answer and
eventually close the connection. These operations are performed by calling the
following methods :

• socket.connect : this method takes a sockaddr data structure, typically returned
by socket.getaddrinfo , as argument. It may fail and raise an exception if the
remote server cannot be reached.

• socket.send : this method takes a string as argument and returns the number of
bytes that were actually sent. The string will be transmitted as a sequence of
consecutive bytes to the remote server. Applications are expected to check the
value returned by this method and should resend the bytes that were not send.

• socket.recv : this method takes an integer as argument that indicates the size of
the buffer that has been allocated to receive the data. An important point to note
about the utilisation of the socket.recv method is that as it runs above a
bytestream service, it may return any amount of bytes (up to the size of the
buffer provided by the application). The application needs to collect all the
received data and there is no guarantee that some data sent by the remote host
by using a single call to the socket.send method will be received by the
destination with a single call to the socket.recv method.
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• socket.shutdown : this method is used to release the underlying connection. On
some platforms, it is possible to specify the direction of transfer to be released
(e.g. socket.SHUT_WR to release the outgoing direction or socket.SHUT_RDWR to
release both directions).

• socket.close : this method is used to close the socket. It calls socket.shutdown if
the underlying connection is still open.

With these methods, it is now possible to write a simple HTTP client. This client
operates over both IPv6 and IPv4 and writes the homepage of the remote server on
the standard output. It also reports the number of socket.recv calls that were used to
retrieve the homepage 20.

#!/usr/bin/python

# A simple http client that retrieves the first page of a web site

import socket, sys

if len(sys.argv)!=3 and len(sys.argv)!=2:

print "Usage : ",sys.argv[0]," hostname [port]"

hostname = sys.argv[1]

if len(sys.argv)==3 :

port=int(sys.argv[2])

else:

port = 80

READBUF=16384 # size of data read from web server

s=None

for res in socket.getaddrinfo(hostname, port, socket.AF_UNSPEC,

socket.SOCK_STREAM):

af, socktype, proto, canonname, sa = res

# create socket

try:

s = socket.socket(af, socktype, proto)

except socket.error:

s = None

continue

# connect to remote host

try:

print "Trying "+sa[0]

s.connect(sa)

except socket.error, msg:

# socket failed

s.close()

s = None

continue

20. Experiments with the client indicate that the number of socket.recv calls can vary at each run. There are various factors
that influence the number of such calls that are required to retrieve some information from a server. We’ll discuss some
of them after having explained the operation of the underlying transport protocol.
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if s:

print "Connected to "+sa[0]

s.send(’GET / HTTP/1.1\r\nHost:’+hostname+’\r\n\r\n’)

finished=False

count=0

while not finished:

data=s.recv(READBUF)

count=count+1

if len(data)!=0:

print repr(data)

else:

finished=True

s.shutdown(socket.SHUT_WR)

s.close()

print "Data was received in ",count," recv calls"

break

As mentioned above, the socket API is very low-level. This is the interface to the
transport service. For a common and simple task, like retrieving a document from the
Web, there are much simpler solutions. For example, the python standard library (http
s://docs.python.org/2/library/) includes several high-level APIs to implementations of
various application layer protocols including HTTP. For example, the httplib (https://do
cs.python.org/2/library/httplib.html) module can be used to easily access documents
via HTTP.

#!/usr/bin/python

# A simple http client that retrieves the first page of a web site,

using

# the standard httplib library

import httplib, sys

if len(sys.argv)!=3 and len(sys.argv)!=2:

print "Usage : ",sys.argv[0]," hostname [port]"

sys.exit(1)

path = ’/’

hostname = sys.argv[1]

if len(sys.argv)==3 :

port = int(sys.argv[2])

else:

port = 80

conn = httplib.HTTPConnection(hostname, port)

conn.request("GET", path) r = conn.getresponse()

print "Response is %i (%s)" % (r.status, r.reason)

print r.read()
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Another module, urllib2 (https://docs.python.org/2/library/urllib2.html) allows the
programmer to directly use URLs. This is much more simpler than directly using
sockets.

But simplicity is not the only advantage of using high-level libraries. They allow the
programmer to manipulate higher-level concepts ( e.g. I want the content pointed by
this URL) but also include many features such as transparent support for the utilisation
of TLS or IPv6.

The second type of applications that can be written by using the socket API are the
servers. A server is typically runs forever waiting to process requests coming from
remote clients. A server using the connectionless will typically start with the creation
of a socket with the socket.socket . This socket can be created above the TCP/IPv4
networking stack ( socket.AF_INET ) or the TCP/IPv6 networking stack ( socket.AF_INET6 ),
but not both by default. If a server is willing to use the two networking stacks, it must
create two threads, one to handle the TCP/IPv4 socket and the other to handle the
TCP/IPv6 socket. It is unfortunately impossible to define a socket that can receive data
from both networking stacks at the same time with the socket API.

A server using the connectionless service will typically use two methods from the
socket API in addition to those that we have already discussed.

• socket.bind is used to bind a socket to a port number and optionally an IP
address. Most servers will bind their socket to all available interfaces on the
servers, but there are some situations where the server

• may prefer to be bound only to specific IP addresses. For example, a server
running on a smartphone might want to be bound to the IP address of the WiFi
interface but not on the 3G interface that is more expensive.

• socket.recvfrom is used to receive data from the underlying networking stack.
This method returns both the sender’s address and the received data.

The code below illustrates a very simple server running above the connectionless
transport service that simply prints on the standard output all the received messages.
This server uses the TCP/IPv6 networking stack.

import socket, sys

PORT=int(sys.argv[1])

BUFF_LEN=8192

s=socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)

s.bind((’’,PORT,0,0))

while True:

data, addr = s.recvfrom( BUFF_LEN )

if data=="STOP" :

print "Stopping server"

sys.exit(0)

print "received from ", addr, " message:", data

A server that uses the reliable byte stream service can also be built above the socket
API. Such a server starts by creating a socket that is bound to the port that has been
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chosen for the server. Then the server calls the socket.listen method. This informs the
underlying networking stack of the number of transport connection attempts that can
be queued in the underlying networking stack waiting to be accepted and processed
by the server. The server typically has a thread waiting on the socket.accept method.
This method returns as soon as a connection attempt is received by the underlying
stack. It returns a socket that is bound to the established connection and the address
of the remote host. With these methods, it is possible to write a very simple web
server that always returns a 404 error to all GET requests and a 501 errors to all other
requests.

# An extremely simple HTTP server

import socket, sys, time

# Server runs on all IP addresses by default

HOST=’’

# 8080 can be used without root priviledges

PORT=8080 BUFLEN=8192 # buffer size

s = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)

try:

print "Starting HTTP server on port ", PORT

s.bind((HOST,PORT,0,0))

except socket.error :

print "Cannot bind to port :",PORT

sys.exit(-1)

s.listen(10) # maximum 10 queued connections

while True:

# a real server would be multithreaded and would catch exceptions

conn, addr = s.accept()

print "Connection from ", addr

data=’’

while not ’\n’ in data : # wait until first line has been

received

data = data+conn.recv(BUFLEN)

if data.startswith(’GET’):

# GET request

conn.send(’HTTP/1.0 404 Not Found\r\n’)

# a real server should serve files

else:

# other type of HTTP request

conn.send(’HTTP/1.0 501 Not implemented\r\n’)

now = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime())

conn.send(’Date: ’ + now +’\r\n’)

conn.send(’Server: Dummy-HTTP-Server\r\n’)

conn.send(’\r\n’)

conn.shutdown(socket.SHUT_RDWR)
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conn.close()

This server is far from a production-quality web server. A real web server would use
multiple threads and/or non-blocking IO to process a large number of concurrent
requests 21. Furthermore, it would also need to handle all the errors that could happen
while receiving data over a transport connection. These are outside the scope of this
section and additional information on more complex networked applications may be
found elsewhere. For example, [RG2010] provides an in-depth discussion of the
utilisation of the socket API with python while [SFR2004] remains an excellent source
of information on the socket API in C.

3.4 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this chapter, we began by describing the client-server and peer-to-peer models. We
then described, in detail, three important families of protocols in the application layer.
The Internet identifies hosts by using 32 bits IPv4 or 128 bits IPv6. However, using
these addresses directly inside applications would be difficult for the humans that use
them. We have explained how the Domain Name System allows the mapping of
names to corresponding addresses. We have described both the DNS protocol that
runs above UDP and the naming hierarchy. We have then discussed one of the oldest
applications on the Internet : electronic mail. We have described the format of email
messages and described the SMTP protocol that is used to send email messages as
well as the POP protocol that is used by email recipients to retrieve their email
messages from their server. Finally, we have explained the protocols that are used in
the world wide web and the HyperText Transfer Protocol in particular.

3.5 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This section contains several exercises and small challenges about the application
layer protocols.

3.5.1 The Domain Name System
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Domain Name System (DNS) plays a key role in the Internet today as it allows
applications to use fully qualified domain names (FQDN) instead of IPv4 or IPv6
addresses. Many tools allow to perform queries through DNS servers. For this

21. There are many production quality web servers software available. apache is a very complex but widely used one. thttpd
and lighttpd are less complex and their source code is probably easier to understand.
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exercise, we will use dig (http://linux.die.net/man/1/dig) which is installed on most
Unix systems.

A typical usage of dig is as follows

dig @server -t type fqdn

where

• server is the IP address or the name of a DNS server or resolver
• type is the type of DNS record that is requested by the query such as NS for a

nameserver, A for an IPv4 address, AAAA for an IPv6 address, MX for a mail relay,
...

• fqdn is the fully qualified domain name being queried

1. What are the IP addresses of the resolvers that the dig implementation you are
using relies on 22?

2. What is the IP address that corresponds to inl.info.ucl.ac.be ? Which type of DNS
query does dig send to obtain this information ?

3. Which type of DNS request do you need to send to obtain the nameservers that
are responsible for a given domain ?

4. What are the nameservers that are responsible for the be top-level domain ?
Where are they located ? Is it possible to use IPv6 to query them ?

5. When run without any parameter, dig queries one of the root DNS servers and
retrieves the list of the the names of all root DNS servers. For technical reasons,
there are only 13 different root DNS servers. This information is also available as
a text file from here (http://www.internic.net/zones/named.root) What are the IP
addresses of all these servers. Can they be queried by using IPv6 23?

6. Assume now that you are residing in a network where there is no DNS resolver
and that you need to start your query from the DNS root.

1. Use dig to send a query to one of these root servers to find the IP address of
the DNS server(s) (NS record) responsible for the org top-level domain

2. Use dig to send a query to one of these DNS servers to find the IP address of
the DNS server(s) (NS record) responsible for root-servers.org‘

3. Continue until you find the server responsible for this site (http://www.root-s
ervers.org)

4. What is the lifetime associated to this IP address ?

7. Perform the same analysis for a popular website such as Google (http://www.goo
gle.com). What is the lifetime associated to this IP address ? If you perform the
same request several times, do you always receive the same answer ? Can you
explain why a lifetime is associated to the DNS replies ?

8. Use dig to find the mail relays used by the uclouvain.be and gmail.com domains.
What is the TTL of these records (use the +ttlid option when using dig) ? Can you
explain the preferences used by the MX records. You can find more information
about the MX records in RFC 974 (http://tools.ietf.org/html/rfc974.html)

9. Use dig to query the IPv6 address (DNS record AAAA) of the following hosts

22. On a Linux machine, the Description section of the dig manpage tells you where dig finds the list of nameservers to
query.

23. You may obtain additional information about the root DNS servers from http://www.root-servers.org
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◦ www.sixxs.net
◦ www.google.com
◦ ipv6.google.com

10. When dig is run, the header section in its output indicates the id the DNS identifier
used to send the query. Does your implementation of dig generates random
identifiers ?

dig -t MX gmail.com

; <<>> DiG 9.4.3-P3 <<>> -t MX gmail.com

;;  global options: printcmd

;; Got answer:

;; ->>HEADER<<-opcode: QUERY, status: NOERROR, id: 25718

11. A DNS implementation such as dig and more importantly a name resolver such as
bind or unbound, always checks that the received DNS reply contains the same
identifier as the DNS request that it sent. Why is this so important ?

• Imagine an attacker who is able to send forged DNS replies to, for example,
associate www.bigbank.com to his own IP address. How could he attack a DNS
implementation that
◦ sends DNS requests containing always the same identifier
◦ sends DNS requests containing identifiers that are incremented by one after

each request
◦ sends DNS requests containing random identifiers

12. The DNS protocol can run over UDP and over TCP. Most DNS servers prefer to use
UDP because it consumes fewer resources on the server. However, TCP is useful when
a large answer is expected or when a large answer must. You can force the utilisation
of TCP by using dig +tcp. Use TCP and UDP to query a root DNS server. Is it faster to
receive an answer via TCP or via UDP ?

3.5.2 Internet email protocols
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many Internet protocols are ASCII (http://en.wikipedia.org/wiki/ASCII) -based protocols
where the client sends requests as one line of ASCII (http://en.wikipedia.org/wiki/ASCI
I) text terminated by CRLF and the server replies with one of more lines of ASCII text.
Using such ASCII (http://en.wikipedia.org/wiki/ASCII)messages has several advantages
compared to protocols that rely on binary encoded messages

• the message exchanged by the client and the server can be easily understood by
a developer or network engineer by simply reading the messages

• it is often easy to write a small prototype that implements a part of the protocol
• it is possible to test a server manually by using telnet. Telnet is a protocol that

allows to obtain a terminal on a remote server. For this, telnet opens a TCP
connection with the remote server on port 23. However, most telnet
implementations allow the user to specify an alternate port as telnet hosts port.
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When used with a port number as parameter, telnet opens a TCP connection to
the remote host on the specified port, telnet can thus be used to test any server
using an ASCII-based protocol on top of TCP. Note that if you need to stop a
running telnet session, Ctrl-C will not work as it will be sent by telnet to the remote
host over the TCP connection. On many telnet implementation you can type Ctrl-l
to freeze the TCP connection and return to the telnet interface.

1. Assume that Alice sends an email from her alice@yahoo.com account to Bob who
uses bob@yahoo.com. Which protocols are involved in the transmission of this
email ?

2. Same question when Alice sends an email to her friend Trudy, trudy@gmail.com.
3. Before the advent of webmail and feature rich mailers, email was written and

read by using command line tools on servers. Using your account on
sirius.info.ucl.ac.be use the /bin/mail command line tool to send an email to
yourself on this host. This server stores local emails in the /var/mail directory with
one file per user. Check with /bin/more the content of your mail file and try to
understand which lines have been added by the server in the header of your
email.

4. Use your preferred email tool to send an email message to yourself containing a
single line of text. Most email tools have the ability to show the source of the
message, use this function to look at the message that you sent and the message
that you received. Can you find an explanation for all the lines that have been
added to your single line email 24?

5. The first version of the SMTP protocol was defined in RFC 821 (http://tools.ietf.or
g/html/rfc821.html). The current standard for SMTP is defined in RFC 5321 (htt
p://tools.ietf.org/html/rfc5321.html) Considering only RFC 821 (http://tools.ietf.or
g/html/rfc821.html) what are the main commands of the SMTP protocol 25?

6. When using SMTP, how do you recognise a positive reply from a negative one ?
7. A SMTP server is a daemon process that can fail due to a bug or lack of resources

(e.g. memory). Network administrators often install tools 26 that regularly connect
to their servers to check that they are operating correctly. A simple solution is to
open a TCP connection on port to the SMTP server’s host 27. If the connection is
established, this implies that there is a process listening. What is the reply sent by
the SMTP server when you type the following command ?

telnet cnp3.info.ucl.ac.be 25

Warning: Do not try this on a random SMTP server. The exercises proposed
in this section should only be run on the SMTP server dedicated for these
exercises : cnp3.info.ucl.ac.be. If you try them on a production SMTP server,

24. Since RFC 821, SMTP has evolved a lot due notably to the growing usage of email and the need to protect the email
system against spammers. It is unlikely that you will be able to explain all the additional lines that you will find in email
headers, but we’ll discuss them together.

25. A shorter description of the SMTP protocol may be found on wikipedia at http://en.wikipedia.org/wiki/
Simple_Mail_Transfer_Protocol

26. There are many monitoring tools available. nagios is a very popular open source monitoring system.
27. Note that using telnet to connect to a remote host on port 25 may not work in all networks. Due to the spam problem,

many ISP networks do not allow their customers to use port TCP 25 directly and force them to use the ISP’s mail relay to
forward their email. Thanks to this, if a software sending spam has been installed on the PC of one of the ISP’s
customers, this software will not be able to send a huge amount of spam. If you connect to nostromo.info.ucl.ac.be from
the fixed stations in INGI’s lab, you should not be blocked.
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the administrator of this server may become angry.

1. Continue the SMTP session that you started above by sending the greetings
command (HELO followed by the fully qualified domain name of your host) and
terminate the session by sending the QUIT command.

2. The minimum SMTP session above allows to verify that the SMTP is running.
However, this does not always imply that mail can be delivered. For example,
large SMTP servers often use a database to store all the email addresses that they
serve. To verify the correct operation of such a server, one possibility is to use the
VRFY command. Open a SMTP session on the lab’s SMTP server
(cnp3.info.ucl.ac.be) and use this command to verify that your account is active.

3. Now that you know the basics of opening and closing an SMTP session, you can
now send email manually by using the MAIL FROM:, RCPT TO: and DATA
commands. Use these commands to manually send an email to
INGI2141@cnp3.info.ucl.ac.be . Do not forget to include the From:, To: and Subject:
lines in your header.

4. By using SMTP, is it possible to send an email that contains exactly the following
ASCII art ?

.

..

…

1. Most email agents allow you to send email in carbon-copy (cc:) and also in blind-
carbon-copy (bcc:) toa recipient. How does a SMTP server supports these two
types of recipients ?

2. In the early days, email was read by using tools such as /bin/mail or more
advanced text-based mail readers such as pine or elm . Today, emails are stored
on dedicated servers and retrieved by using protocols such as POP_ or IMAP.
From the user’s viewpoint, can you list the advantages and drawbacks of these
two protocols ?

3. The TCP protocol supports 65536 different ports numbers. Many of these port
numbers have been reserved for some applications. The official repository of the
reserved port numbers is maintained by the Internet Assigned Numbers
Authority (IANA) on this site (http://www.iana.org/assignments/port-numbers) 28.
Using this information, what is the default port number for the POP3 protocol ?
Does it run on top of UDP or TCP ?

4. The Post Office Protocol (POP) is a rather simple protocol described in RFC 1939
(http://tools.ietf.org/html/rfc1939.html). POP operates in three phases. The first
phase is the authorization phase where the client provides a username and a
password. The second phase is the transaction phase where the client can
retrieve emails. The last phase is the update phase where the client finalises the
transaction. What are the main POP commands and their parameters ? When a
POP server returns an answer, how can you easily determine whether the answer
is positive or negative ?

28. On Unix hosts, a subset of the port assignments is often placed in /etc/services
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5. On smartphones, users often want to avoid downloading large emails over a slow
wireless connection. How could a POP client only download emails that are
smaller than 5 KBytes ?

6. Open a POP session with the lab’s POP server (nostromo.info.ucl.ac.be) by using
the username and password that you received. Verify that your username and
password are accepted by the server.

7. The lab’s POP server contains a script that runs every minute and sends two email
messages to your account if your email folder is empty. Use POP to retrieve these
two emails and provide the secret message to your teaching assistant.

3.5.3 The HyperText Transfer Protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. What are the main methods supported by the first version of the HyperText
Transfer Protocol (HTTP) defined in RFC 1945 (http://tools.ietf.org/html/rfc1945.ht
ml)29? What are the main types of replies sent by a http server 30?

2. System administrators who are responsible for web servers often want to
monitor these servers and check that they are running correctly. As a HTTP server
uses TCP on port 80, the simplest solution is to open a TCP connection on port 80
and check that the TCP connection is accepted by the remote host. However, as
HTTP is an ASCII-based protocol, it is also very easy to write a small script that
downloads a web page on the server and compares its content with the expected
one. Use telnet to verify that a web server is running on host
rembrandt.info.ucl.ac.be 31.

3. Instead of using telnet on port 80, it is also possible to use a command-line tool
such as curl (http://curl.haxx.se/) Use curl (http://curl.haxx.se/) with the –trace-
ascii tracefile option to store in tracefile all the information exchanged by curl
when accessing the server.
◦ what is the version of HTTP used by curl ?
◦ can you explain the different headers placed by curl in the request ?
◦ can you explain the different headers found in the response ?

4. HTTP 1.1, specified in RFC 2616 (http://tools.ietf.org/html/rfc2616.html) forces the
client to use the Host: in all its requests. HTTP 1.0 does not define the Host:
header, by most implementations support it. By using telnet and curl retrieve the
first page of the this site (http://totem.info.ucl.ac.be) webserver by sending http
requests with and without the Host: header. Explain the difference between the
two 32.

5. By using dig (http://linux.die.net/man/1/dig) and curl (http://curl.haxx.se/),
determine on which physical host the site 1 (http://www.info.ucl.ac.be), site 2 (htt
p://inl.info.ucl.ac.be) and site 3 (http://totem.info.ucl.ac.be) are hosted

6. Use curl (http://curl.haxx.se/) with the –trace-ascii filename to retrieve Google (htt
p://www.google.com) . Explain what a browser such as firefox would do when
retrieving this URL.

29. See section 5 of RFC 1945
30. See section 6.1 of RFC 1945
31. The minimum command sent to a HTTP server is GET / HTTP/1.0 followed by CRLF and a blank line
32. Use dig to find the IP address used by totem.info.ucl.ac.be
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7. The headers sent in a HTTP request allow the client to provide additional
information to the server. One of these headers is the Language header that
allows to indicate the preferred language of the client 33. For example, curl -
HAccept-Language:en http://www.google.be’ will send to ‘http://www.google.be a
HTTP request indicating English (en) as the preferred language. Does google
provide a different page in French (fr) and Walloon (wa) ? Same question for this s
ite (http://www.uclouvain.be) (given the size of the homepage, use diff to
compare the different pages retrieved from www.uclouvain.be)

8. Compare the size of the Yahoo (http://www.yahoo.com) and Google (http://www.g
oogle.com) web pages by downloading them with curl (http://curl.haxx.se/)

9. What is a http cookie ? List some advantages and drawbacks of using cookies on
web servers.

10. You are now responsible for the site (http://www.belgium.be). The government
has built two datacenters (http://en.wikipedia.org/wiki/Data_center) containing
1000 servers each in Antwerp and Namur. This website contains static
information and your objective is to balance the load between the different
servers and ensures that the service remains up even if one of the datacenters is
disconnected from the Internet due to flooding or other natural disasters. What
are the techniques that you can use to achieve this goal ?

33. The list of available language tags can be found at http://www.loc.gov/standards/iso639-2/php/code_list.php Additional
information about the support of multiple languages in Internet protocols may be found in RFC 5646
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Chapter 4 The transport layer
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

As the transport layer is built on top of the network layer, it is important to know the
key features of the network layer service. There are two types of network layer
services : connectionless and connection-oriented. The connectionless network layer
service is the most widespread. Its main characteristics are :

• the connectionless network layer service can only transfer SDUs of limited size 1

• the connectionless network layer service may discard SDUs
• the connectionless network layer service may corrupt SDUs
• the connectionless network layer service may delay, reorder or even duplicate

SDUs

:

Figure 4.1 The transport layer in the reference model

These imperfections of the connectionless network layer service will become much
clearer once we have explained the network layer in the next chapter. At this point, let
us simply assume that these imperfections occur without trying to understand why
they occur.

Some transport protocols can be used on top of a connection-oriented network
service, such as class 0 of the ISO Transport Protocol (TP0) defined in [X224] , but they
have not been widely used. We do not discuss in further detail such utilisation of a
connection-oriented network service in this book.

This chapter is organised as follows. We will first explain how it is possible to provide a
reliable transport service on top of an unreliable connectionless network service. For
this, we explain the main mechanisms found in such protocols. Then, we will study in
detail the two transport protocols that are used in the Internet. We begin with the
User Datagram Protocol (UDP) which provides a simple connectionless transport
service. Then, we will describe in detail the Transmission Control Protocol (TCP),
including its congestion control mechanism.

1. Many network layer services are unable to carry SDUs that are larger than 64 KBytes.
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4.1 Principles of a reliable transport protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this section, we depict a reliable transport protocol running above a connectionless
network layer service. For this, we first assume that the network layer provides a
perfect service, i.e. :

• the connectionless network layer service never corrupts SDUs
• the connectionless network layer service never discards SDUs
• the connectionless network layer service never delays, reorders nor duplicate

SDUs
• the connectionless network layer service can support SDUs of any size

We will then remove each of these assumptions one after the other in order to better
understand the mechanisms used to solve each imperfection.

4.1.1 Reliable data transfer on top of a perfect network service
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The transport layer entity interacts with both a user in the application layer and an
entity in the network layer. According to the reference model, these interactions will
be performed using DATA.req and DATA.ind primitives. However, to simplify the
presentation and to avoid confusion between a DATA.req primitive issued by the user
of the transport layer entity, and a DATA.req issued by the transport layer entity itself,
we will use the following terminology :

• the interactions between the user and the transport layer entity are represented
by using the classical DATA.req, DATA.ind primitives

• the interactions between the transport layer entity and the network layer service
are represented by using send instead of DATA.req and recvd instead of DATA.ind

This is illustrated in the figure below.

:

Figure 4.2 Interactions between the transport layer, its user, and its network layer provider
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When running on top of a perfect connectionless network service, a transport level
entity can simply issue a send(SDU) upon arrival of a DATA.req(SDU). Similarly, the
receiver issues a DATA.ind(SDU) upon receipt of a recvd(SDU). Such a simple protocol is
sufficient when a single SDU is sent.

Unfortunately, this is not always sufficient to ensure a reliable delivery of the SDUs.
Consider the case where a client sends tens of SDUs to a server. If the server is faster
that the client, it will be able to receive and process all the segments sent by the client
and deliver their content to its user. However, if the server is slower than the client,
problems may arise. The transport layer entity contains buffers to store SDUs that
have been received as a Data.request from the application but have not yet been sent
via the network service. If the application is faster than the network layer, the buffer
becomes full and the operating system suspends the application to let the transport
entity empty its transmission queue. The transport entity also uses a buffer to store
the segments received from the network layer that have not yet been processed by
the application. If the application is slow to process the data, this buffer becomes full
and the transport entity is not able to accept anymore the segments from the network
layer. The buffers of the transport entity have a limited size 2 and if they overflow, the
transport entity is forced to discard received segments.

:

Figure 4.3 The simplest transport protocol

To solve this problem, our transport protocol must include a feedback mechanism
that allows the receiver to inform the sender that it has processed a segment and that
another one can be sent. This feedback is required even though the network layer
provides a perfect service. To include such a feedback, our transport protocol must
process two types of segments :

• data segments carrying a SDU
• control segments carrying an acknowledgment indicating that the previous

segment was processed correctly

These two types of segments can be distinguished using a segment composed of two
parts:

• the header that contains one bit set to 0 in data segments and set to 1 in control
segments

• the payload that contains the SDU supplied by the user application

2. In the application layer, most servers are implemented as processes. The network and transport layer on the other hand
are usually implemented inside the operating system and the amount of memory that they can use is limited by the
amount of memory allocated to the entire kernel.
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The transport entity can then be modelled as a finite state machine, containing two
states for the receiver and two states for the sender. The figure below provides a
graphical representation of this state machine with the sender above and the receiver
below.

Figure 4.4 Finite state machine of the simplest transport protocol

The above FSM shows that the sender has to wait for an acknowledgement from the
receiver before being able to transmit the next SDU. The figure below illustrates the
exchange of a few segments between two hosts.

Figure 4.5 Time sequence diagram illustrating the operation of the simplest transport protocol
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4.1.2 Reliable data transfer on top of an imperfect network
service

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The transport layer must deal with the imperfections of the network layer service.
There are three types of imperfections that must be considered by the transport layer
:

1. Segments can be corrupted by transmission errors
2. Segments can be lost
3. Segments can be reordered or duplicated

To deal with these types of imperfections, transport protocols rely on different types
of mechanisms. The first problem is transmission errors. The segments sent by a
transport entity is processed by the network and datalink layers and finally
transmitted by the physical layer. All of these layers are imperfect. For example, the
physical layer may be affected by different types of errors :

1. random isolated errors where the value of a single bit has been modified due to a
transmission error

2. random burst errors where the values of n consecutive bits have been changed
due to transmission errors

3. random bit creations and random bit removals where bits have been added or
removed due to transmission errors

The only solution to protect against transmission errors is to add redundancy to the
segments that are sent. Information Theory defines two mechanisms that can be used
to transmit information over a transmission channel affected by random errors. These
two mechanisms add redundancy to the information sent, to allow the receiver to
detect or sometimes even correct transmission errors. A detailed discussion of these
mechanisms is outside the scope of this chapter, but it is useful to consider a simple
mechanism to understand its operation and its limitations.

Information theory defines coding schemes. There are different types of coding
schemes, but let us focus on coding schemes that operate on binary strings. A coding
scheme is a function that maps information encoded as a string of m bits into a string
of n bits. The simplest coding scheme is the even parity coding. This coding scheme
takes an m bits source string and produces an m+1 bits coded string where the first m
bits of the coded string are the bits of the source string and the last bit of the coded
string is chosen such that the coded string will always contain an even number of bits
set to 1. For example :

• 1001 is encoded as 10010
• 1101 is encoded as 11011

This parity scheme has been used in some RAMs as well as to encode characters sent
over a serial line. It is easy to show that this coding scheme allows the receiver to
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detect a single transmission error, but it cannot correct it. However, if two or more bits
are in error, the receiver may not always be able to detect the error.

Some coding schemes allow the receiver to correct some transmission errors. For
example, consider the coding scheme that encodes each source bit as follows :

• 1 is encoded as 111
• 0 is encoded as 000

For example, consider a sender that sends 111. If there is one bit in error, the receiver
could receive 011 or 101 or 110. In these three cases, the receiver will decode the
received bit pattern as a 1 since it contains a majority of bits set to 1. If there are two
bits in error, the receiver will not be able anymore to recover from the transmission
error.

This simple coding scheme forces the sender to transmit three bits for each source bit.
However, it allows the receiver to correct single bit errors. More advanced coding
systems that allow to recover from errors are used in several types of physical layers.

Transport protocols use error detection schemes, but none of the widely used
transport protocols rely on error correction schemes. To detect errors, a segment is
usually divided into two parts :

• a header that contains the fields used by the transport protocol to ensure reliable
delivery. The header contains a checksum or Cyclical Redundancy Check (CRC)
[Williams1993] that is used to detect transmission errors

• a payload that contains the user data passed by the application layer.

Some segment headers also include a length , which indicates the total length of the
segment or the length of the payload.

The simplest error detection scheme is the checksum. A checksum is basically an
arithmetic sum of all the bytes that a segment is composed of. There are different
types of checksums. For example, an eight bit checksum can be computed as the
arithmetic sum of all the bytes of (both the header and trailer of) the segment. The
checksum is computed by the sender before sending the segment and the receiver
verifies the checksum upon reception of each segment. The receiver discards
segments received with an invalid checksum. Checksums can be easily implemented
in software, but their error detection capabilities are limited. Cyclical Redundancy
Checks (CRC) have better error detection capabilities [SGP98], but require more CPU
when implemented in software.

Note: Checksums, CRCs, ...
Most of the protocols in the TCP/IP protocol suite rely on the simple Internet
checksum in order to verify that the received segment has not been affected by
transmission errors. Despite its popularity and ease of implementation, the
Internet checksum is not the only available checksum mechanism. Cyclical
Redundancy Checks (CRC (http://en.wikipedia.org/wiki/Cyclic_redundancy_ch
eck)) are very powerful error detection schemes that are used notably on disks,
by many datalink layer protocols and file formats such as zip or png. They can
easily be implemented efficiently in hardware and have better error-detection
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capabilities than the Internet checksum [SGP98] . However, when the first
transport protocols were designed, CRCs were considered to be too CPU-
intensive for software implementations and other checksum mechanisms
were used instead. The TCP/IP community chose the Internet checksum, the
OSI community chose the Fletcher checksum [Sklower89] . Now, there are
efficient techniques to quickly compute CRCs in software [Feldmeier95] , the
SCTP protocol initially chose the Adler-32 checksum but replaced it recently
with a CRC (see RFC 3309 (http://tools.ietf.org/html/rfc3309.html)).

The second imperfection of the network layer is that segments may be lost. As we will
see later, the main cause of packet losses in the network layer is the lack of buffers in
intermediate routers. Since the receiver sends an acknowledgement segment after
having received each data segment, the simplest solution to deal with losses is to use
a retransmission timer. When the sender sends a segment, it starts a retransmission
timer. The value of this retransmission timer should be larger than the round-trip-time,
i.e. the delay between the transmission of a data segment and the reception of the
corresponding acknowledgement. When the retransmission timer expires, the sender
assumes that the data segment has been lost and retransmits it. This is illustrated in
the figure below.

Unfortunately, retransmission timers alone are not sufficient to recover from segment
losses. Let us consider, as an example, the situation depicted below where an
acknowledgement is lost. In this case, the sender retransmits

:

Figure 4.6 Using retransmission timers to recover from segment losses

the data segment that has not been acknowledged. Unfortunately, as illustrated in the
figure below, the receiver considers the retransmission as a new segment whose
payload must be delivered to its user.
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Figure 4.7 Limitations of retransmission timers

To solve this problem, transport protocols associate a sequence number to each data
segment. This sequence number is one of the fields found in the header of data
segments. We use the notation D(S,...) to indicate a data segment whose sequence
number field is set to S. The acknowledgements also contain a sequence number
indicating the data segments that it is acknowledging. We use OKS to indicate an
acknowledgement segment that confirms the reception of D(S,...). The sequence
number is encoded as a bit string of fixed length. The simplest transport protocol is
the Alternating Bit Protocol (ABP).

The Alternating Bit Protocol uses a single bit to encode the sequence number. It can
be implemented easily. The sender and the receivers only require a four states Finite
State Machine.

Figure 4.8 Alternating bit protocol : Sender FSM

The initial state of the sender is Wait for D(0,...). In this state, the sender waits for a
Data.request. The first data segment that it sends uses sequence number 0. After
having sent this segment, the sender waits for an OK0 acknowledgement. A segment
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is retransmitted upon expiration of the retransmission timer or if an
acknowledgement with an incorrect sequence number has been received.

The receiver first waits for D(0,...). If the segment contains a correct CRC, it passes the
SDU to its user and sends OK0. If the segment contains an invalid CRC, it is
immediately discarded. Then, the receiver waits for D(1,...). In this state, it may receive
a duplicate D(0,...) or a data segment with an invalid CRC. In both cases, it returns an
OK0 segment to allow the sender to recover from the possible loss of the previous OK0
segment.

Note: Dealing with corrupted segments
The receiver FSM of the Alternating bit protocol discards all segments that
contain an invalid CRC. This is the safest approach since the received segment
can be completely different from the segment sent by the remote host. A
receiver should not attempt at extracting information from a corrupted
segment because it cannot know which portion of the segment has been
affected by the error.

The figure below illustrates the operation of the alternating bit protocol.

The Alternating Bit Protocol can recover from transmission errors and segment losses.
However, it has one important drawback. Consider two hosts that are directly
connected by a 50 Kbits/sec satellite link that has a 250 milliseconds propagation
delay. If these hosts send 1000 bits segments, then the maximum throughput that can
be achieved by the alternating bit protocol is one segment every 20+250+250 = 520
milliseconds if we ignore the transmission time of the acknowledgement. This is less
than 2 Kbits/sec !

Go-back-n and selective repeat

To overcome the performance limitations of the alternating bit protocol, transport
protocols rely on pipelining. This technique allows a sender to transmit several
consecutive segments without being forced to wait for an acknowledgement after
each segment. Each data segment contains a sequence number encoded in an n bits
field.

Pipelining allows the sender to transmit segments at a higher rate, but we need to
ensure that the receiver does not
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Figure 4.9 Alternating bit protocol : Receiver FSM

Figure 4.10 Operation of the alternating bit protocol
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:

Figure 4.11 Pipelining to improve the performance of transport protocols

become overloaded. Otherwise, the segments sent by the sender are not correctly
received by the destination. The transport protocols that rely on pipelining allow the
sender to transmit W unacknowledged segments before being forced to wait for an
acknowledgement from the receiving entity.

This is implemented by using a sliding window. The sliding window is the set of
consecutive sequence numbers that the sender can use when transmitting segments
without being forced to wait for an acknowledgement. The figure below shows a
sliding window containing five segments (6,7,8,9 and 10). Two of these sequence
numbers (6 and 7) have been used to send segments and only three sequence
numbers (8, 9 and 10) remain in the sliding window. The sliding window is said to be
closed once all sequence numbers contained in the sliding window have been used.

Figure 4.12 The sliding window

The figure below illustrates the operation of the sliding window. The sliding window
shown contains three segments. The sender can thus transmit three segments before
being forced to wait for an acknowledgement. The sliding window moves to the higher
sequence numbers upon reception of acknowledgements. When the first
acknowledgement (OK0) is received, it allows the sender to move its sliding window to
the right and sequence number 3 becomes available. This sequence number is used
later to transmit SDU d.
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Figure 4.13 Sliding window example

In practice, as the segment header encodes the sequence number in an n bits string,
only the sequence numbers between 0 and 2n − 1 can be used. This implies that the
same sequence number is used for different segments and that the sliding window
will wrap. This is illustrated in the figure below assuming that 2 bits are used to
encode the sequence number in the segment header. Note that upon reception of
OK1, the sender slides its window and can use sequence number 0 again.

Unfortunately, segment losses do not disappear because a transport protocol is using
a sliding window. To recover from segment losses, a sliding window protocol must
define :

• a heuristic to detect segment losses
• a retransmission strategy to retransmit the lost segments.
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Figure 4.14 Utilisation of the sliding window with modulo arithmetic

The simplest sliding window protocol uses go-back-n recovery. Intuitively, go-back-n
operates as follows. A go-back-n receiver is as simple as possible. It only accepts the
segments that arrive in-sequence. A go-back-n receiver discards any out-of-sequence
segment that it receives. When go-back-n receives a data segment, it always returns
an acknowledgement containing the sequence number of the last in-sequence
segment that it has received. This acknowledgement is said to be cumulative. When a
go-back-n receiver sends an acknowledgement for sequence number x, it implicitly
acknowledges the reception of all segments whose sequence number is earlier than x.
A key advantage of these cumulative acknowledgements is that it is easy to recover
from the loss of an acknowledgement. Consider for example a go-back-n receiver that
received segments 1, 2 and 3. It sent OK1, OK2 and OK3. Unfortunately, OK1 and OK2
were lost. Thanks to the cumulative acknowledgements, when the receiver receives
OK3, it knows that all three segments have been correctly received.

The figure below shows the FSM of a simple go-back-n receiver. This receiver uses two
variables : lastack and next. next is the next expected sequence number and lastack the
sequence number of the last data segment that has been acknowledged. The receiver
only accepts the segments that are received in sequence. maxseq is the number of
different sequence numbers (2n).
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Figure 4.15 Go-back-n : receiver FSM

A go-back-n sender is also very simple. It uses a sending buffer that can store an entire
sliding window of segments 3. The segments are sent with increasing sequence
number (modulo maxseq). The sender must wait for an acknowledgement once its
sending buffer is full. When a go-back-n sender receives an acknowledgement, it
removes from the sending buffer all the acknowledged segments and uses a
retransmission timer to detect segment losses. A simple go-back-n sender maintains
one retransmission timer per connection. This timer is started when the first segment
is sent. When the go-back-n sender receives an acknowledgement, it restarts the
retransmission timer only if there are still unacknowledged segments in its sending
buffer. When the retransmission timer expires, the go-back-n sender assumes that all
the unacknowledged segments currently stored in its sending buffer have been lost. It
thus retransmits all the unacknowledged segments in the buffer and restarts its
retransmission timer.

Figure 4.16 Go-back-n : sender FSM

The operation of go-back-n is illustrated in the figure below. In this figure, note that
upon reception of the outof-sequence segment D(2,c), the receiver returns a
cumulative acknowledgement C(OK,0) that acknowledges all the segments that have
been received in sequence. The lost segment is retransmitted upon the expiration of
the retransmission timer.

3. The size of the sliding window can be either fixed for a given protocol or negotiated during the connection establishment
phase. We’ll see later that it is also possible to change the size of the sliding window during the connection’s lifetime.
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Figure 4.17 Go-back-n : example

The main advantage of go-back-n is that it can be easily implemented, and it can also
provide good performance when only a few segments are lost. However, when there
are many losses, the performance of go-back-n quickly drops for two reasons :

• the go-back-n receiver does not accept out-of-sequence segments
• the go-back-n sender retransmits all unacknowledged segments once its has

detected a loss

Selective repeat is a better strategy to recover from segment losses. Intuitively, selective
repeat allows the receiver to accept out-of-sequence segments. Furthermore, when a
selective repeat sender detects losses, it only retransmits the segments that have been
lost and not the segments that have already been correctly received.

A selective repeat receiver maintains a sliding window of W segments and stores in a
buffer the out-of-sequence segments that it receives. The figure below shows a five
segment receive window on a receiver that has already received segments 7 and 9.

Figure 4.18 The receiving window with selective repeat

A selective repeat receiver discards all segments having an invalid CRC, and maintains
the variable lastack as the sequence number of the last in-sequence segment that it
has received. The receiver always includes the value of lastack in the
acknowledgements that it sends. Some protocols also allow the selective repeat
receiver to acknowledge the out-of-sequence segments that it has received. This can
be done for example by placing the list of the sequence numbers of the correctly
received, but out-of-sequence segments in the acknowledgements together with the
lastack value.
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When a selective repeat receiver receives a data segment, it first verifies whether the
segment is inside its receiving window. If yes, the segment is placed in the receive
buffer. If not, the received segment is discarded and an acknowledgement containing
lastack is sent to the sender. The receiver then removes all consecutive segments
starting at lastack (if any) from the receive buffer. The payloads of these segments are
delivered to the user, lastack and the receiving window are updated, and an
acknowledgement acknowledging the last segment received in sequence is sent.

The selective repeat sender maintains a sending buffer that can store up to W
unacknowledged segments. These segments are sent as long as the sending buffer is
not full. Several implementations of a selective repeat sender are possible. A simple
implementation is to associate a retransmission timer to each segment. The timer is
started when the segment is sent and cancelled upon reception of an
acknowledgement that covers this segment. When a retransmission timer expires, the
corresponding segment is retransmitted and this retransmission timer is restarted.
When an acknowledgement is received, all the segments that are covered by this
acknowledgement are removed from the sending buffer and the sliding window is
updated.

The figure below illustrates the operation of selective repeat when segments are lost. In
this figure, C(OK,x) is used to indicate that all segments, up to and including sequence
number x have been received correctly.

Figure 4.19 Selective repeat : example

Pure cumulative acknowledgements work well with the go-back-n strategy. However,
with only cumulative acknowledgements a selective repeat sender cannot easily
determine which data segments have been correctly received after a data segment
has been lost. For example, in the figure above, the second C(OK,0) does not inform
explicitly the sender of the reception of D(2,c) and the sender could retransmit this
segment although it has already been received. A possible solution to improve the
performance of selective repeat is to provide additional information about the
received segments in the acknowledgements that are returned by the receiver. For
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example, the receiver could add in the returned acknowledgement the list of the
sequence numbers of all segments that have already been received. Such
acknowledgements are sometimes called selective acknowledgements. This is illustrated
in the figure below.

In the figure above, when the sender receives C(OK,0,[2]), it knows that all segments
up to and including D(0,...) have been correctly received. It also knows that segment
D(2,...) has been received and can cancel the retransmission timer associated to this
segment. However, this segment should not be removed from the sending buffer
before the reception of a cumulative acknowledgement (C(OK,2) in the figure above)
that covers this segment.

Note: Maximum window size with go-back-n and selective repeat
A transport protocol that uses n bits to encode its sequence number can send

up to 2n different segments. However, to ensure a reliable delivery of the

segments, go-back-n and selective repeat cannot use a sending window of 2n

segments. Consider first go-back-n and assume that a sender sends 2n

segments. These segments are received in-sequence by the destination, but all
the returned acknowledgements are lost. The sender will retransmit all
segments and they will all be accepted by the receiver and delivered a second
time to the user. It is easy to see that this problem can be avoided if the

maximum size of the sending window is 2n − 1 segments. A similar problem
occurs with selective repeat. However, as the receiver accepts out-of-sequence

segments, a sending window of 2n − 1 segments is not sufficient to ensure a
reliable delivery of all segments. It can be easily shown that to avoid this

problem, a selective repeat sender cannot use a window that is larger than 2n/2
segments.

Go-back-n or selective repeat are used by transport protocols to provide a reliable data
transfer above an unreliable network layer service. Until now, we have assumed that
the size of the sliding window was fixed for the entire lifetime of the connection 4. In
practice a transport layer entity is usually implemented in the operating system and
shares memory with other parts of the system. Furthermore, a transport layer entity
must support several (possibly hundreds or thousands) of transport connections at
the same time. This implies that the memory which can be used to support the
sending or the receiving buffer of a transport connection may change during the
lifetime of the connection. Thus, a transport protocol must allow the sender and the
receiver to adjust their window sizes.

To deal with this issue, transport protocols allow the receiver to advertise the current
size of its receiving window in all the acknowledgements that it sends. The receiving
window advertised by the receiver bounds the size of the sending buffer used by the
sender. In practice, the sender maintains two state variables : swin, the size of its
sending window (that may be adjusted by the system) and rwin, the size of the
receiving window advertised by the receiver. At any time, the number of

4. For a discussion on how the sending buffer can change, see e.g. [SMM1998]
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unacknowledged segments cannot be larger than min(swin,rwin) 5. The utilisation of
dynamic windows is illustrated in the figure below.

The receiver may adjust its advertised receive window based on its current memory
consumption, but also to limit the bandwidth used by the sender. In practice, the
receive buffer can also shrink as the application may not able to process the received
data quickly enough. In this case, the receive buffer may be completely full and the
advertised receive window may shrink to 0. When the sender receives an
acknowledgement with a receive window set to 0, it is blocked until it receives an
acknowledgement with a positive receive window. Unfortunately, as shown in the
figure below, the loss of this acknowledgement could cause a deadlock as the sender
waits for an acknowledgement while the receiver is waiting for a data segment.

To solve this problem, transport protocols rely on a special timer : the persistence
timer. This timer is started by the sender whenever it receives an acknowledgement
advertising a receive window set to 0. When the timer expires, the sender retransmits
an old segment in order to force the receiver to send a new acknowledgement, and
hence send the current receive window size.

To conclude our description of the basic mechanisms found in transport protocols, we
still need to discuss the impact of segments arriving in the wrong order. If two
consecutive segments are reordered, the receiver relies on their sequence numbers to
reorder them in its receive buffer. Unfortunately, as transport protocols reuse the
same sequence number for different segments, if a segment is delayed for a
prolonged period of time, it might still be accepted by the receiver. This is illustrated in
the figure below where segment D(1,b) is delayed.

Figure 4.20 Dynamic receiving window

5. Note that if the receive window shrinks, it might happen that the sender has already sent a segment that is not anymore
inside its window. This segment will be discarded by the receiver and the sender will retransmit it later.
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Figure 4.21 Risk of deadlock with dynamic windows

Figure 4.22 Ambiguities caused by excessive delays

To deal with this problem, transport protocols combine two solutions. First, they use
32 bits or more to encode the sequence number in the segment header. This
increases the overhead, but also increases the delay between the transmission of two
different segments having the same sequence number. Second, transport protocols
require the network layer to enforce a Maximum Segment Lifetime (MSL). The network
layer must ensure that no packet remains in the network for more than MSL seconds.
In the Internet the MSL is assumed 6 to be 2 minutes RFC793 (http://tools.ietf.org/htm
l/rfc793.html). Note that this limits the maximum bandwidth of a transport protocol. If
it uses n bits to encode its sequence numbers, then it cannot send more than 2n
segments every MSL seconds.

Transport protocols often need to send data in both directions. To reduce the
overhead caused by the acknowledgements, most transport protocols use

6. As we will see in the next chapter, the Internet does not strictly enforce this MSL. However, it is reasonable to expect that
most packets on the Internet will not remain in the network during more than 2 minutes. There are a few exceptions to
this rule, such as RFC 1149 whose implementation is described in http://www.blug.linux.no/rfc1149/ but there are few
real links supporting RFC 1149 in the Internet.
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piggybacking. Thanks to this technique, a transport entity can place inside the header
of the data segments that it sends, the acknowledgements and the receive window
that it advertises for the opposite direction of the data flow. The main advantage of
piggybacking is that it reduces the overhead as it is not necessary to send a complete
segment to carry an acknowledgement. This is illustrated in the figure below where
the acknowledgement number is underlined in the data segments. Piggybacking is
only used when data flows in both directions. A receiver will generate a pure
acknowledgement when it does not send data in the opposite direction as shown in
the bottom of the figure.

:

Figure 4.23 Piggybacking

The last point to be discussed about the data transfer mechanisms used by transport
protocols is the provision of a byte stream service. As indicated in the first chapter, the
byte stream service is widely used in the transport layer. The transport protocols that
provide a byte stream service associate a sequence number to all the bytes that are
sent and place the sequence number of the first byte of the segment in the segment’s
header. This is illustrated in the figure below. In this example, the sender chooses to
put two bytes in each of the first three segments. This is due to graphical reasons, a
real transport protocol would use larger segments in practice. However, the division of
the byte stream into segments combined with the losses and retransmissions explain
why the byte stream service does not preserve the SDU boundaries.
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:

Figure 4.24 Provision of the byte stream service

Connection establishment and release

The last points to be discussed about the transport protocol are the mechanisms used
to establish and release a transport connection.

We explained in the first chapters the service primitives used to establish a
connection. The simplest approach to establish a transport connection would be to
define two special control segments : CR and CA. The CR segment is sent by the
transport entity that wishes to initiate a connection. If the remote entity wishes to
accept the connection, it replies by sending a CA segment. The transport connection is
considered to be established once the CA segment has been received and data
segments can be sent in both directions.

:

Figure 4.25 Naive transport connection establishment

Unfortunately, this scheme is not sufficient for several reasons. First, a transport entity
usually needs to maintain several transport connections with remote entities.
Sometimes, different users (i.e. processes) running above a given transport entity
request the establishment of several transport connections to different users attached
to the same remote transport entity. These different transport connections must be
clearly separated to ensure that data from one connection is not passed to the other
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connections. This can be achieved by using a connection identifier, chosen by the
transport entities and placed inside each segment to allow the entity which receives a
segment to easily associate it to one established connection.

Second, as the network layer is imperfect, the CR or CA segment can be lost, delayed,
or suffer from transmission errors. To deal with these problems, the control segments
must be protected by using a CRC or checksum to detect transmission errors.
Furthermore, since the CA segment acknowledges the reception of the CR segment,
the CR segment can be protected by using a retransmission timer.

Unfortunately, this scheme is not sufficient to ensure the reliability of the transport
service. Consider for example a short-lived transport connection where a single, but
important transfer (e.g. money transfer from a bank account) is sent. Such a short-
lived connection starts with a CR segment acknowledged by a CA segment, then the
data segment is sent, acknowledged and the connection terminates. Unfortunately, as
the network layer service is unreliable, delays combined to retransmissions may lead
to the situation depicted in the figure below, where a delayed CR and data segments
from a former connection are accepted by the receiving entity as valid segments, and
the corresponding data is delivered to the user. Duplicating SDUs is not acceptable,
and the transport protocol must solve this problem.

:

Figure 4.26 Duplicate transport connections ?

To avoid these duplicates, transport protocols require the network layer to bound the
Maximum Segment Lifetime (MSL). The organisation of the network must guarantee
that no segment remains in the network for longer than MSL seconds. On today’s
Internet, MSL is expected to be 2 minutes. To avoid duplicate transport connections,
transport protocol entities must be able to safely distinguish between a duplicate CR
segment and a new CR segment, without forcing each transport entity to remember
all the transport connections that it has established in the past.

A classical solution to avoid remembering the previous transport connections to
detect duplicates is to use a clock inside each transport entity. This transport clock has
the following characteristics :

• the transport clock is implemented as a k bits counter and its clock cycle is such

that 2k × cycle >> MSL. Furthermore, the transport clock counter is incremented
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every clock cycle and after each connection establishment. This clock is illustrated
in the figure below.

• the transport clock must continue to be incremented even if the transport entity
stops or reboots

Figure 4.27 Transport clock

It should be noted that transport clocks do not need and usually are not synchronised
to the real-time clock. Precisely synchronising real-time clocks is an interesting
problem, but it is outside the scope of this document. See [Mills2006] for a detailed
discussion on synchronising the real-time clock.

The transport clock is combined with an exchange of three segments, called the three
way handshake, to detect duplicates. This three way handshake occurs as follows:

1. The initiating transport entity sends a CR segment. This segment requests the
establishment of a transport connection. It contains a connection identifier (not
shown in the figure) and a sequence number (seq=x in the figure below) whose
value is extracted from the transport clock . The transmission of the CR segment
is protected by a retransmission timer.

2. The remote transport entity processes the CR segment and creates state for the
connection attempt. At this stage, the remote entity does not yet know whether
this is a new connection attempt or a duplicate segment. It returns a CA segment
that contains an acknowledgement number to confirm the reception of the CR
segment (ack=x in the figure below) and a sequence number (seq=y in the figure
below) whose value is extracted from its transport clock. At this stage, the
connection is not yet established.

3. The initiating entity receives the CA segment. The acknowledgement number of
this segment confirms that the remote entity has correctly received the CA
segment. The transport connection is considered to be established by the
initiating entity and the numbering of the data segments starts at sequence
number x. Before sending data segments, the initiating entity must acknowledge
the received CA segments by sending another CA segment.

4. The remote entity considers the transport connection to be established after
having received the segment that acknowledges its CA segment. The numbering
of the data segments sent by the remote entity starts at sequence number y.

The three way handshake is illustrated in the figure below.
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Figure 4.28 Three-way handshake

Thanks to the three way handshake, transport entities avoid duplicate transport
connections. This is illustrated by the three scenarios below.

The first scenario is when the remote entity receives an old CR segment. It considers
this CR segment as a connection establishment attempt and replies by sending a CA
segment. However, the initiating host cannot match the received CA segment with a
previous connection attempt. It sends a control segment (REJECT in the figure below)
to cancel the spurious connection attempt. The remote entity cancels the connection
attempt upon reception of this control segment.

A second scenario is when the initiating entity sends a CR segment that does not reach
the remote entity and receives a duplicate CA segment from a previous connection
attempt. This duplicate CA segment cannot contain a valid acknowledgement for the
CR segment as the sequence number of the CR segment was extracted from the
transport clock of the initiating entity. The CA segment is thus rejected and the CR
segment is retransmitted upon expiration of the retransmission timer.

The last scenario is less likely, but it it important to consider it as well. The remote
entity receives an old CR segment. It notes the connection attempt and acknowledges
it by sending a CA segment. The initiating entity does not have a matching connection
attempt and replies by sending a REJECT. Unfortunately, this segment never reaches
the remote entity. Instead, the remote entity receives a retransmission of an older CA
segment that contains the same sequence number as the first CR segment. This CA
segment cannot be accepted by the remote entity as a confirmation of the transport
connection as its acknowledgement number cannot have the same value as the
sequence number of the first CA segment.
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Figure 4.29 Three-way handshake : recovery from a duplicate CR

Figure 4.30 Three-way handshake : recovery from a duplicate CA

Figure 4.31 Three-way handshake : recovery from duplicates CR and CA
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When we discussed the connection-oriented service, we mentioned that there are two
types of connection releases : abrupt release and graceful release.

The first solution to release a transport connection is to define a new control segment
(e.g. the DR segment) and consider the connection to be released once this segment
has been sent or received. This is illustrated in the figure below.

Figure 4.32 Abrupt connection release

As the entity that sends the DR segment cannot know whether the other entity has
already sent all its data on the connection, SDUs can be lost during such an abrupt
connection release.

The second method to release a transport connection is to release independently the
two directions of data transfer. Once a user of the transport service has sent all its
SDUs, it performs a DISCONNECT.req for its direction of data transfer. The transport
entity sends a control segment to request the release of the connection after the
delivery of all previous SDUs to the remote user. This is usually done by placing in the
DR the next sequence number and by delivering the DISCONNECT.ind only after all
previous DATA.ind. The remote entity confirms the reception of the DR segment and
the release of the corresponding direction of data transfer by returning an
acknowledgement. This is illustrated in the figure below.
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Figure 4.33 Graceful connection release

4.2 The User Datagram Protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The User Datagram Protocol (UDP) is defined in RFC 768 (http://tools.ietf.org/html/rfc7
68.html). It provides an unreliable connectionless transport service on top of the
unreliable network layer connectionless service. The main characteristics of the UDP
service are :

• the UDP service cannot deliver SDUs that are larger than 65507 bytes 7

• the UDP service does not guarantee the delivery of SDUs (losses and desquencing
can occur)

• the UDP service will not deliver a corrupted SDU to the destination

Compared to the connectionless network layer service, the main advantage of the
UDP service is that it allows several applications running on a host to exchange SDUs
with several other applications running on remote hosts. Let us consider two hosts,
e.g. a client and a server. The network layer service allows the client to send
information to the server, but if an application running on the client wants to contact a
particular application running on the server, then an additional addressing
mechanism is required other than the IP address that identifies a host, in order to
differentiate the application running on a host. This additional addressing is provided
by port numbers. When a server using UDP is enabled on a host, this server registers a
port number. This port number will be used by the clients to contact the server process
via UDP.

The figure below shows a typical usage of the UDP port numbers. The client process
uses port number 1234 while the server process uses port number 5678. When the
client sends a request, it is identified as originating from port number 1234 on the
client host and destined to port number 5678 on the server host. When the server
process replies to this request, the server’s UDP implementation will send the reply as

7. This limitation is due to the fact that the network layer (IPv4 and IPv6) cannot transport packets that are larger than 64
KBytes. As UDP does not include any segmentation/reassembly mechanism, it cannot split a SDU before sending it.
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originating from port 5678 on the server host and destined to port 1234 on the client
host.

UDP uses a single segment format shown in the figure below.

The UDP header contains four fields :

• a 16 bits source port
• a 16 bits destination port
• a 16 bits length field
• a 16 bits checksum

As the port numbers are encoded as a 16 bits field, there can be up to only 65535
different server processes that are bound to a different UDP port at the same time on
a given server. In practice, this limit is never reached. However, it is worth noticing that
most implementations divide the range of allowed UDP port numbers into three
different ranges :

Figure 4.34 Usage of the UDP port numbers

Figure 4.35 UDP Header Format

• the privileged port numbers (1 < port < 1024 )
• the ephemeral port numbers ( officially 8 49152 <= port <= 65535 )
• the registered port numbers (officially 1024 <= port < 49152)

In most Unix variants, only processes having system administrator privileges can be
bound to port numbers smaller than 1024. Well-known servers such as DNS, NTP or
RPC use privileged port numbers. When a client needs to use UDP, it usually does not
require a specific port number. In this case, the UDP implementation will allocate the
first available port number in the ephemeral range. The range of registered port
numbers should be used by servers. In theory, developers of network servers should
register their port number officially through IANA, but few developers do this.

8. A discussion of the ephemeral port ranges used by different TCP/UDP implementations may be found in
http://www.ncftp.com/ncftpd/doc/misc/ephemeral_ports.html
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Note: Computation of the UDP checksum The checksum of the UDP segment is
computed over :

• a pseudo header containing the source IP address, the destination IP
address and a 32 bits bit field containing the most significant byte set to 0,
the second set to 17 and the length of the UDP segment in the lower two
bytes

• the entire UDP segment, including its header

This pseudo-header allows the receiver to detect errors affecting the IP source or
destination addresses placed in the IP layer below. This is a violation of the layering
principle that dates from the time when UDP and IP were elements of a single
protocol. It should be noted that if the checksum algorithm computes value ‘0x0000’,
then value ‘0xffff’ is transmitted. A UDP segment whose checksum is set to ‘0x0000’ is
a segment for which the transmitter did not compute a checksum upon transmission.
Some NFS servers chose to disable UDP checksums for performance reasons, but this
caused problems that were difficult to diagnose. In practice, there are rarely good
reasons to disable UDP checksums. A detailed discussion of the implementation of the
Internet checksum may be found in RFC 1071 (http://tools.ietf.org/html/rfc1071.html)

Several types of applications rely on UDP. As a rule of thumb, UDP is used for
applications where delay must be minimised or losses can be recovered by the
application itself. A first class of the UDP-based applications are applications where
the client sends a short request and expects a quick and short answer. The DNS is an
example of a UDP application that is often used in the wide area. However, in local
area networks, many distributed systems rely on Remote Procedure Call (RPC) that is
often used on top of UDP. In Unix environments, the Network File System (NFS) is built
on top of RPC and runs frequently on top of UDP. A second class of UDP-based
applications are the interactive computer games that need to frequently exchange
small messages, such as the player’s location or their recent actions. Many of these
games use UDP to minimise the delay and can recover from losses. A third class of
applications are multimedia applications such as interactive Voice over IP or
interactive Video over IP. These interactive applications expect a delay shorter than
about 200 milliseconds between the sender and the receiver and can recover from
losses directly inside the application.

4.3 The Transmission Control Protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Transmission Control Protocol (TCP) was initially defined in RFC 793 (http://tools.ie
tf.org/html/rfc793.html). Several parts of the protocol have been improved since the
publication of the original protocol specification 9. However, the basics of the protocol
remain and an implementation that only supports RFC 793 (http://tools.ietf.org/html/r
fc793.html) should inter-operate with today’s implementation.

9. A detailed presentation of all standardisation documents concerning TCP may be found in RFC 4614
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TCP provides a reliable bytestream, connection-oriented transport service on top of
the unreliable connectionless network service provided by IP. TCP is used by a large
number of applications, including :

• Email (SMTP, POP, IMAP)
• World wide web ( HTTP, ...)
• Most file transfer protocols ( ftp, peer-to-peer file sharing applications, ...)
• remote computer access : telnet, ssh, X11, VNC, ...
• non-interactive multimedia applications : flash

On the global Internet, most of the applications used in the wide area rely on TCP.
Many studies 10 have reported that TCP was responsible for more than 90% of the data
exchanged in the global Internet.

To provide this service, TCP relies on a simple segment format that is shown in the
figure below. Each TCP segment contains a header described below and, optionally, a
payload. The default length of the TCP header is twenty bytes, but some TCP headers
contain options.

Figure 4.36 TCP header format

A TCP header contains the following fields :

• Source and destination ports. The source and destination ports play an important
role in TCP, as they allow the identification of the connection to which a TCP
segment belongs. When a client opens a TCP connection, it typically selects an
ephemeral TCP port number as its source port and contacts the server by using
the server’s port number. All the segments that are sent by the client on this
connection have the same source and destination ports. The server sends
segments that contain as source (resp. destination port, the destination (resp.
source) port of the segments sent by the client (see figure Utilization of the TCP
source and destination ports). A TCP connection is always identified by five pieces
of information :
◦ the IP address of the client
◦ the IP address of the server

10. Several researchers have analysed the utilisation of TCP and UDP in the global Internet. Most of these studies have been
performed by collecting all the packets transmitted over a given link during a period of a few hours or days and then
analysing their headers to infer the transport protocol used, the type of application, ... Recent studies include
http://www.caida.org/research/traffic-analysis/tcpudpratio/, https://research.sprintlabs.com/packstat/
packetoverview.php or http://www.nanog.org/meetings/nanog43/presentations/Labovitz_internetstats_N43.pdf
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◦ the port chosen by the client
◦ the port chosen by the server
◦ TCP

• the sequence number (32 bits), acknowledgement number (32 bits) and window
(16 bits) fields are used to provide a reliable data transfer, using a window-based
protocol. In a TCP bytestream, each byte of the stream consumes one sequence
number. Their utilisation will be described in more detail in section TCP reliable
data transfer

• the Urgent pointer is used to indicate that some data should be considered as
urgent in a TCP bytestream. However, it is rarely used in practice and will not be
described here. Additional details about the utilisation of this pointer may be
found in RFC 793 (http://tools.ietf.org/html/rfc793.html), RFC 1122 (http://tools.iet
f.org/html/rfc1122.html) or [Stevens1994]

• the flags field contains a set of bit flags that indicate how a segment should be
interpreted by the TCP entity receiving it :
◦ the SYN flag is used during connection establishment
◦ the FIN flag is used during connection release
◦ the RST is used in case of problems or when an invalid segment has been

received
◦ when the ACK flag is set, it indicates that the acknowledgment field contains a

valid number. Otherwise, the content of the acknowledgment field must be
ignored by the receiver

◦ the URG flag is used together with the Urgent pointer
◦ the PSH flag is used as a notification from the sender to indicate to the

receiver that it should pass all the data it has received to the receiving
process. However, in practice TCP implementations do not allow TCP users to
indicate when the PSH fl ag should be set and thus there are few real
utilizations of this flag.

• the checksum field contains the value of the Internet checksum computed over
the entire TCP segment and a pseudo-header as with UDP

• the Reserved field was initially reserved for future utilization. It is now used by RFC
3168 (http://tools.ietf.org/html/rfc3168.html).

• the TCP Header Length (THL) or Data Offset field is a four bits field that indicates the
size of the TCP header in 32 bit words. The maximum size of the TCP header is
thus 64 bytes.

• the Optional header extension is used to add optional information to the TCP
header. Thanks to this header extension, it is possible to add new fields to the
TCP header that were not planned in the original specification. This allowed TCP
to evolve since the early eighties. The details of the TCP header extension are
explained in sections TCP connection establishment and TCP reliable data transfer.

The rest of this section is organised as follows. We first explain the establishment and
the release of a TCP connection, then we discuss the mechanisms that are used by
TCP to provide a reliable bytestream service. We end the section with a discussion of
network congestion and explain the mechanisms that TCP uses to avoid congestion
collapse.
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4.3.1 TCP connection establishment
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A TCP connection is established by using a three-way handshake. The connection
establishment phase uses the sequence number, the acknowledgment number and the
SYN flag. When a TCP connection is established, the two communicating hosts
negotiate the initial sequence number to be used in both directions of the connection.
For this, each TCP entity maintains a 32 bits counter, which is supposed to be
incremented by one at least every 4 microseconds and after each connection
establishment 11. When a client host wants to open a TCP connection with a server
host, it creates a TCP segment with :

• the SYN flag set
• the sequence number set to the current value of the 32 bits counter of the client

host’s TCP entity

Figure 4.37 Utilization of the TCP source and destination ports

Upon reception of this segment (which is often called a SYN segment), the server host
replies with a segment containing :

• the SYN flag set
• the sequence number set to the current value of the 32 bits counter of the server

host’s TCP entity
• the ACK flag set
• the acknowledgment number set to the sequence number of the received SYN

segment incremented by 1 ( mod 232). When a TCP entity sends a segment having
x+1 as acknowledgment number, this indicates that it has received all data up to
and including sequence number x and that it is expecting data having sequence
number x+1. As the SYN flag was set in a segment having sequence number x, this
implies that setting the SYN flag in a segment consumes one sequence number.

11. This 32 bits counter was specified in RFC 793. A 32 bits counter that is incremented every 4 microseconds wraps in about
4.5 hours. This period is much larger than the Maximum Segment Lifetime that is fixed at 2 minutes in the Internet ( RFC
791, RFC 1122).
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This segment is often called a SYN+ACK segment. The acknowledgment confirms to the
client that the server has correctly received the SYN segment. The sequence number of
the SYN+ACK segment is used by the server host to verify that the client has received
the segment. Upon reception of the SYN+ACK segment, the client host replies with a
segment containing :

• the ACK flag set
• the acknowledgment number set to the sequence number of the received

SYN+ACK segment incremented by1 ( mod 232)

At this point, the TCP connection is open and both the client and the server are
allowed to send TCP segments containing data. This is illustrated in the figure below.

In the figure above, the connection is considered to be established by the client once it
has received the SYN+ACK segment, while the server considers the connection to be
established upon reception of the ACK segment. The first data segment sent by the
client (server) has its sequence number set to x+1 (resp. y+1).

Note: Computing TCP’s initial sequence number
In the original TCP specification RFC 793 (http://tools.ietf.org/html/rfc793.htm
l), each TCP entity maintained a clock to compute the initial sequence number
(ISN) placed in the SYN and SYN+ACK segments. This made the ISN predictable
and caused a security issue. The typical security problem was the following.
Consider a server that trusts a host based on its IP address and allows the
system administrator to login from this host without giving a password 12.

:

Figure 4.38 Establishment of a TCP con nection

Consider now an attacker who knows this particular configuration and is able to send
IP packets having the client’s address as source. He can send fake TCP segments to the
server, but does not receive the server’s answers. If he can predict the ISN that is
chosen by the server, he can send a fake SYN segment and shortly after the fake ACK
segment confirming the reception of the SYN+ACK segment sent by the server. Once

12. On many departmental networks containing Unix workstations, it was common to allow users on one of the
hosts to use rlogin RFC 1258 to run commands on any of the workstations of the network without giving any
password. In this case, the remote workstation “authenticated” the client host based on its IP address. This was
a bad practice from a security viewpoint.

120

http://tools.ietf.org/html/rfc793.html
http://tools.ietf.org/html/rfc793.html
http://tools.ietf.org/html/rfc793.html


the TCP connection is open, he can use it to send any command to the server. To
counter this attack, current TCP implementations add randomness to the ISN. One of
the solutions, proposed in RFC 1948 (http://tools.ietf.org/html/rfc1948.html) is to
compute the ISN as

ISN = M + H(localhost, localport, remotehost, remoteport, secret).

where M is the current value of the TCP clock and H‘is a cryptographic hash function.
‘localhost and remotehost (resp. localport and remoteport ) are the IP addresses (port
numbers) of the local and remote host and secret is a random number only known by
the server. This method allows the server to use different ISNs for different clients at
the same time. Measurements (http://lcamtuf.coredump.cx/newtcp/) performed with
the first implementations of this technique showed that it was difficult to implement it
correctly, but today’s TCP implementation now generate good ISNs.

A server could, of course, refuse to open a TCP connection upon reception of a SYN
segment. This refusal may be due to various reasons. There may be no server process
that is listening on the destination port of the SYN segment. The server could always
refuse connection establishments from this particular client (e.g. due to security
reasons) or the server may not have enough resources to accept a new TCP
connection at that time. In this case, the server would reply with a TCP segment having
its RST flag set and containing the sequence number of the received SYN segment as
its acknowledgment number. This is illustrated in the figure below. We discuss the
other utilizations of the TCP RST flag later (see TCP connection release).

:

Figure 4.39 TCP connection establishment rejected by peer

TCP connection establishment can be described as the four state Finite State Machine
shown below. In this FSM, !X (resp. ?Y) indicates the transmission of segment X (resp.
reception of segment Y) during the corresponding transition. Init is the initial state.

A client host starts in the Init state. It then sends a SYN segment and enters the SYN
Sent state where it waits for a SYN+ACK segment. Then, it replies with an ACK segment
and enters the Established state where data can be exchanged. On the other hand, a
server host starts in the Init state. When a server process starts to listen to a
destination port, the underlying TCP entity creates a TCP control block and a queue to
process incoming SYN segments. Upon reception of a SYN segment, the server’s TCP
entity replies with a SYN+ACK and enters the SYN RCVD state. It remains in this state
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until it receives an ACK segment that acknowledges its SYN+ACK segment, with this it
then enters the Established state.

Figure 4.40 TCP FSM for connection establishment

Apart from these two paths in the TCP connection establishment FSM, there is a third
path that corresponds to the case when both the client and the server send a SYN
segment to open a TCP connection 13. In this case, the client and the server send a SYN
segment and enter the SYN Sent state. Upon reception of the SYN segment sent by the
other host, they reply by sending a SYN+ACK segment and enter the SYN RCVD state.
The SYN+ACK that arrives from the other host allows it to transition to the Established
state. The figure below illustrates such a simultaneous establishment of a TCP
connection.

Figure 4.41 Simultaneous establishment of a TCP connection

13. Of course, such a simultaneous TCP establishment can only occur if the source port chosen by the client is equal to the
destination port chosen by the server. This may happen when a host can serve both as a client as a server or in peer-to-
peer applications when the communicating hosts do not use ephemeral port numbers.
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Denial of Service attacks
When a TCP entity opens a TCP connection, it creates a Transmission
Control Block (TCB). The TCB contains the entire state that is
maintained by the TCP entity for each TCP connection. During
connection establishment, the TCB contains the local IP address, the
remote IP address, the local port number, the remote port number,
the current local sequence number, the last sequence number
received from the remote entity. Until the mid 1990s, TCP
implementations had a limit on the number of TCP connections that
could be in the SYN RCVD state at a given time. Many
implementations set this limit to about 100 TCBs. This limit was
considered sufficient even for heavily load http servers given the
small delay between the reception of a SYN segment and the
reception of the ACK segment that terminates the establishment of
the TCP connection. When the limit of 100 TCBs in the SYN Rcvd
state is reached, the TCP entity discards all received TCP SYN
segments that do not correspond to an existing TCB. This limit of 100
TCBs in the SYN Rcvd state was chosen to protect the TCP entity from
the risk of overloading its memory with too many TCBs in the SYN
Rcvd state. However, it was also the reason for a new type of Denial of
Service (DoS) attack RFC 4987 (http://tools.ietf.org/html/rfc4987.ht
ml). A DoS attack is defined as an attack where an attacker can render
a resource unavailable in the network. For example, an attacker may
cause a DoS attack on a 2 Mbps link used by a company by sending
more than 2 Mbps of packets through this link. In this case, the DoS
attack was more subtle. As a TCP entity discards all received SYN
segments as soon as it has 100 TCBs in the SYN Rcvd state, an
attacker simply had to send a few 100 SYN segments every second to
a server and never reply to the received SYN+ACK segments. To avoid
being caught, attackers were of course sending these SYN segments
with a different address than their own IP address a. On most TCP
implementations, once a TCB entered the SYN Rcvd state, it remained
in this state for several seconds, waiting for a retransmission of the
initial SYN segment. This attack was later called a SYN flood attack
and the servers of the ISP named panix were among the first to be aff
ected (http://memex.org/meme2-12.html) by this attack. To avoid
the SYN flood attacks, recent TCP implementations no longer enter
the SYN Rcvd state upon reception of a SYN segment. Instead, they
reply directly with a SYN+ACK segment and wait until the reception of
a valid ACK. This implementation trick is only possible if the TCP
implementation is able to verify that the received ACK segment
acknowledges the SYN+ACK segment sent earlier without storing the
initial sequence number of this SYN+ACK segment in a TCB. The
solution to solve this problem, which is known as SYN cookies (htt
p://cr.yp.to/syncookies.html) is to compute the 32 bits of the ISN as
follows :
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• the high order bits contain the low order bits of a counter that is
incremented slowly

• the low order bits contain a hash value computed over the local
and remote IP addresses and ports and a random secret only
known to the server

The advantage of the SYN cookies is that by using them, the server does
not need to create a TCB upon reception of the SYN segment and can still
check the returned ACK segment by recomputing the SYN cookie.

Retransmitting the first SYN segment
As IP provides an unreliable connectionless service, the SYN and
SYN+ACK segments sent to open a TCP connection could be lost.
Current TCP implementations start a retransmission timer when
they send the first SYN segment. This timer is often set to three
seconds for the first retransmission and then doubles after each
retransmission RFC 2988 (http://tools.ietf.org/html/rfc2988.html).
TCP implementations also enforce a maximum number of
retransmissions for the initial SYN segment.

As explained earlier, TCP segments may contain an optional header extension. In the
SYN and SYN+ACK segments, these options are used to negotiate some parameters
and the utilisation of extensions to the basic TCP specification.

The first parameter which is negotiated during the establishment of a TCP connection
is the Maximum Segment Size (MSS). The MSS is the size of the largest segment that a
TCP entity is able to process. According to RFC 879 (http://tools.ietf.org/html/rfc879.ht
ml), all TCP implementations must be able to receive TCP segments containing 536
bytes of payload. However, most TCP implementations are able to process larger
segments. Such TCP implementations use the TCP MSS Option in the SYN/SYN+ACK
segment to indicate the largest segment they are able to process. The MSS value
indicates the maximum size of the payload of the TCP segments. The client (resp.
server) stores in its TCB the MSS value announced by the server (resp. the client).

Another utilisation of TCP options during connection establishment is to enable TCP
extensions. For example, consider RFC 1323 (http://tools.ietf.org/html/rfc1323.htm
l)(which is discussed in TCP reliable data transfer). RFC 1323 defines TCP extensions to
support timestamps and larger windows. If the client supports RFC 1323, it adds a RFC
1323 (http://tools.ietf.org/html/rfc1323.html) option to its SYN segment. If the server
understands this RFC 1323 (http://tools.ietf.org/html/rfc1323).html option and wishes
to use it, it replies with an RFC 1323 (http://tools.ietf.org/html/rfc1323).html option in
the SYN+ACK segment and the extension defined in RFC 1323 (http://tools.ietf.org/htm
l/rfc1323.html) is used throughout the TCP connection. Otherwise, if the server’s
SYN+ACK does not contain the option, the client is not allowed to use this extension
and the corresponding TCP header options throughout the TCP connection. TCP’s
option mechanism is flexible and it allows the extension of TCP while maintaining
compatibility with older implementations.

The TCP options are encoded by using a Type Length Value format where :
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• the first byte indicates the type of the option.
• the second byte indicates the total length of the option (including the first two

bytes) in bytes
• the last bytes are specific for each type of option

RFC 793 (http://tools.ietf.org/html/rfc793.html) defines the Maximum Segment Size
(MSS) TCP option that must be understood by all TCP implementations. This option
(type 2) has a length of 4 bytes and contains a 16 bits word that indicates the MSS
supported by the sender of the SYN segment. The MSS option can only be used in TCP
segments having the SYN flag set.

RFC 793 (http://tools.ietf.org/html/rfc793.html) also defines two special options that
must be supported by all TCP implementations. The first option is End of option. It is
encoded as a single byte having value 0x00 and can be used to ensure that the TCP
header extension ends on a 32 bits boundary. The No-Operation option, encoded as a
single byte having value 0x01, can be used when the TCP header extension contains
several TCP options that should be aligned on 32 bit boundaries. All other options 14

are encoded by using the TLV format.

Note: The robustness principle
The handling of the TCP options by TCP implementations is one of the many
applications of the robustness principle which is usually attributed to Jon Poste
l (http://www.postel.org/postel.html)and is often quoted as “Be liberal in what
you accept, and conservative in what you send” RFC 1122 (http://tools.ietf.org/
html/rfc1122.html)
Concerning the TCP options, the robustness principle implies that a TCP
implementation should be able to accept TCP options that it does not
understand, in particular in received SYN segments, and that it should be able
to parse any received segment without crashing, even if the segment contains
an unknown TCP option. Furthermore, a server should not send in the SYN+ACK
segment or later, options that have not been proposed by the client in the SYN
segment.

4.3.2 TCP connection release
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

TCP, like most connection-oriented transport protocols, supports two types of
connection release :

• graceful connection release, where each TCP user can release its own direction of
data transfer

• abrupt connection release, where either one user closes both directions of data
transfer or one TCP entity is forced to close the connection (e.g. because the
remote host does not reply anymore or due to lack of resources)

14. The full list of all TCP options may be found at http://www.iana.org/assignments/tcp-parameters/
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The abrupt connection release mechanism is very simple and relies on a single
segment having the RST bit set. A TCP segment containing the RST bit can be sent for
the following reasons :

• a non-SYN segment was received for a non-existing TCP connection RFC 793 (htt
p://tools.ietf.org/html/rfc793.html)

• by extension, some implementations respond with an RST segment to a segment
that is received on an existing connection but with an invalid header RFC 3360 (htt
p://tools.ietf.org/html/rfc3360.html). This causes the corresponding connection to
be closed and has caused security attacks RFC 4953 (http://tools.ietf.org/html/rfc4
953).html by extension, some implementations send an RST segment when they
need to close an existing TCP connection (e.g. because there are not enough
resources to support this connection or because the remote host is considered to
be unreachable). Measurements have shown that this usage of TCP RST was
widespread

When an RST segment is sent by a TCP entity, it should contain the current value of
the sequence number for the connection (or 0 if it does not belong to any existing
connection) and the acknowledgement number should be set to the next expected in-
sequence sequence number on this connection.

Note: TCP RST wars
TCP implementers should ensure that two TCP entities never enter a TCP RST
war where host A is sending a RST segment in response to a previous RST
segment that was sent by host B in response to a TCP RST segment sent by host
A ... To avoid such an infinite exchange of RST segments that do not carry data,
a TCP entity is never allowed to send a RST segment in response to another RST
segment.

The normal way of terminating a TCP connection is by using the graceful TCP
connection release. This mechanism uses the FIN flag of the TCP header and allows
each host to release its own direction of data transfer. As for the SYN flag, the
utilisation of the FIN flag in the TCP header consumes one sequence number. The
figure Figure 4.42 Figure 4.42 release shows the part of the TCP FSM used when a TCP
connection is released.
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:

Figure 4.42 FSM for TCP connection release

Starting from the Established state, there are two main paths through this FSM.

The first path is when the host receives a segment with sequence number x and the
FIN flag set. The utilisation of the FIN flag indicates that the byte before sequence
number x was the last byte of the byte stream sent by the remote host. Once all of the
data has been delivered to the user, the TCP entity sends an ACK segment whose ack

field is set to (x + 1) mod 232 to acknowledge the FIN segment. The FIN segment is
subject to the same retransmission mechanisms as a normal TCP segment. In
particular, its transmission is protected by the retransmission timer. At this point, the
TCP connection enters the CLOSE_WAIT state. In this state, the host can still send data
to the remote host. Once all its data have been sent, it sends a FIN segment and enter
the LAST_ACK state. In this state, the TCP entity waits for the acknowledgement of its
FIN segment. It may still retransmit unacknowledged data segments e.g. if the
retransmission timer expires. Upon reception of the acknowledgement for the FIN
segment, the TCP connection is completely closed and its TCB can be discarded.

The second path is when the host decides first to send a FIN segment. In this case, it
enters the FIN_WAIT1 state. It this state, it can retransmit unacknowledged segments
but cannot send new data segments. It waits for an acknowledgement of its FIN
segment, but may receive a FIN segment sent by the remote host. In the first case, the
TCP connection enters the FIN_WAIT2 state. In this state, new data segments from the
remote host are still accepted until the reception of the FIN segment. The
acknowledgement for this FIN segment is sent once all data received before the FIN
segment have been delivered to the user and the connection enters the TIME_WAIT
state. In the second case, a FIN segment is received and the connection enters the
Closing state once all data received from the remote host have been delivered to the
user. In this state, no new data segments can be sent and the host waits for an
acknowledgement of its FIN segment before entering the TIME_WAIT state. The
TIME_WAIT state is different from the other states of the TCP FSM. A TCP entity enters
this state after having sent the last ACK segment on a TCP connection. This segment
indicates to the remote host that all the data that it has sent have been correctly

127



received and that it can safely release the TCP connection and discard the
corresponding TCB. After having sent the last ACK segment, a TCP connection enters
the TIME_WAIT and remains in this state for 2 ∗ MSL seconds. During this period, the
TCB of the connection is maintained. This ensures that the TCP entity that sent the last
ACK maintains enough state to be able to retransmit this segment if this ACK segment
is lost and the remote host retransmits its last FIN segment or another one. The delay
of 2 ∗ MSL seconds ensures that any duplicate segments on the connection would be
handled correctly without causing the transmission of an RST segment. Without the
TIME_WAIT state and the 2 ∗ MSL seconds delay, the connection release would not be
graceful when the last ACK segment is lost.

Note: TIME_WAIT on busy TCP servers
The 2 ∗ MSL seconds delay in the TIME_WAIT state is an important operational
problem on servers having thousands of simultaneously opened TCP
connections [FTY99]. Consider for example a busy web server that processes
10.000 TCP connections every second. If each of these connections remain in
the TIME_WAIT state for 4 minutes, this implies that the server would have to
maintain more than 2 million TCBs at any time. For this reason, some TCP
implementations prefer to perform an abrupt connection release by sending a
RST segment to close the connection [AW05] and immediately discard the
corresponding TCB. However, if the RST segment is lost, the remote host
continues to maintain a TCB for a connection no longer exists. This
optimisation reduces the number of TCBs maintained by the host sending the
RST segment but at the potential cost of increased processing on the remote
host when the RST segment is lost.

4.3.3 TCP reliable data transfer
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The original TCP data transfer mechanisms were defined in RFC 793 (http://tools.ietf.o
rg/html/rfc793.html). Based on the experience of using TCP on the growing global
Internet, this part of the TCP specification has been updated and improved several
times, always while preserving the backward compatibility with older TCP
implementations. In this section, we review the main data transfer mechanisms used
by TCP.

TCP is a window-based transport protocol that provides a bi-directional byte stream
service. This has several implications on the fields of the TCP header and the
mechanisms used by TCP. The three fields of the TCP header are :

• sequence number. TCP uses a 32 bits sequence number. The sequence number
placed in the header of a TCP segment containing data is the sequence number
of the first byte of the payload of the TCP segment.
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• acknowledgement number. TCP uses cumulative positive acknowledgements. Each
TCP segment contains the sequence number of the next byte that the sender of
the acknowledgement expects to receive from the remote host. In theory, the
acknowledgement number is only valid if the ACK flag of the TCP header is set. In
practice almost all 15 TCP segments have their ACK flag set.

• window. a TCP receiver uses this 16 bits field to indicate the current size of its
receive window expressed in bytes.

Note: The Transmission Control Block
For each established TCP connection, a TCP implementation must maintain a
Transmission Control Block (TCB). A TCB contains all the information required
to send and receive segments on this connection RFC 793 (http://tools.ietf.org/
html/rfc793.html). This includes 16:

• the local IP address
• the remote IP address
• the local TCP port number
• the remote TCP port number
• the current state of the TCP FSM
• the maximum segment size (MSS)
• snd.nxt : the sequence number of the next byte in the byte stream (the first

byte of a new data segment that you send uses this sequence number)
• snd.una : the earliest sequence number that has been sent but has not yet

been acknowledged
• snd.wnd : the current size of the sending window (in bytes)
• rcv.nxt : the sequence number of the next byte that is expected to be

received from the remote host
• rcv.wnd : the current size of the receive window advertised by the remote

host
• sending buffer : a buffer used to store all unacknowledged data
• receiving buffer : a buffer to store all data received from the remote host

that has not yet been delivered to the user. Data may be stored in the
receiving buffer because either it was not received in sequence or because
the user is too slow to process it

The original TCP specification can be categorised as a transport protocol that provides
a byte stream service and uses go-back-n.

To send new data on an established connection, a TCP entity performs the following
operations on the corresponding TCB. It first checks that the sending buffer does not
contain more data than the receive window advertised by the remote host (rcv.wnd). If
the window is not full, up to MSS bytes of data are placed in the payload of a TCP
segment. The sequence number of this segment is the sequence number of the first
byte of the payload. It is set to the first available sequence number : snd.nxt and

15. In practice, only the SYN segment do not have their ACK flag set.
16. A complete TCP implementation contains additional information in its TCB, notably to support the urgent

pointer. However, this part of TCP is not discussed in this book. Refer to RFC 793 and RFC 2140 for more details
about the TCB.
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snd.nxt is incremented by the length of the payload of the TCP segment. The
acknowledgement number of this segment is set to the current value of rcv.nxt and
the window field of the TCP segment is computed based on the current occupancy of
the receiving buffer. The data is kept in the sending buffer in case it needs to be
retransmitted later.

When a TCP segment with the ACK flag set is received, the following operations are
performed. rcv.wnd is set to the value of the window field of the received segment.
The acknowledgement number is compared to snd.una. The newly acknowledged
data is remove from the sending buffer and snd.una is updated. If the TCP segment
contained data, the sequence number is compared to rcv.nxt. If they are equal, the
segment was received in sequence and the data can be delivered to the user and
rcv.nxt is updated. The contents of the receiving buffer is checked to see whether
other data already present in this buffer can be delivered in sequence to the user. If
so, rcv.nxt is updated again. Otherwise, the segment’s payload is placed in the
receiving buffer.

Segment transmission strategies

In a transport protocol such as TCP that offers a bytestream, a practical issue that was
left as an implementation choice in RFC 793 (http://tools.ietf.org/html/rfc793.html) is
to decide when a new TCP segment containing data must be sent. There are two
simple and extreme implementation choices. The first implementation choice is to
send a TCP segment as soon as the user has requested the transmission of some
data. This allows TCP to provide a low delay service. However, if the user is sending
data one byte at a time, TCP would place each user byte in a segment containing 20
bytes of TCP header 17. This is a huge overhead that is not acceptable in wide area
networks. A second simple solution would be to only transmit a new TCP segment
once the user has produced MSS bytes of data. This solution reduces the overhead,
but at the cost of a potentially very high delay.

An elegant solution to this problem was proposed by John Nagle in RFC 896 (http://too
ls.ietf.org/html/rfc896.html). John Nagle observed that the overhead caused by the
TCP header was a problem in wide area connections, but less in local area connections
where the available bandwidth is usually higher. He proposed the following rules to
decide to send a new data segment when a new data has been produced by the user
or a new ack segment has been received

if rcv.wnd>= MSS and len(data) >= MSS :

send one MSS-sized segment

else

if there are unacknowledged data:

place data in buffer until acknowledgement has been received

else

send one TCP segment containing all buffered data

17. This TCP segment is then placed in an IP header. We describe IPv4 and IPv6 in the next chapter. The minimum size of the
IPv4 (resp. IPv6) header is 20 bytes (resp. 40 bytes).
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The first rule ensures that a TCP connection used for bulk data transfer always sends
full TCP segments. The second rule sends one partially filled TCP segment every
round-trip-time.

This algorithm, called the Nagle algorithm, takes a few lines of code in all TCP
implementations. These lines of code have a huge impact on the packets that are
exchanged in TCP/IP networks. Researchers have analysed the distribution of the
packet sizes by capturing and analysing all the packets passing through a given link.
These studies have shown several important results :

• in TCP/IPv4 networks, a large fraction of the packets are TCP segments that
contain only an acknowledgement. These packets usually account for 40-50% of
the packets passing through the studied link

• in TCP/IPv4 networks, most of the bytes are exchanged in long packets, usually
packets containing up to 1460 bytes of payload which is the default MSS for hosts
attached to an Ethernet network, the most popular type of LAN

The figure below provides a distribution of the packet sizes measured on a link. It
shows a three-modal distribution of the packet size. 50% of the packets contain pure
TCP acknowledgements and occupy 40 bytes. About 20% of the packets contain about
500 bytes 18 of user data and 12% of the packets contain 1460 bytes of user data.
However, most of the user data is transported in large packets. This packet size
distribution has implications on the design of routers as we discuss in the next
chapter.

Figure 4.43 Packet size distribution in the Internet

Recent measurements (http://www.caida.org/research/traffic-analysis/pkt_size_distrib
ution/graphs.xml) indicate that these packet size distributions are still valid in today’s
Internet, although the packet distribution tends to become bimodal with small packets
corresponding to TCP pure acks (40-64 bytes depending on the utilisation of TCP
options) and large 1460-bytes packets carrying most of the user data.

TCP windows

From a performance point of view, one of the main limitations of the original TCP
specification is the 16 bits window field in the TCP header. As this field indicates the

18. When these measurements were taken, some hosts had a default MSS of 552 bytes (e.g. BSD Unix derivatives) or 536
bytes (the default MSS specified in RFC 793). Today, most TCP implementation derive the MSS from the maximum packet
size of the LAN interface they use (Ethernet in most cases).
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current size of the receive window in bytes, it limits the TCP receive window at 65535
bytes. This limitation was not a severe problem when TCP was designed since at that
time high-speed wide area networks offered a maximum bandwidth of 56 kbps.
However, in today’s network, this limitation is not acceptable anymore. The table
below provides the rough 19 maximum throughput that can be achieved by a TCP
connection with a 64 KBytes window in function of the connection’s round-trip-time

RTT Maximum Throughput

1 msec

10 msec

100 msec

500 msec

524 Mbps

52.4 Mbps

5.24 Mbps

1.05 Mbps

To solve this problem, a backward compatible extension that allows TCP to use larger
receive windows was proposed in RFC 1323 (http://tools.ietf.org/html/rfc1323.html).
Today, most TCP implementations support this option. The basic idea is that instead
of storing snd.wnd and rcv.wnd as 16 bits integers in the TCB, they should be stored as
32 bits integers. As the TCP segment header only contains 16 bits to place the window
field, it is impossible to copy the value of snd.wnd in each sent TCP segment. Instead
the header contains snd.wnd >> S where S is the scaling factor ( 0 ≤ S ≤ 14) negotiated
during connection establishment. The client adds its proposed scaling factor as a TCP
option in the SYN segment. If the server supports RFC 1323 (http://tools.ietf.org/html/r
fc1323.html), it places in the SYN+ACK segment the scaling factor that it uses when
advertising its own receive window. The local and remote scaling factors are included
in the TCB. If the server does not support RFC 1323 (http://tools.ietf.org/html/rfc132
3.html), it ignores the received option and no scaling is applied.

By using the window scaling extensions defined in RFC 1323 (http://www.caida.org/res
earch/traffic-analysis/pkt_size_distribution/graphs.xml), TCP implementations can use
a receive buffer of up to 1 GByte. With such a receive buffer, the maximum
throughput that can be achieved by a single TCP connection becomes :

RTT Maximum Throughput

1 msec

10 msec

100 msec

500 msec

8590 Gbps

859 Gbps

86 Gbps

17 Gbps

These throughputs are acceptable in today’s networks. However, there are already
servers having 10 Gbps interfaces... Early TCP implementations had fixed receiving

19. A precise estimation of the maximum bandwidth that can be achieved by a TCP connection should take into account the
overhead of the TCP and IP headers as well.
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and sending buffers 20. Today’s high performance implementations are able to
automatically adjust the size of the sending and receiving buffer to better support
high bandwidth flows [SMM1998]

TCP’s retransmission timeout

In a go-back-n transport protocol such as TCP, the retransmission timeout must be
correctly set in order to achieve good performance. If the retransmission timeout
expires too early, then bandwidth is wasted by retransmitting segments that have
already been correctly received; whereas if the retransmission timeout expires too
late, then bandwidth is wasted because the sender is idle waiting for the expiration of
its retransmission timeout.

A good setting of the retransmission timeout clearly depends on an accurate
estimation of the round-trip-time of each TCP connection. The round-trip-time differs
between TCP connections, but may also change during the lifetime of a single
connection. For example, the figure below shows the evolution of the round-trip-time
between two hosts during a period of 45 seconds.

Figure 4.44 Evolution of the round-trip-time between two hosts

The easiest solution to measure the round-trip-time on a TCP connection is to
measure the delay between the transmission of a data segment and the reception of a
corresponding acknowledgement 21 .As illustrated in the figure below, this
measurement works well when there are no segment losses.

20. See http://fasterdata.es.net/tuning.html for more information on how to tune a TCP implementation
21. In theory, a TCP implementation could store the timestamp of each data segment transmitted and compute a new

estimate for the roundtrip- time upon reception of the corresponding acknowledgement. However, using such frequent
measurements introduces a lot of noise in practice and many implementations still measure the round-trip-time once
per round-trip-time by recording the transmission time of one segment at a time RFC 2988
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Figure 4.45 How to measure the round-trip-time ?

However, when a data segment is lost, as illustrated in the bottom part of the figure,
the measurement is ambiguous as the sender cannot determine whether the received
acknowledgement was triggered by the first transmission of segment 123 or its
retransmission. Using incorrect round-trip-time estimations could lead to incorrect
values of the retransmission timeout. For this reason, Phil Karn and Craig Partridge
proposed, in [KP91], to ignore the round-trip-time measurements performed during
retransmissions.

To avoid this ambiguity in the estimation of the round-trip-time when segments are
retransmitted, recent TCP implementations rely on the timestamp option defined in R
FC 1323 (http://tools.ietf.org/html/rfc1323.html). This option allows a TCP sender to
place two 32 bit timestamps in each TCP segment that it sends. The first timestamp,
TS Value (TSval) is chosen by the sender of the segment. It could for example be the
current value of its real-time clock 22. The second value, TS Echo Reply (TSecr), is the
last TSval that was received from the remote host and stored in the TCB. The figure
below shows how the utilization of this timestamp option allows for the
disambiguation of the round-trip-time measurement when there are retransmissions.

:

Figure 4.46 Disambiguating round-trip-time measurements with the RFC 1323 timestamp option

22. Some security experts have raised concerns that using the real-time clock to set the TSval in the timestamp option can
leak information such as the system’s up-time. Solutions proposed to solve this problem may be found in [CNPI09]
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Once the round-trip-time measurements have been collected for a given TCP
connection, the TCP entity must compute the retransmission timeout. As the round-
trip-time measurements may change during the lifetime of a connection, the
retransmission timeout may also change. At the beginning of a connection 23, the TCP
entity that sends a SYN segment does not know the round-trip-time to reach the
remote host and the initial retransmission timeout is usually set to 3 seconds RFC
2988.

The original TCP specification proposed in RFC 793 to include two additional variables
in the TCB :

• srtt : the smoothed round-trip-time computed as srrt =(α × srtt) + ((1 − α) × rtt)
where rtt is the round-trip-time measured according to the above procedure and
α a smoothing factor (e.g. 0.8 or 0.9)

• rto : the retransmission timeout is computed as rto = min(60, max(1,β × srtt))
where β is used to take into account the delay variance (value : 1.3 to 2.0). The 60
and 1 constants are used to ensure that the rto is not larger than one minute nor
smaller than 1 second.

However, in practice, this computation for the retransmission timeout did not work
well. The main problem was that the computed rto did not correctly take into account
the variations in the measured round-trip-time. Van Jacobson proposed in his seminal
paper [Jacobson1988] an improved algorithm to compute the rto and implemented it
in the BSD Unix distribution. This algorithm is now part of the TCP standard RFC 2988
(http://tools.ietf.org/html/rfc2988.html).

Jacobson’s algorithm uses two state variables, srtt the smoothed rtt and rttvar the
estimation of the variance of the rtt and two parameters : α and β. When a TCP
connection starts, the first rto is set to 3 seconds. When a first estimation of the rtt is
available, the srtt, rttvar and rto are computed as

srtt=rtt

rttvar=rtt/2

rto=srtt+4*rttvar

Then, when other rtt measurements are collected, srtt and rttvar are updated as
follows :

rttvar = (1 − β) × rttvar + β ×|srtt − rtt|

srtt = (1 − α) × srtt + α × rtt

rto = srtt +4 × rttvar

The proposed values for the parameters are α =1 /8 and β =1/4. This allows a TCP
implementation, implemented in the kernel, to perform the rtt computation by using
shift operations instead of the more costly floating point operations [Jacobson1988].
The figure below illustrates the computation of the rto upon rtt changes.

23. As a TCP client often establishes several parallel or successive connections with the same server, RFC 2140 has proposed
to reuse for a new connection some information that was collected in the TCB of a previous connection, such as the
measured rtt. However, this solution has not been widely implemented.
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:

Figure 4.47 Example computation of the rto

Advanced retransmission strategies

The default go-back-n retransmission strategy was defined in RFC 793 (http://tools.iet
f.org/html/rfc793.html). When the retransmission timer expires, TCP retransmits the
first unacknowledged segment (i.e. the one having sequence number snd.una). After
each expiration of the retransmission timeout, RFC 2988 (http://tools.ietf.org/html/rfc2
988.html) recommends to double the value of the retransmission time-out. This is
called an exponential backoff. This doubling of the retransmission timeout after a
retransmission was included in TCP to deal with issues such as network/receiver
overload and incorrect initial estimations of the retransmission timeout. If the same
segment is retransmitted several times, the retransmission timeout is doubled after
every retransmission until it reaches a configured maximum. RFC 2988 (http://tools.iet
f.org/html/rfc2988.html) suggests a maximum retransmission timeout of at least 60
seconds. Once the retransmission timeout reaches this configured maximum, the
remote host is considered to be unreachable and the TCP connection is closed. This
retransmission strategy has been refined based on the experience of using TCP on the
Internet. The first refinement was a clarification of the strategy used to send
acknowledgements. As TCP uses piggybacking, the easiest and less costly method to
send acknowledgements is to place them in the data segments sent in the other
direction. However, few application layer protocols exchange data in both directions at
the same time and thus this method rarely works. For an application that is sending
data segments in one direction only, the remote TCP entity returns empty TCP
segments whose only useful information is their acknowledgement number. This may
cause a large overhead in wide area network if a pure ACK segment is sent in
response to each received data segment. Most TCP implementations use a delayed
acknowledgement strategy. This strategy ensures that piggybacking is used whenever
possible, otherwise pure ACK segments are sent for every second received data
segments when there are no losses. When there are losses or reordering, ACK
segments are more important for the sender and they are sent immediately RFC 813
(http://tools.ietf.org/html/rfc813.html)RFC 1122 (http://tools.ietf.org/html/rfc1122.htm
l). This strategy relies on a new timer with a short delay (e.g. 50 milliseconds) and one
additional flag in the TCB. It can be implemented as follows
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reception of a data segment:

if pkt.seq==rcv.nxt: # segment received in sequence

if delayedack :

send pure ack segment

cancel acktimer

delayedack=False

else:

delayedack=True

start acktimer

else: # out of sequence segment

send pure ack segment

if delayedack:

delayedack=False

cancel acktimer

transmission of a data segment: # piggyback ack

if delayedack:

delayedack=False

cancel acktimer

acktimer expiration:

send pure ack segment

delayedack=False

Due to this delayed acknowledgement strategy, during a bulk transfer, a TCP
implementation usually acknowledges every second TCP segment received.

The default go-back-n retransmission strategy used by TCP has the advantage of being
simple to implement, in particular on the receiver side, but when there are losses, a
go-back-n strategy provides a lower performance than a selective repeat strategy. The
TCP developers have designed several extensions to TCP to allow it to use a selective
repeat strategy while maintaining backward compatibility with older TCP
implementations. These TCP extensions assume that the receiver is able to buffer the
segments that it receives out-of-sequence.

The first extension that was proposed is the fast retransmit heuristic. This extension
can be implemented on TCP senders and thus does not require any change to the
protocol. It only assumes that the TCP receiver is able to buffer out-of-sequence
segments.

From a performance point of view, one issue with TCP’s retransmission timeout is that
when there are isolated segment losses, the TCP sender often remains idle waiting for
the expiration of its retransmission timeouts. Such isolated losses are frequent in the
global Internet [Paxson99]. A heuristic to deal with isolated losses without waiting for
the expiration of the retransmission timeout has been included in many TCP
implementations since the early 1990s. To understand this heuristic, let us consider
the figure below that shows the segments exchanged over a TCP connection when an
isolated segment is lost.
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As shown above, when an isolated segment is lost the sender receives several
duplicate acknowledgements since the TCP receiver immediately sends a pure
acknowledgement when it receives an out-of-sequence segment. A duplicate
acknowledgement is an acknowledgement that contains the same acknowledgement
number as a previous segment. A single duplicate acknowledgement does not
necessarily imply that a segment was lost, as a simple reordering of the segments may
cause duplicate acknowledgements as well. Measurements [Paxson99] have shown
that segment reordering is frequent in the Internet. Based on these observations, the
fast retransmit heuristic has been included in most TCP implementations. It can be
implemented as follows

Figure 4.48 Detecting isolated segment losses

ack arrival:

if tcp.ack==snd.una: # duplicate acknowledgement

dupacks++

if dupacks==3:

retransmit segment(snd.una)

else:

dupacks=0

# process acknowledgement

This heuristic requires an additional variable in the TCB (dupacks). Most
implementations set the default number of duplicate acknowledgements that trigger a
retransmission to 3. It is now part of the standard TCP specification RFC 2581 (http://to
ols.ietf.org/html/rfc2581.html). The fast retransmit heuristic improves the TCP
performance provided that isolated segments are lost and the current window is large
enough to allow the sender to send three duplicate acknowledgements.

The figure below illustrates the operation of the fast retransmit heuristic.
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:

Figure 4.49 TCP fast retransmit heuristics

When losses are not isolated or when the windows are small, the performance of the
fast retransmit heuristic decreases. In such environments, it is necessary to allow a
TCP sender to use a selective repeat strategy instead of the default go-back-n strategy.
Implementing selective-repeat requires a change to the TCP protocol as the receiver
needs to be able to inform the sender of the out-of-order segments that it has already
received. This can be done by using the Selective Acknowledgements (SACK) option
defined in RFC 2018. This TCP option is negotiated during the establishment of a TCP
connection. If both TCP hosts support the option, SACK blocks can be attached by the
receiver to the segments that it sends. SACK blocks allow a TCP receiver to indicate the
blocks of data that it has received correctly but out of sequence. The figure below
illustrates the utilisation of the SACK blocks.

Figure 4.50 TCP selective acknowledgements

An SACK option contains one or more blocks. A block corresponds to all the sequence
numbers between the left edge and the right edge of the block. The two edges of the
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block are encoded as 32 bit numbers (the same size as the TCP sequence number) in
an SACK option. As the SACK option contains one byte to encode its type and one byte
for its length, a SACK option containing b blocks is encoded as a sequence of 2+8 × b
bytes. In practice, the size of the SACK option can be problematic as the optional TCP
header extension cannot be longer than 44 bytes. As the SACK option is usually
combined with the RFC 1323 (http://tools.ietf.org/html/rfc1323.html) timestamp
extension, this implies that a TCP segment cannot usually contain more than three
SACK blocks. This limitation implies that a TCP receiver cannot always place in the
SACK option that it sends, information about all the received blocks.

To deal with the limited size of the SACK option, a TCP receiver currently having more
than 3 blocks inside its receiving buffer must select the blocks to place in the SACK
option. A good heuristic is to put in the SACK option the blocks that have most
recently changed, as the sender is likely to be already aware of the older blocks.

When a sender receives an SACK option indicating a new block and thus a new
possible segment loss, it usually does not retransmit the missing segment(s
immediately. To deal with reordering, a TCP sender can use a heuristic similar to fast
retransmit by retransmitting a gap only once it has received three SACK options
indicating this gap. It should be noted that the SACK option does not supersede the
acknowledgement number of the TCP header. A TCP sender can only remove data
from its sending buffer once they have been acknowledged by TCP’s cumulative
acknowledgements. This design was chosen for two reasons. First, it allows the
receiver to discard parts of its receiving buffer when it is running out of memory
without loosing data. Second, as the SACK option is not transmitted reliably, the
cumulative acknowledgements are still required to deal with losses of ACK segments
carrying only SACK information. Thus, the SACK option only serves as a hint to allow
the sender to optimise its retransmissions.

TCP congestion control

In the previous sections, we have explained the mechanisms that TCP uses to deal
with transmission errors and segment losses. In a heterogeneous network such as the
Internet or enterprise IP networks, endsystems have very different levels of
performance. Some endsystems are high-end servers attached to 10 Gbps links while
others are mobile devices attached to a very low bandwidth wireless link. Despite
these huge differences in performance, a mobile device should be able to efficiently
exchange segments with a high-end server.

To understand this problem better, let us consider the scenario shown in the figure
below, where a server (A) attached to a 10 Mbps link is sending TCP segments to
another computer (C) through a path that contains a 2 Mbps link.
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:

Figure 4.51 TCP over heterogeneous links

In this network, the TCP segments sent by the server reach router R1. R1 forwards the
segments towards router R2. Router R2 can potentially receive segments at 10 Mbps,
but it can only forward them at 2 Mbps to router R2 and then to host C. Router R2
contains buffers that allow it to store the packets that cannot immediately be
forwarded to their destination. To understand the operation of TCP in this
environment, let us consider a simplified model of this network where host A is
attached to a 10 Mbps link to a queue that represents the buffers of router R2. This
queue is emptied at a rate of 2 Mbps.

Figure 4.52 TCP self clocking

Let us consider that host A uses a window of three segments. It thus sends three back-
to-back segments at 10 Mbps and then waits for an acknowledgement. Host A stops
sending segments when its window is full. These segments reach the buffers of router
R2. The first segment stored in this buffer is sent by router R2 at a rate of 2 Mbps to
the destination host. Upon reception of this segment, the destination sends an
acknowledgement. This acknowledgement allows host A to transmit a new segment.
This segment is stored in the buffers of router R2 while it is transmitting the second
segment that was sent by host A... Thus, after the transmission of the first window of
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segments, TCP sends one data segment after the reception of each acknowledgement
returned by the destination 24. In practice, the acknowledgements sent by the
destination serve as a kind of clock that allows the sending host to adapt its
transmission rate to the rate at which segments are received by the destination. This
TCP self-clocking is the first mechanism that allows TCP to adapt to heterogeneous
networks [Jacobson1988]. It depends on the availability of buffers to store the
segments that have been sent by the sender but have not yet been transmitted to the
destination.

However, TCP is not always used in this environment. In the global Internet, TCP is
used in networks where a large number of hosts send segments to a large number of
receivers. For example, let us consider the network depicted below which is similar to
the one discussed in [Jacobson1988] and RFC 896 (http://tools.ietf.org/html/rfc896.ht
ml). In this network, we assume that the buffers of the router are infinite to ensure
that no packet is lost.

Figure 4.53 The congestion collapse problem

If many TCP senders are attached to the left part of the network above, they all send a
window full of segments. These segments are stored in the buffers of the router
before being transmitted towards their destination. If there are many senders on the
left part of the network, the occupancy of the buffers quickly grows. A consequence of
the buffer occupancy is that the round-trip-time, measured by TCP, between the
sender and the receiver increases. Consider a network where 10,000 bits segments
are sent. When the buffer is empty, such a segment requires 1 millisecond to be
transmitted on the 10 Mbps link and 5 milliseconds to be the transmitted on the 2
Mbps link. Thus, the round-trip-time measured by TCP is roughly 6 milliseconds if we
ignore the propagation delay on the links. Most routers manage their buffers as a FIFO
queue 25. If the buffer contains 100 segments, the round-triptime becomes 1 + 100 ×
5+5 milliseconds as new segments are only transmitted on the 2 Mbps link once all
previous segments have been transmitted. Unfortunately, TCP uses a retransmission
timer and performs go-back-n to recover from transmission errors. If the buffer
occupancy is high, TCP assumes that some segments have been lost and retransmits a
full window of segments. This increases the occupancy of the buffer and the delay
through the buffer... Furthermore, the buffer may store and send on the low
bandwidth links several retransmissions of the same segment. This problem is called
congestion collapse. It occurred several times in the late 1980s. For example,
[Jacobson1988] notes that in 1986, the usable bandwidth of a 32 Kbits link dropped to
40 bits per second due to congestion collapse 26!

The congestion collapse is a problem that all heterogeneous networks face. Different
mechanisms have been proposed in the scientific literature to avoid or control
network congestion. Some of them have been implemented and deployed in real

24. If the destination is using delayed acknowledgements, the sending host sends two data segments after each
acknowledgement.

25. We discuss in another chapter other possible organisations of the router’s buffers.
26. At this time, TCP implementations were mainly following RFC 791. The round-trip-time estimations and the

retransmission mechanisms were very simple. TCP was improved after the publication of [Jacobson1988]
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networks. To understand this problem in more detail, let us first consider a simple
network with two hosts attached to a high bandwidth link that are sending segments
to destination C attached to a low bandwidth link as depicted below.

:

Figure 4.54 The congestion problem

To avoid congestion collapse, the hosts must regulate their transmission rate 27 by
using a congestion control mechanism. Such a mechanism can be implemented in the
transport layer or in the network layer. In TCP/IP networks, it is implemented in the
transport layer, but other technologies such as Asynchronous Transfer Mode (ATM) or
Frame Relay include congestion control mechanisms in lower layers.

Let us first consider the simple problem of a set of i hosts that share a single
bottleneck link as shown in the example above. In this network, the congestion control
scheme must achieve the following objectives [CJ1989] :

1. The congestion control scheme must avoid congestion. In practice, this means that
the bottleneck link cannot be overloaded. If ri(t) is the transmission rate allocated
to host i at time t and R the bandwidth of the bottleneck link, then the congestion
control scheme should ensure that, on average,

2. The congestion control scheme must be efficient. The bottleneck link is usually
both a shared and an expensive resource. Usually, bottleneck links are wide area links
that are much more expensive to upgrade than the local area networks. The
congestion control scheme should ensure that such links are efficiently used.
Mathematically, the control scheme should ensure that

3. The congestion control scheme should be fair. Most congestion schemes aim at
achieving maxmin fairness. An allocation of transmission rates to sources is said to be
max-min fair if :

• no link in the network is congested

27. In this section, we focus on congestion control mechanisms that regulate the transmission rate of the hosts. Other types
of mechanisms have been proposed in the literature. For example, credit-based flow-control has been proposed to
avoid congestion in ATM networks [KR1995]. With a credit-based mechanism, hosts can only send packets once they
have received credits from the routers and the credits depend on the occupancy of the router’s buffers.
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• the rate allocated to source j cannot be increased without decreasing the rate
allocated to a source i whose allocation is smaller than the rate allocated to
source j [Leboudec2008] .

Depending on the network, a max-min fair allocation may not always exist. In practice,
max-min fairness is an ideal objective that cannot necessarily be achieved. When there
is a single bottleneck link as in the example above, max-min fairness implies that each
source should be allocated the same transmission rate.

To visualise the different rate allocations, it is useful to consider the graph shown
below. In this graph, we plot on the x-axis (resp. y-axis) the rate allocated to host B
(resp. A). A point in the graph (rB,rA) corresponds to a possible allocation of the
transmission rates. Since there is a 2 Mbps bottleneck link in this network, the graph
can be divided into two regions. The lower left part of the graph contains all
allocations (rB,rA) such that the bottleneck link is not congested (rA + rB < 2). The right
border of this region is the efficiency line, i.e. the set of allocations that completely
utilise the bottleneck link (rA + rB =2). Finally, the fairness line is the set of fair
allocations.

:

Figure 4.55 Possible allocated transmission rates

As shown in the graph above, a rate allocation may be fair but not efficient (e.g. rA

=0.7,rB =0.7), fair and efficient ( e.g. rA =1,rB =1) or efficient but not fair (e.g. rA =1.5, rB

=0.5). Ideally, the allocation should be both fair and efficient. Unfortunately,
maintaining such an allocation with fluctuations in the number of flows that use the
network is a challenging problem. Furthermore, there might be several thousands of
TCP connections or more that pass through the same link 28.

To deal with these fluctuations in demand, which result in fluctuations in the available
bandwidth, computer networks use a congestion control scheme. This congestion
control scheme should achieve the three objectives listed above. Some congestion
control schemes rely on a close cooperation between the endhosts and the routers,
while others are mainly implemented on the endhosts with limited support from the
routers.

28. For example, the measurements performed in the Sprint network in 2004 reported more than 10k active TCP
connections on a link, see https://research.sprintlabs.com/packstat/packetoverview.php. More recent information about
backbone links may be obtained from caida ‘s realtime measurements, see e.g. http://www.caida.org/data/realtime/
passive/
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A congestion control scheme can be modelled as an algorithm that adapts the
transmission rate (ri(t)) of host i based on the feedback received from the network.
Different types of feedbacks are possible. The simplest scheme is a binary feedback
[CJ1989] [Jacobson1988] where the hosts simply learn whether the network is
congested or not. Some congestion control schemes allow the network to regularly
send an allocated transmission rate in Mbps to each host [BF1995].

Let us focus on the binary feedback scheme which is the most widely used today.
Intuitively, the congestion control scheme should decrease the transmission rate of a
host when congestion has been detected in the network, in order to avoid congestion
collapse. Furthermore, the hosts should increase their transmission rate when the
network is not congested. Otherwise, the hosts would not be able to efficiently utilise
the network. The rate allocated to each host fluctuates with time, depending on the
feedback received from the network. The figure below illustrates the evolution of the
transmission rates allocated to two hosts in our simple network. Initially, two hosts
have a low allocation, but this is not efficient. The allocations increase until the
network becomes congested. At this point, the hosts decrease their transmission rate
to avoid congestion collapse. If the congestion control scheme works well, after some
time the allocations should become both fair and efficient.

Figure 4.56 Evolution of the transmission rates

Various types of rate adaption algorithms are possible. Dah Ming Chiu (http://home.i
e.cuhk.edu.hk/~dmchiu/) and Raj Jain (http://www.cse.wustl.edu/~jain/) have analysed,
in [CJ1989], different types of algorithms that can be used by a source to adapt its
transmission rate to the feedback received from the network. Intuitively, such a rate
adaptation algorithm increases the transmission rate when the network is not
congested (ensure that the network is efficiently used) and decrease the transmission
rate when the network is congested (to avoid congestion collapse).

The simplest form of feedback that the network can send to a source is a binary
feedback (the network is congested or not congested). In this case, a linear rate
adaptation algorithm can be expressed as :

• rate(t +1) = αC + βC rate(t) when the network is congested
• rate(t +1) = αN + βN rate(t) when the network is not congested

With a linear adaption algorithm, αC ,αN ,βC and βN are constants. The analysis of
[CJ1989] shows that to be fair and efficient, such a binary rate adaption mechanism
must rely on Additive Increase and Multiplicative Decrease. When the network is not
congested, the hosts should slowly increase their transmission rate (βN = 1 and αN >
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0). When the network is congested, the hosts must multiplicatively decrease their
transmission rate (βC < 1 and αC =0). Such an AIMD rate adaptation algorithm can be
implemented by the pseudo-code below

# Additive Increase Multiplicative Decrease

if congestion :

rate=rate*betaC # multiplicative decrease, betaC<1

else

rate=rate+alphaN # additive increase, v0>0

Note: Which binary feedback ?
Two types of binary feedback are possible in computer networks. A first
solution is to rely on implicit feedback. This is the solution chosen for TCP.
TCP’s congestion control scheme [Jacobson1988] does not require any
cooperation from the router. It only assumes that they use buffers and that
they discard packets when there is congestion.
TCP uses the segment losses as an indication of congestion. When there are no
losses, the network is assumed to be not congested. This implies that
congestion is the main cause of packet losses. This is true in wired networks,
but unfortunately not always true in wireless networks. Another solution is to
rely on explicit feedback. This is the solution proposed in the DECBit
congestion control scheme [RJ1995] and used in Frame Relay and ATM
networks. This explicit feedback can be implemented in two ways. A first
solution would be to define a special message that could be sent by routers to
hosts when they are congested. Unfortunately, generating such messages may
increase the amount of congestion in the network. Such a congestion
indication packet is thus discouraged RFC 1812 (http://tools.ietf.org/html/rfc18
12.html). A better approach is to allow the intermediate routers to indicate, in
the packets that they forward, their current congestion status. Binary feedback
can be encoded by using one bit in the packet header. With such a scheme,
congested routers set a special bit in the packets that they forward while non-
congested routers leave this bit unmodified. The destination host returns the
congestion status of the network in the acknowledgements that it sends.
Details about such a solution in IP networks may be found in RFC 3168 (http://t
ools.ietf.org/html/rf3168.html). Unfortunately, as of this writing, this solution
is still not deployed despite its potential benefits.

The TCP congestion control scheme was initially proposed by Van Jacobson (http://ww
w.parc.com/about/people/88/van-jacobson.html) in [Jacobson1988]. The current
specification may be found in RFC 5681 (http://tools.ietf.org/html/rfc5681.html). TCP
relies on Additive Increase and Multiplicative Decrease (AIMD). To implement AIMD, a
TCP host must be able to control its transmission rate. A first approach would be to
use timers and adjust their expiration times in function of the rate imposed by AIMD.
Unfortunately, maintaining such timers for a large number of TCP connections can be
difficult. Instead, Van Jacobson (http://www.parc.com/about/people/88/van-jacobson.h
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tml)noted that the rate of TCP congestion can be artificially controlled by constraining
its sending window. A TCP connection cannot send data faster than window/rtt where
window is the maximum between the host’s sending window and the window
advertised by the receiver.

TCP’s congestion control scheme is based on a congestion window. The current value of
the congestion window (cwnd) is stored in the TCB of each TCP connection and the
window that can be used by the sender is constrained by min(cwnd, rwin, swin) where
swin is the current sending window and rwin the last received receive window. The
Additive Increase part of the TCP congestion control increments the congestion
window by MSS bytes every round-trip-time. In the TCP literature, this phase is often
called the congestion avoidance phase. The Multiplicative Decrease part of the TCP
congestion control divides the current value of the congestion window once
congestion has been detected.

When a TCP connection begins, the sending host does not know whether the part of
the network that it uses to reach the destination is congested or not. To avoid causing
too much congestion, it must start with a small congestion window. [Jacobson1988]
recommends an initial window of MSS bytes. As the additive increase part of the TCP
congestion control scheme increments the congestion window by MSS bytes every
round-trip-time, the TCP connection may have to wait many round-trip-times before
being able to efficiently use the available bandwidth. This is especially important in
environments where the bandwidth × rtt product is high. To avoid waiting too many
round-trip-times before reaching a congestion window that is large enough to
efficiently utilise the network, the TCP congestion control scheme includes the slow-
start algorithm. The objective of the TCP slow-start is to quickly reach an acceptable
value for the cwnd. During slow-start, the congestion window is doubled every round-
trip-time. The slow-start algorithm uses an additional variable in the TCB : sshtresh
(slow-start threshold). The ssthresh is an estimation of the last value of the cwnd that
did not cause congestion. It is initialised at the sending window and is updated after
each congestion event.

In practice, a TCP implementation considers the network to be congested once its
needs to retransmit a segment. The TCP congestion control scheme distinguishes
between two types of congestion :

• mild congestion. TCP considers that the network is lightly congested if it receives
three duplicate acknowledgements and performs a fast retransmit. If the fast
retransmit is successful, this implies that only one segment has been lost. In this
case, TCP performs multiplicative decrease and the congestion window is divided
by 2. The slow-start threshold is set to the new value of the congestion window.

• severe congestion. TCP considers that the network is severely congested when its
retransmission timer expires. In this case, TCP retransmits the first segment, sets
the slow-start threshold to 50% of the congestion window. The congestion window
is reset to its initial value and TCP performs a slow-start.

The figure below illustrates the evolution of the congestion window when there is
severe congestion. At the beginning of the connection, the sender performs slow-start
until the first segments are lost and the retransmission timer expires. At this time, the
ssthresh is set to half of the current congestion window and the congestion window is
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reset at one segment. The lost segments are retransmitted as the sender again
performs slow-start until the congestion window reaches the sshtresh. It then
switches to congestion avoidance and the congestion window increases linearly until
segments are lost and the retransmission timer expires ...

:

Figure 4.57 Evaluation of the TCP congestion window with severe congestion

The figure below illustrates the evolution of the congestion window when the network
is lightly congested and all lost segments can be retransmitted using fast retransmit.
The sender begins with a slow-start. A segment is lost but successfully retransmitted
by a fast retransmit. The congestion window is divided by 2 and the sender
immediately enters congestion avoidance as this was a mild congestion.

Figure 4.58 Evaluation of the TCP congestion window when the network is lightly congested

Most TCP implementations update the congestion window when they receive an
acknowledgement. If we assume that the receiver acknowledges each received
segment and the sender only sends MSS sized segments, the TCP congestion control
scheme can be implemented using the simplified pseudo-code 29 below

# Initialisation

cwnd = MSS;

ssthresh= swin;

29. In this pseudo-code, we assume that TCP uses unlimited sequence and acknowledgement numbers. Furthermore, we do
not detail how the cwnd is adjusted after the retransmission of the lost segment by fast retransmit. Additional details
may be found in RFC 5681.
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# Ack arrival

if tcp.ack > snd.una : # new ack, no congestion

if cwnd < ssthresh :

# slow-start : increase quickly cwnd

# double cwnd every rtt cwnd = cwnd + MSS

else:

# congestion avoidance : increase slowly cwnd

# increase cwnd by one mss every rtt

cwnd = cwnd+ mss*(mss/cwnd)

else: # duplicate or old ack

if tcp.ack==snd.una: # duplicate acknowledgement

dupacks++

if dupacks==3:

retransmitsegment(snd.una)

ssthresh=max(cwnd/2,2*MSS)

cwnd=ssthresh

else:

dupacks=0

# ack for old segment, ignored

Expiration of the retransmission timer:

send(snd.una) # retransmit first lost segment

sshtresh=max(cwnd/2,2*MSS)

cwnd=MSS

Furthermore when a TCP connection has been idle for more than its current
retransmission timer, it should reset its congestion window to the congestion window
size that it uses when the connection begins, as it no longer knows the current
congestion state of the network.

Note: Initial congestion window
The original TCP congestion control mechanism proposed in [Jacobson1988]
recommended that each TCP connection should begin by setting cwnd = MSS.
However, in today’s higher bandwidth networks, using such a small initial
congestion window severely affects the performance for short TCP
connections, such as those used by web servers. Since the publication of RFC 33
90 (http://tools.ietf.org/html/rfc3390.html), TCP hosts are allowed to use an
initial congestion window of about 4 KBytes, which corresponds to 3 segments
in many environments.

Thanks to its congestion control scheme, TCP adapts its transmission rate to the
losses that occur in the network. Intuitively, the TCP transmission rate decreases when
the percentage of losses increases. Researchers have proposed detailed models that
allow the prediction of the throughput of a TCP connection when losses occur
[MSMO1997] . To have some intuition about the factors that affect the performance of
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TCP, let us consider a very simple model. Its assumptions are not completely realistic,
but it gives us good intuition without requiring complex mathematics.

This model considers a hypothetical TCP connection that suffers from equally spaced
segment losses. If 1/p is the segment loss ratio, then the TCP connection successfully
transfers 1 − 1 segments and the next segment is lo st. If we ignore the slow-start at
the beginning of the connection, TCP in this environment is always in congestion
avoidance as there are only isolated losses that can be recovered by using fast
retransmit. The evolution of the congestion window is thus as shown in the figure
below. Note the that x-axis of this figure represents time measured in units of one
round-trip-time, which is supposed to be constant in the model, and the y-axis
represents the size of the congestion window measured in MSS-sized segments.

:

Figure 4.59 Evolution of the congestion window with regular losses

As the losses are equally spaced, the congestion window always starts at some value
(W/2) and is incremented by one MSS every round-trip-time until it reaches twice this
value (W). At this point, a segment is retransmitted and the cycle starts again. If the
congestion window is measured in MSS-sized segments, a cycle lasts W/2 times. The
bandwidth of the TCP connection is the number of bytes that have been transmitted
during a given period of time. During a cycle, the number of segments that are sent on
the TCP connection is equal to the area of the yellow trapeze in the figure. Its area is
thus :

However, given the regular losses that we consider, the number of segments that are
sent between two losses (i.e. during a cycle) is by definition equal to 1/p. Thus,

. The throughput (in bytes per second) of the TCP connection is equal to the number
of segments transmitted divided by the duration of the cycle :

or after having eliminated W,
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More detailed models and the analysis of simulations have shown that a first order
model of the TCP throughput when losses occur was

. This is an important result which shows that :

• TCP connections with a small round-trip-time can achieve a higher throughput
than TCP connections having a longer round-trip-time when losses occur. This
implies that the TCP congestion control scheme is not completely fair since it
favors the connections that have the shorter round-trip-time

• TCP connections that use a large MSS can achieve a higher throughput that the
TCP connections that use a shorter MSS. This creates another source of
unfairness between TCP connections. However, it should be noted that today
most hosts are using almost the same MSS, roughly 1460 bytes.

In general, the maximum throughput that can be achieved by a TCP connection
depends on its maximum window size and the round-trip-time if there are no losses. If
there are losses, it depends on the MSS, the round-trip-time and the loss ratio.

Note: The TCP congestion control zoo
The first TCP congestion control scheme was proposed by Van Jacobson (htt
p://www.parc.com/about/people/88/van-jacobson.html) in [Jacobson1988]. In
addition to writing the scientific paper, Van Jacobson (http://www.parc.com/ab
out/people/88/van-jacobson.html) also implemented the slow-start and
congestion avoidance schemes in release 4.3 Tahoe of the BSD Unix distributed
by the University of Berkeley. Later, he improved the congestion control by
adding the fast retransmit and the fast recovery mechanisms in the Reno
release of 4.3 BSD Unix. Since then, many researchers have proposed,
simulated and implemented modifications to the TCP congestion control
scheme. Some of these modifications are still used today, e.g. :

• NewReno ( RFC 3782 (http://tools.ietf.org/html/rfc3782.html)), which was
proposed as an improvement of the fast recovery mechanism in the Reno
implementation

• TCP Vegas, which uses changes in the round-trip-time to estimate
congestion in order to avoid it [BOP1994]

• CUBIC, which was designed for high bandwidth links and is the default
congestion control scheme in the Linux 2.6.19 kernel [HRX2008]

• Compound TCP, which was designed for high bandwidth links is the default
congestion control scheme in several Microsoft operating systems
[STBT2009]
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A search of the scientific literature will probably reveal more than 100 different
variants of the TCP congestion control scheme. Most of them have only been
evaluated by simulations. However, the TCP implementation in the recent Linux
kernels supports several congestion control schemes and new ones can be easily
added. We can expect that new TCP congestion control schemes will always continue
to appear.

4.4 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this chapter, we have studied the transport layer. This layer provides two types of
services to the application layer. The unreliable connectionless service is the simplest
service offered to applications. On the Internet, this is the service offered by UDP.
However, most applications prefer to use a reliable and connection-oriented transport
service. We have shown that providing this service was much more complex than
providing an unreliable service as the transport layer needs to recover from the errors
that occur in the network layer. For this, transport layer protocols rely on several
mechanisms. First, they use a handshake mechanism, such as the three-way
handshake mechanism, to correctly establish a transport connection. Once the
connection has been established, transport entities exchange segments. Each
segment contains a sequence number, and the transport layer uses
acknowledgements to confirm the segments that have been correctly received. In
addition, timers are used to recover from segment losses and sliding windows are
used to avoid overflowing the buffers of the transport entities. Finally, we explained
how a transport connection can be safely released. We then discussed the
mechanisms that are used in TCP, the reliable transport protocol, used by most
applications on the Internet. Most notably, we described the congestion control
mechanism that has been included in TCP since the late 1980s and explained how the
reliability mechanisms used by TCP have been tuned over the years.

4.5 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This section is divided in two parts. The first part contains exercises on the principles
of transport protocols, including TCP. The second part contains programming
challenges packet analysis tools to observe the behaviour of transport protocols.

4.5.1 Principles
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. Consider the Alternating Bit Protocol as described in this chapter
◦ How does the protocol recover from the loss of a data segment ?
◦ How does the protocol recovers from the loss of an acknowledgement ?
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2. A student proposed to optimise the Alternating Bit Protocol by adding a negative
acknowledgment, i.e. the receiver sends a NAK control segment when it receives a
corrupted data segment. What kind of information should be placed in this
control segment and how should the sender react when receiving such a NAK ?

3. Transport protocols rely on different types of checksums to verify whether
segments have been affected by transmission errors. The most frequently used
checksums are :
◦ the Internet checksum used by UDP, TCP and other Internet protocols which

is defined in RFC 1071 (http://tools.ietf.org/html/rfc1071) and implemented
in various modules, e.g. this site (http://ilab.cs.byu.edu/cs460/code/ftp/icheck
sum.py) for a python implementation

◦ the 16 bits or the 32 bits Cyclical Redundancy Checks (CRC) that are often
used on disks, in zip archives and in datalink layer protocols. See this site (htt
p://docs.python.org/library/binascii.html) for a python module that contains
the 32 bits CRC

◦ the Alder checksum defined in RFC 2920 (http://tools.ietf.org/html/rfc2920.ht
ml) for the SCTP protocol but replaced by a CRC later RFC 3309 (http://tools.ie
tf.org/html/rfc3309.html)

◦ the Fletcher checksum [Fletcher1982], see this site (http://drdobbs.com/data
base/184408761) for implementation details

◦ By using your knowledge of the Internet checksum, can you find a
transmission error that will not be detected by the Internet checksum ?

4. The CRCs are efficient error detection codes that are able to detect :
◦ all errors that affect an odd number of bits
◦ all errors that affect a sequence of bits which is shorter than the length of the

CRC
◦ Carry experiments with one implementation of CRC-32 to verify that this is

indeed the case.

5. Checksums and CRCs should not be confused with secure hash functions such as
MD5 defined in RFC 1321 (http://tools.ietf.org/html/rfc1321.html) or SHA-1
described in RFC 4634 (http://tools.ietf.org/html/rfc4634.html). Secure hash
functions are used to ensure that files or sometimes packets/segments have not
been modified. Secure hash functions aim at detecting malicious changes while
checksums and CRCs only detect random transmission errors. Perform some
experiments with hash functions such as those defined in this site (http://docs.pyt
hon.org/library/hashlib.html) python hashlib module to verify that this is indeed
the case.

6. A version of the Alternating Bit Protocol supporting variable length segments uses
a header that contains the following fields :
◦ a number (0 or 1)
◦ a length field that indicates the length of the data
◦ a CRC
◦ To speedup the transmission of the segments, a student proposes to

compute the CRC over the data part of the segment but not over the header.
What do you think of this optimisation ?

7. On Unix hosts, the ping(8) command can be used to measure the round-trip-time
to send and receive packets from a remote host. Use ping(8) to measure the
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round-trip to a remote host. Chose a remote destination which is far from your
current location, e.g. a small web server in a distant country. There are
implementations of ping in various languages, see e.g. this site (http://pypi.pytho
n.org/pypi/ping/0.2) for a implementation of ‘’ping’‘

8. How would you set the retransmission timer if you were implementing the
Alternating Bit Protocol to exchange files with a server such as the one that you
measured above ?

9. What are the factors that affect the performance of the Alternating Bit Protocol ?
10. Links are often considered as symmetrical, i.e. they offer the same bandwidth in

both directions. Sym metrical links are widely used in Local Area Networks and in
the core of the Internet, but there are many asymmetrical link technologies. The
most common example are the various types of ADSL and CATV technologies.
Consider an implementation of the Alternating Bit Protocol that is used between
two hosts that are directly connected by using an asymmetric link. Assume that a
host is sending segments containing 10 bytes of control information and 90 bytes
of data and that the acknowledgements are 10 bytes long. If the round-trip-time
is negligible, what is the minimum bandwidth required on the return link to
ensure that the transmission of acknowledgements is not a bottleneck ?

11. Derive a mathematical expression that provides the goodput achieved by the
Alternating Bit Protocol as suming that :
◦ Each segment contains D bytes of data and c bytes of control information
◦ Each acknowledgement contains c bytes of control information
◦ The bandwidth of the two directions of the link is set to B bits per second
◦ The delay between the two hosts is s seconds in both directions
◦ The goodput is defined as the amount of SDUs (measured in bytes) that is

successfully transferred during a period of time

12. Consider an Alternating Bit Protocol that is used over a link that suffers from
deterministic errors. When the error ratio is set to 1/p , this means that p − 1 bits
are transmitted correctly and the pth bit is corrupted. Discuss the factors that
affect the performance of the Alternating Bit Protocol over such a link.

13. Amazon provides the S3 storage service (http://aws.amazon.com/cn/s3/) where
companies and researchers can store lots of information and perform
computations on the stored information. Amazon allows users to send files
through the Internet, but also by sending hard-disks. Assume that a 1 Terabyte
hard-disk can be delivered within 24 hours to Amazon by courier service. What is
the minimum bandwidth required to match the bandwidth of this courier service
?

14. Several large data centers operators (e.g. Microsoft (http://www.microsoft.com/sh
owcase/en/us/details/bafe5c0f-8651-4609-8c71-24c733ce628b) and google (htt
p://www.youtube.com/watch?v=zRwPSFpLX8I)) have announced that they install
servers as containers with each container hosting up to 2000 servers. Assuming a
container with 2000 servers and each storing 500 GBytes of data, what is the time
required to move all the data stored in one container over one 10 Gbps link ?
What is the bandwidth of a truck that needs 10 hours to move one container from
one data center to another.

15. What are the techniques used by a go-back-n sender to recover from :
◦ transmission errors
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◦ losses of data segments
◦ losses of acknowledgements

16. Consider a b bits per second link between two hosts that has a propagation delay
of t seconds. Derive a formula that computes the time elapsed between the
transmission of the first bit of a d bytes segment from a sending host and the
reception of the last bit of this segment on the receiving host.

17. Consider a go-back-n sender and a go-back receiver that are directly connected
with a 10 Mbps link that has a propagation delay of 100 milliseconds. Assume
that the retransmission timer is set to three seconds. If the window has a length
of 4 segments, draw a time-sequence diagram showing the transmission of 10
segments (each segment contains 10000 bits):
◦ when there are no losses
◦ when the third and seventh segments are lost
◦ when the second, fourth, sixth, eighth, ... acknowledgements are lost
◦ when the third and fourth data segments are reordered (i.e. the fourth

arrives before the third)

18. Same question when using selective repeat instead of go-back-n. Note that the
answer is not necessarily the same.

19. Consider two high-end servers connected back-to-back by using a 10 Gbps
interface. If the delay between the two servers is one millisecond, what is the
throughput that can be achieved by a transport protocol that is using 10,000 bits
segments and a window of
◦ one segment
◦ ten segments
◦ hundred segments

20. Consider two servers are directly connected by using a b bits per second link with
a round-trip-time of r seconds. The two servers are using a transport protocol
that sends segments containing s bytes and acknowledgements composed of a
bytes. Can you derive a formula that computes the smallest window (measured in
segments) that is required to ensure that the servers will be able to completely
utilise the link ?

21. Same question as above if the two servers are connected through an
asymmetrical link that transmits bu bits per second in the direction used to send
data segments and bd bits per second in the direction used to send
acknowledgements.

22. The Trivial File Transfer Protocol is a very simple file transfer protocol that is often
used by disk-less hosts when booting from a server. Read the TFTP specification
in RFC 1350 (http://tools.ietf.org/html/rfc1350.html) and explain how TFTP
recovers from transmission errors and losses.

23. Is it possible for a go-back-n receiver to inter-operate with a selective-repeat
sender ? Justify your answer.

24. Is it possible for a selective-repeat receiver to inter-operate with a go-back-n
sender ? Justify your answer.

25. The go-back-n and selective repeat mechanisms that are described in the book
exclusively rely on cumulative acknowledgements. This implies that a receiver
always returns to the sender information about the last segment that was
received in-sequence. If there are frequent losses or reordering, a selective repeat
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receiver could return several times the same cumulative acknowledgment. Can
you think of other types of acknowledgements that could be used by a selective
repeat receiver to provide additional information about the out-of-sequence
segments that it has received. Design such acknowledgements and explain how
the sender should react upon reception of this information.

26. The goodput achieved by a transport protocol is usually defined as the number of
application layer bytes that are exchanged per unit of time. What are the factors
that can influence the goodput achieved by a given transport protocol ?

27. When used with IPv4, Transmission Control Protocol (TCP) attaches 40 bytes of
control information to each segment sent. Assuming an infinite window and no
losses nor transmission errors, derive a formula that computes the maximum
TCP goodput in function of the size of the segments that are sent.

28. A go-back-n sender uses a window size encoded in a n bits field. How many
segments can it send without receiving an acknowledgement ?

29. Consider the following situation. A go-back-n receiver has sent a full window of
data segments. All the segments have been received correctly and in-order by the
receiver, but all the returned acknowledgements have been lost. Show by using a
time sequence diagram (e.g. by considering a window of four segments) what
happens in this case. Can you fix the problem on the go-back-n sender ?

30. Same question as above, but assume now that both the sender and the receiver
implement selective repeat. Note the the answer will be different from the above
question.

31. Consider a transport that supports window of one hundred 1250 Bytes segments.
What is the maximum bandwidth that this protocol can achieve if the round-trip-
time is set to one second ? What happens if, instead of advertising a window of
one hundred segments, the receiver decides to advertise a window of 10
segments ?

32. Explain under which circumstances a transport entity could advertise a window of
0 segments ?

33. To understand the operation of the TCP congestion control mechanism, it is
useful to draw some time sequence diagrams. Let us consider a simple scenario
of a web client connected to the Internet that wishes to retrieve a simple web
page from a remote web server. For simplicity, we will assume that the delay
between the client and the server is 0.5 seconds and that the packet transmission
times on the client and the servers are negligible (e.g. they are both connected to
a 1 Gbps network). We will also assume that the client and the server use 1
KBytes segments.

1. Compute the time required to open a TCP connection, send an HTTP request
and retrieve a 16 KBytes web page. This page size is typical of the results
returned by search engines like google (http://www.google.com) or bing (htt
p://www.bing.com). An important factor in this delay is the initial size of the
TCP congestion window on the server. Assume first that the initial window is
set to 1 segment as defined in RFC 2001 (http://tools.ietf.org/html/rfc2001.ht
ml), 4 KBytes (i.e. 4 segments in this case) as proposed in RFC 3390 (http://to
ols.ietf.org/html/rfc3390.html) or 16 KBytes as proposed in a recent paper (ht
tp://ccr.sigcomm.org/drupal/?q=node/621).
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2. Perform the same analysis with an initial window of one segment is the third
segment sent by the server is lost and the retransmission timeout is fixed
and set to 2 seconds.

3. Same question as above but assume now that the 6th segment is lost.
4. Same question as above, but consider now the loss of the second and

seventh acknowledgements sent by the client.
5. Does the analysis above changes if the initial window is set to 16 KBytes

instead of one segment ?

34. Several MBytes have been sent on a TCP connection and it becomes idle for
several minutes. Discuss which values should be used for the congestion window,
slow start threshold and retransmission timers.

35. To operate reliably, a transport protocol that uses Go-back-n (resp. selective
repeat) cannot use a window that is larger than 2n − 1 (resp. 2n−1) segments.
Does this limitation affects TCP ? Explain your answer.

36. Consider the simple network shown in the figure below. In this network, the
router between the client and the server can only store on each outgoing
interface one packet in addition to the packet that it is currently transmitting. It
discards all the packets that arrive while its buffer is full. Assuming that you can
neglect the transmission time of acknowledgements and that the server uses an
initial window of one segment and has a retransmission timer set to 500
milliseconds, what is the time required to transmit 10 segments from the client to
the server. Does the performance increases if the server uses an initial window of
16 segments instead ?

Figure 4.60 Simple network

37. The figure below describes the evolution of the congestion window of a TCP
connection. Can you find the reasons for the three events that are marked in the
figure ?

38. The figure below describes the evolution of the congestion window of a TCP
connection. Can you find the reasons for the three events that are marked in the
figure ?

:

Figure 4.61 Evolution of the congestion window
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:

Figure 4.62 Evolution of the congestion window

39. A web server serves mainly HTML pages that fit inside 10 TCP segments.
Assuming that the transmission time of each segment can be neglected, compute the
total transfer time of such a page (in round-trip-times) assuming that :

• the TCP stack uses an initial window size of 1 segment
• the TCP stack uses an initial window size of three segments

40. RFC 3168 (http://tools.ietf.org/html/rfc3168.html) defines mechanism that allow
routers to mark packets by setting one bit in the packet header when they are
congested. When a TCP destination receives such a marking in a packet, it returns the
congestion marking to the source that reacts by halving its congestion window and
performs congestion avoidance. Consider a TCP connection where the fourth data
segment experiences congestion. Compare the delay to transmit 8 segments in a
network where routers discards packets during congestion and a network where
routers mark packets during congestion.

4.6 Practice
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. The socket (http://en.wikipedia.org/wiki/Berkeley_sockets) interface allows you to
use the UDP protocol on a Unix host. UDP provides a connectionless unreliable
service that in theory allows you to send SDUs of up to 64 KBytes.
◦ Implement a small UDP client and a small UDP server (in python, you can

start from the example provided in this site (http://docs.python.org/library/s
ocket.html) but you can also use C or java )

◦ run the client and the servers on different workstations to determine
experimentally the largest SDU that is supported by your language and OS. If
possible, use different languages and Operating Systems in each group.

2. By using the socket interface, implement on top of the connectionless unreliable
service provided by UDP a simple client that sends the following message shown
in the figure below.

In this message, the bit flags should be set to 01010011b, the value of the 16 bits field
must be the square root of the value contained in the 32 bits field, the character string
must be an ASCII representation (without any trailing 0) of the number contained in
the 32 bits character field. The last 16 bits of the message contain an Internet
checksum that has been computed over the entire message.
Upon reception of a message, the server verifies that :
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• the flag has the correct value
• the 32 bits integer is the square of the 16 bits integer
• the character string is an ASCII representation of the 32 bits integer
• the Internet checksum is correct

If the verification succeeds, the server returns a SDU containing 11111111b. Otherwise
it returns 01010101b
Your implementation must be able to run on both low endian and big endian
machines. If you have access to different types of machines (e.g. x86 laptops and
SPARC servers), try to run your implementation on both types of machines.

Figure 4.63 Simple SDU format

3. The socket (http://en.wikipedia.org/wiki/Berkeley_sockets) library is also used to
develop applications above the reliable bytestream service provided by TCP. We
have installed on the cnp3.info.ucl.ac.be server a simple server that provides a
simple client-server service. The service operates as follows :
◦ the server listens on port 62141 for a TCP connection
◦ upon the establishment of a TCP connection, the server sends an integer by

using the following TLV format :
▪ the first two bits indicate the type of information (01 for ASCII, 10 for

boolean)
▪ the next six bits indicate the length of the information (in bytes)
▪ An ASCII TLV has a variable length and the next bytes contain one ASCII

character per byte. A boolean TLV has a length of one byte. The byte is
set to 00000000b for true and 00000001b for false.

◦ the client replies by sending the received integer encoded as a 32 bits integer
in network byte order

◦ the server returns a TLV containing true if the integer was correct and a TLV
containing false otherwise and closes the TCP connection

Implement a client to interact with this server in C, Java or python.
4. It is now time to implement a small transport protocol. The protocol uses a sliding

window to transmit more than one segment without being forced to wait for an
acknowledgment. Your implementation must support variable size sliding
window as the other end of the fl ow can send its maximum window size. The
window size is encoded as a three bits unsigned integer.

The protocol identifies the DATA segments by using sequence numbers. The sequence
number of the first segment must be 0. It is incremented by one for each new
segment. The receiver must acknowledge the delivered segments by sending an ACK
segment. The sequence number field in the ACK segment always contains the
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sequence number of the next expected in-sequence segment at the receiver. The flow
of data is unidirectional, meaning that the sender only sends DATA segments and the
receiver only sends ACK segments.
To deal with segments losses, the protocol must implement a recovery technique such
as go-back-n or selective repeat and use retransmission timers. You can select the
technique that best suite your needs and start from a simple technique that you
improve later.

Figure 4.64 Segment format

This segment format contains the following fields :

• Type: segment type
◦ 0x1 DATA segment.
◦ 0x2 ACK segment

• WIN: the size of the current window (an integer encoded as a 3 bits field). In DATA
segments, this field indicates the size of the sending window of the sender. In ACK
segments, this field indicates the current value of the receiving window.

• Sequence: Sequence number (8 bits unsigned integer), starts at 0. The sequence
number is incremented by 1 for each new DATA segment sent by the sender.
Inside an ACK segment, the sequence field carries the sequence number of the
next in-sequence segment that is expected by the receiver.

• Length: length of the payload in multiple of one byte. All DATA segments contain a
payload with 512 bytes of data, except the last DATA segment of a transfer that
can be shorter. The reception of a DATA segment whose length is different than
512 indicates the end of the data transit.

• Payload: the data to send

The client and the server exchange UDP datagrams that contain the DATA and ACK
segments. They must provide a command-line interface that allows to transmit one
binary file and support the following parameters :

sender <destination_DNS_name> <destination_port_number> <window_size>

<input_file> receiver <listening_port_number> <window_size>

<output_file>

In order to test the reactions of your protocol against errors and losses, you you can
use a random number generator to probabilistically drop received segments and
introduce random delays upon the arrival of a segment.

Packet trace analysis
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When debugging networking problems or to analyse performance problems, it is
sometimes useful to capture the segments that are exchanged between two hosts and
to analyse them.

Several packet trace analysis tools are available, either as commercial or open-source
tools. These tools are able to capture all the packets exchanged on a link. Of course,
capturing packets require administrator privileges. They can also analyse the content
of the captured packets and display information about them. The captured packets
can be stored in a file for offline analysis.

tcpdump (http://www.tcpdump.org/) is probably one of the most well known packet
capture software. It is able to both capture packets and display their content. tcpdump
(http://www.tcpdump.org/) is a text-based tool that can display the value of the most
important fields of the captured packets. Additional information about tcpdump (htt
p://www.tcpdump.org/)may be found in tcpdump(1). The text below is an example of
the output of tcpdump (http://www.tcpdump.org/) for the first TCP segments
exchanged on an scp transfer between two hosts.

21:05:56.230737 IP 192.168.1.101.54150 > 130.104.78.8.22: S

1385328972:1385328972(0)

win 65535 <mss 21:05:56.251468 IP 130.104.78.8.22 >

192.168.1.101.54150: S 3627767479:3627767479(0)

ack 1385328973 21:05:56.251560 IP 192.168.1.101.54150 >

130.104.78.8.22: . ack 1 win 65535 <nop,nop,timestamp 274527749

21:05:56.279137 IP 130.104.78.8.22 > 192.168.1.101.54150: P 1:21(20)

ack 1 win 49248 <nop,nop,timestamp 21:05:56.279241 IP

192.168.1.101.54150 > 130.104.78.8.22: . ack 21 win 65535

<nop,nop,timestamp 21:05:56.279534 IP 192.168.1.101.54150 >

130.104.78.8.22: P 1:22(21) ack 21 win 65535 21:05:56.303527 IP

130.104.78.8.22 > 192.168.1.101.54150: . ack 22 win 49248

<nop,nop,timestamp 21:05:56.303623 IP 192.168.1.101.54150 >

130.104.78.8.22: P 22:814(792) ack 21 win 65535

You can easily recognise in the output above the SYN segment containing the MSS,
window scale, timestamp and sackOK options, the SYN+ACK segment whose wscale
option indicates that the server uses window scaling for this connection and then the
first few segments exchanged on the connection.

wireshark (http://www.wireshark.org/) is more recent than tcpdump (http://www.tcpd
ump.org/). It evolved from the ethereal packet trace analysis software. It can be used
as a text tool like tcpdump (http://www.tcpdump.org/). For a TCP connection, wireshar
k (http://www.wireshark.org/)would provide almost the same output as tcpdump. The
main advantage of wireshark (http://www.wireshark.org/) is that it also includes a
graphical user interface that allows to perform various types of analysis on a packet
trace.
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Figure 4.65 Wireshark : default window

The wireshark window is divided in three parts. The top part of the window is a
summary of the first packets from the trace. By clicking on one of the lines, you can
show the detailed content of this packet in the middle part of the window. The middle
of the window allows you to inspect all the fields of the captured packet. The bottom
part of the window is the hexadecimal representation of the packet, with the field
selected in the middle window being highlighted.

wireshark (http://www.wireshark.org/)is very good at displaying packets, but it also
contains several analysis tools that can be very useful. The first tool is Follow TCP
stream. It is part of the Analyze menu and allows you to reassemble and display all the
payload exchanged during a TCP connection. This tool can be useful if you need to
analyse for example the commands exchanged during a SMTP session.

The second tool is the flow graph that is part of the Statistics menu. It provides a time
sequence diagram of the packets exchanged with some comments about the packet
contents. See blow for an example.

162

http://www.wireshark.org/
http://www.wireshark.org/


Figure 4.66 Wireshark : flow graph

The third set of tools are the TCP stream graph tools that are part of the Statistics
menu. These tools allow you to plot various types of information extracted from the
segments exchanged during a TCP connection. A first interesting graph is the
sequence number graph that shows the evolution of the sequence number field of the
captured segments with time. This graph can be used to detect graphically
retransmissions.

Figure 4.67 Wireshark : sequence number graph

A second interesting graph is the round-trip-time graph that shows the evolution of the
round-trip-time in function of time. This graph can be used to check whether the
round-trip-time remains stable or not. Note that from a packet trace, wireshark (htt
p://www.wireshark.org/) can plot two round-trip-time graphs, One for the flow from
the client to the server and the other one. wireshark (http://www.wireshark.org/) will
plot the round-trip-time graph that corresponds to the selected packet in the top wire
shark (http://www.wireshark.org/) window.
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Figure 4.68 Wireshark : round-trip-time graph

Emulating a network with netkit

Netkit (http://www.netkit.org/) is network emulator based on User Mode Linux. It
allows to easily set up an emulated network of Linux machines, that can act as end-
host or routers.

Note: Where can I find Netkit?
Netkit (http://wiki.netkit.org/index.php/Main_Page) is available at
http://www.netkit.org. Files can be downloaded from here (http://wiki.netkit.o
rg/index.php/Download_Official), and instructions for the installations are
available here (http://wiki.netkit.org/download/netkit/INSTALL).
There are two ways to use Netkit : The manual way, and by using pre-
configured labs. In the first case, you boot and control each machine
individually, using the commands starting with a “v” (for virtual machine). In
the second case, you can start a whole network in a single operation. The
commands for controlling the lab start with a “l”. The man pages of those
commands is available from here (http://wiki.netkit.org/man/man7/netkit.7.h
tml).
You must be careful not to forgot to stop your virtual machines and labs, using
either vhalt or lhalt.

A netkit (http://wiki.netkit.org/index.php/Main_Page) lab is simply a directory
containing at least a configuration file called lab.conf, and one directory for each
virtual machine. In the case the lab available on iCampus, the network is composed of
two pcs, pc1 and pc2, both of them being connected to a router r1. The lab.conf file
contains the following lines :

pc1[0]=A

pc2[0]=B
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r1[0]=A

r1[1]=B

This means that pc1 and r1 are connected to a “virtual LAN” named A via their
interface eth0, while pc2 and r1 are connected to the “virtual LAN” B via respectively
their interfaces eth0 and eth1.

The directory of each device is initially empty, but will be used by Netkit (http://wiki.net
kit.org/index.php/Main_Page) to store their filesystem.

The lab directory can contain optional files. In the lab provided to you, the
“pc1.startup” file contains the shell instructions to be executed on startup of the virtual
machine. In this specific case, the script configures the interface eth0 to allow traffic
exchanges between pc1 and r1, as well as the routing table entry to join pc2.

Starting a lab consists thus simply in unpacking the provided archive, going into the
lab directory and typing lstart to start the network.

Note: File sharing between virtual machines and host
Virtual machines can access to the directory of the lab they belong to. This
repertory is mounted in their filesystem at the path /hostlab.
In the netkit lab (exercises/netkit/netkit_lab_2hosts_1rtr_ipv4.tar.tar.gz, you
can find a simple python (https://www.python.org/) client/server application
that establishes TCP connections. Feel free to re-use this code to perform your
analysis.

Note: netkit tools
As the virtual machines run Linux, standard networking tools such as hping,
tcpdump, netstat etc. are available as usual.
Note that capturing network traces can be facilitated by using the uml_dump
extension available here (http://kartoch.msi.unilim.fr/blog/?p=19). This
extension is already installed in the Netkit installation on the student lab. In
order to capture the traffic exchanged on a given ‘virtual LAN’, you simply
need to issue the command vdump <LAN name> on the host. If you want to
pipe the trace to wireshark, you can use vdump A | wireshark -i -k

1. A TCP/IP stack receives a SYN segment with the sequence number set to 1234.
What will be the value of the acknowledgement number in the returned SYN+ACK
segment ?

2. Is it possible for a TCP/IP stack to return a SYN+ACK segment with the
acknowledgement number set to 0 ? If no, explain why. If yes, what was the
content of the received SYN segment.

3. Open the tcpdump (http://www.tcpdump.org/) packet trace exercises/traces/

trace.5connections_opening_closing.pcap and identify the number of different TCP
connections that are established and closed. For each connection, explain by
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which mechanism they are closed. Analyse the initial sequence numbers that are
used in the SYN and SYN+ACK segments. How do these initial sequence numbers
evolve ? Are they increased every 4 microseconds ?

4. The tcpdump (http://www.tcpdump.org/) packet trace exercises/traces/

trace.5connections.pcap contains several connection attempts. Can you explain
what is happening with these connection attempts ?

5. The tcpdump (http://www.tcpdump.org/) packet trace exercises/traces/

trace.ipv6.google.com.pcap was collected from a popular website that is accessible
by using IPv6. Explain the TCP options that are supported by the client and the
server.

6. The tcpdump (http://www.tcpdump.org/)packet trace exercises/traces/

trace.sirius.info.ucl.ac.be.pcap Was collected on the departmental server. What
are the TCP options supported by this server ?

7. A TCP implementation maintains a Transmission Control Block (TCB) for each TCP
connection. This TCB is a data structure that contains the complete “state” of each
TCP connection. The TCB is described in RFC 793 (http://tools.ietf.org/html/rfc79
3.html). It contains first the identification of the TCP connection :

1. localip : the IP address of the local host
2. remoteip : the IP address of the remote host
3. remoteport : the TCP port used for this connection on the remote host
4. localport : the TCP port used for this connection on the local host. Note that

when a client opens a TCP connection, the local port will often be chosen in
the ephemeral port range ( 49152 <= localport <= 65535 ).

5. sndnxt : the sequence number of the next byte in the byte stream (the first
byte of a new data segment that you send will use this sequence number)

6. snduna : the earliest sequence number that has been sent but has not yet
been acknowledged

7. rcvnxt : the sequence number of the next byte that your implementation
expects to receive from the remote host. For this exercise, you do not need
to maintain a receive buffer and your implementation can discard the out-of-
sequence segments that it receives

8. sndwnd : the current sending window
9. rcvwnd : the current window advertised by the receiver

8. Using the exercises/traces/trace.sirius.info.ucl.ac.be.pcap packet trace, what is
the TCB of the connection on host 130.104.78.8 when it sends the third segment
of the trace ?

9. The tcpdump (http://www.tcpdump.org/) packet trace exercises/traces/

trace.maps.google.com was collected by con taining a popular web site that
provides mapping information. How many TCP connections were used to retrieve
the information from this server ? Some network monitoring tools such as ntop
collect all the TCP segments sent and received by a host or a group of hosts and
provide interesting statistics such as the number of TCP connections, the number
of bytes exchanged over each TCP connection, ... Assuming that you can capture
all the TCP segments sent by a host, propose the pseudo-code of an application
that would list all the TCP connections established and accepted by this host and
the number of bytes exchanged over each connection. Do you need to count the
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number of bytes contained inside each segment to report the number of bytes
exchanged over each TCP connection ?

10. There are two types of firewalls: special devices that are placed at the border of
campus or enterprise networks and software that runs on endhosts. Software
firewalls typically analyse all the packets that are received by a host and decide
based on the packet’s header and contents whether it can be processed by the
host’s network stack or must be discarded. System administrators often configure
firewalls on laptop or student machines to prevent students from installing
servers on their machines. How would you design a simple firewall that blocks all
incoming TCP connections but still allows the host to establish TCP connections to
any remote server ?

11. Using the netkit (http://wiki.netkit.org/index.php/Main_Page) lab explained above,
perform some tests by using hping3(8) . hping3(8) is a com mand line tool that
allows anyone (having system administrator privileges) to send special IP packets
and TCP segments. hping3(8) can be used to verify the configuration of firewalls
33 or diagnose problems. We will use it to test the operation of the Linux TCP
stack running inside netkit.

1. On the server host, launch tcpdump(1) with -vv as parameter to collect all
packets received from the client and display them. Using hping3(8) on the
client host, send a valid SYN segment to one unused port on the server host
(e.g. 12345). What are the contents of the segment returned by the server ?

2. Perform the same experiment, but now send a SYN segment towards port 7.
This port is the default port for the discard service (see services(5)) launched
by xinetd(8)). What segment does the server sends in reply ? What happens
upon reception of this segment ? Explain your answer.

12. The Linux TCP/IP stack can be easily configured by using sysctl(8) to change
kernel configuration variables. See here (http://fasterdata.es.net/TCP-tuning/ip-sy
sctl-2.6.txt) for a recent list of the sysctl variables on the Linux TCP/IP stack. Try to
disable the selective acknowledgements and the RFC1323 timestamp and large
window options and open a TCP connection on port 7 on the server by using
:manpage:telnet‘(1)‘. Check by using tcpdump(1) the effect of these kernel
variables on the segments sent by the Linux stack in netkit (http://wiki.netkit.org/i
ndex.php/Main_Page).

13. Network administrators sometimes need to verify which networking daemons are
active on a server. When logged on the server, several tools can be used to verify
this. A first solution is to use the netstat(8) command. This command allows you
to extract various statistics from the networking stack on the Linux kernel. For
TCP, netstat can list all the active TCP connections with the state of their FSM.
netstat supports the following options that could be useful during this exercises:

1. -t requests information about the TCP connections
2. -n requests numeric output (by default, netstat sends DNS queries to resolve

IP addresses in hosts and uses /etc/services to convert port number in
service names, -n is recommended on netkit machines)

3. -e provides more information about the state of the TCP connections
4. -o provides information about the timers
5. -a provides information about all TCP connections, not only those in the

Established state
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On the netkit (http://wiki.netkit.org/index.php/Main_Page) lab, launch a daemon and
start a TCP connection by using telnet(1) and use netstat(8) to verify the state of
these connections.

A second solution to determine which network daemons are running on a server is to
use a tool like nmap(1) . nmap(1) can be run remotely and thus can provide
information about a host on which the system administrator cannot login. Use
tcpdump(1) to collect the segments sent by nmap(1) running on the client and explain

how nmap(1) operates.

14. Long lived TCP connections are susceptible to the so-called RST attacks. Try to find
additional information about this attack and explain how a TCP stack could
mitigate such attacks.

15. For the exercises below, we have performed measurements in an emulated 30

network similar to the one shown below.

Figure 4.69 Emulated network

The emulated network is composed of three UML machines 31: a client, a server and a
router. The client and the server are connected via the router. The client sends data to
the server. The link between the router and the client is controlled by using the netem
Linux kernel module. This module allows us to insert additional delays, reduce the link
bandwidth and insert random packet losses.
We used netem to collect several traces :

• exercises/traces/trace0.pcap
• exercises/traces/trace1.pcap
• exercises/traces/trace2.pcap
• exercises/traces/trace3.pcap

Using wireshark or tcpdump, carry out the following analyses :
1. Identify the TCP options that have been used on the TCP connection
2. Try to find explanations for the evolution of the round-trip-time on each of these

TCP connections. For this, you can use the round-trip-time graph of wireshark,
but be careful with their estimation as some versions of wireshark are buggy

3. Verify whether the TCP implementation used implemented delayed
acknowledgements

4. Inside each packet trace, find :
1. one segment that has been retransmitted by using fast retransmit. Explain

this retransmission in details.

30. With an emulated network, it is more difficult to obtain quantitative results than with a real network since all the
emulated machines need to share the same CPU and memory. This creates interactions between the different emulated
machines that do not happen in the real world. However, since the objective of this exercise is only to allow the students
to understand the behaviour of the TCP congestion control mechanism, this is not a severe problem.

31. For more information about the TCP congestion control schemes implemented in the Linux kernel, see
http://linuxgazette.net/135/pfeiffer.html and http://www.cs.helsinki.fi/research/iwtcp/papers/linuxtcp.pdf or the source
code of a recent Linux. A description of some of the sysctl variables that allow to tune the TCP implementation in the
Linux kernel may be found in http://fasterdata.es.net/TCP-tuning/linux.html. For this exercise, we have configured the
Linux kernel to use the NewReno scheme RFC 3782 that is very close to the official standard defined in RFC 5681
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2. one segment that has been retransmitted thanks to the expiration of TCP’s
retransmission timeout. Explain why this segment could not have been
retransmitted by using fast retransmit.

3. wireshark contains several two useful graphs : the round-trip-time graph and
the time sequence graph. Explain how you would compute the same graph
from such a trace .

4. When displaying TCP segments, recent versions of wireshark contain expert
analysis heuristics that indicate whether the segment has been
retransmitted, whether it is a duplicate ack or whether the retransmission
timeout has expired. Explain how you would implement the same heuristics
as wireshark.

5. Can you find which file has been exchanged during the transfer ?

5. You have been hired as an networking expert by a company. In this company,
users of a networked application complain that the network is very slow. The
developers of the application argue that any delays are caused by packet losses
and a buggy network. The network administrator argues that the network works
perfectly and that the delays perceived by the users are caused by the
applications or the servers where the application is running. To resolve the case
and determine whether the problem is due to the network or the server on which
the application is running. The network administrator has collected a
representative packet trace that you can download from exercises/traces/

trace9.pcap . By looking at the trace, can you resolve this case and indicate
whether the network or the application is the culprit ?
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Chapter 5 The network layer
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The transport layer enables the applications to efficiently and reliably exchange data.
Transport layer entities expect to be able to send segment to any destination without
having to understand anything about the underlying subnetwork technologies. Many
subnetwork technologies exist. Most of them differ in subtle details (frame size,
addressing, ...). The network layer is the glue between these subnetworks and the
transport layer. It hides to the transport layer all the complexity of the underlying
subnetworks and ensures that information can be exchanged between hosts
connected to different types of subnetworks.

In this chapter, we first explain the principles of the network layer. These principles
include the datagram and virtual circuit modes, the separation between the data
plane and the control plane and the algorithms used by routing protocols. Then, we
explain, in more detail, the network layer in the Internet, starting with IPv4 and IPv6
and then moving to the routing protocols (RIP, OSPF and BGP).

5.1 Principles
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The main objective of the network layer is to allow endsystems, connected to different
networks, to exchange information through intermediate systems called router. The
unit of information in the network layer is called a packet.

Figure 5.1 The network layer in the reference model

Before explaining the network layer in detail, it is useful to begin by analysing the
service provided by the datalink layer. There are many variants of the datalink layer.
Some provide a connection-oriented service while others provide a connectionless
service. In this section, we focus on connectionless datalink layer services as they are
the most widely used. Using a connection-oriented datalink layer causes some
problems that are beyond the scope of this chapter. See RFC 3819 (http://tools.ietf.or
g/html/rfc3819.html) for a discussion on this topic. There are three main types of
datalink layers. The simplest datalink layer is when there are only two communicating
systems that are directly connected through the physical layer. Such a datalink layer is
used when there is a point-to-point link between the two communicating systems. The
two systems can be endsystems or routers. PPP (Point-to-Point Protocol), defined in R
FC 1661 (http://tools.ietf.org/html/rfc1661.html), is an example of such a point-to-
point datalink layer. Datalink layers exchange frames and a datalink frame sent by a
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datalink layer entity on the left is transmitted through the physical layer, so that it can
reach the datalink layer entity on the right. Point-to-point datalink layers can either
provide an unreliable service (frames can be corrupted or lost) or a reliable service (in
this case, the datalink layer includes retransmission mechanisms similar to the ones
used in the transport layer). The unreliable service is frequently used above physical
layers (e.g. optical fiber, twisted pairs) having a low bit error ratio while reliability
mechanisms are often used in wireless networks to recover locally from transmission
errors.

Figure 5.2 The point-to-point datalink layer

The second type of datalink layer is the one used in Local Area Networks (LAN).
Conceptually, a LAN is a set of communicating devices such that any two devices can
directly exchange frames through the datalink layer. Both endsystems and routers can
be connected to a LAN. Some LANs only connect a few devices, but there are LANs
that can connect hundreds or even thousands of devices.

Figure 5.3 A local area network

In the next chapter, we describe the organisation and the operation of Local Area
Networks. An important difference between the point-to-point datalink layers and the
datalink layers used in LANs is that in a LAN, each communicating device is identified
by a unique datalink layer address. This address is usually embedded in the hardware
of the device and different types of LANs use different types of datalink layer
addresses. A communicating device attached to a LAN can send a datalink frame to
any other communicating device that is attached to the same LAN. Most LANs also
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support special broadcast and multicast datalink layer addresses. A frame sent to the
broadcast address of the LAN is delivered to all communicating devices that are
attached to the LAN. The multicast addresses are used to identify groups of
communicating devices. When a frame is sent towards a multicast datalink layer
address, it is delivered by the LAN to all communicating devices that belong to the
corresponding group.

The third type of datalink layers are used in Non-Broadcast Multi-Access (NBMA)
networks. These networks are used to interconnect devices like a LAN. All devices
attached to an NBMA network are identified by a unique datalink layer address.
However, and this is the main difference between an NBMA network and a traditional
LAN, the NBMA service only supports unicast. The datalink layer service provided by
an NBMA network supports neither broadcast nor multicast.

Unfortunately no datalink layer is able to send frames of unlimited side. Each datalink
layer is characterised by a maximum frame size. There are more than a dozen
different datalink layers and unfortunately most of them use a different maximum
frame size. The network layer must cope with the heterogeneity of the datalink layer.

The network layer itself relies on the following principles :

1. Each network layer entity is identified by a network layer address. This address is
independent of the datalink layer addresses that it may use.

2. The service provided by the network layer does not depend on the service or the
internal organisation of the underlying datalink layers.

3. The network layer is conceptually divided into two planes : the data plane and the
control plane. The data plane contains the protocols and mechanisms that allow
hosts and routers to exchange packets carrying user data. The control plane
contains the protocols and mechanisms that enable routers to efficiently learn
how to forward packets towards their final destination.

The independence of the network layer from the underlying datalink layer is a key
principle of the network layer. It ensures that the network layer can be used to allow
hosts attached to different types of datalink layers to exchange packets through
intermediate routers. Furthermore, this allows the datalink layers and the network
layer to evolve independently from each other. This enables the network layer to be
easily adapted to a new datalink layer every time a new datalink layer is invented.

There are two types of service that can be provided by the network layer :

• an unreliable connectionless service
• a connection-oriented, reliable or unreliable, service

Connection-oriented services have been popular with technologies such as X.25 and
ATM or frame-relay, but nowadays most networks use an unreliable connectionless
service. This is our main focus in this chapter.
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5.1.1 Organisation of the network layer
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two possible internal organisations of the network layer :

• datagram
• virtual circuits

The internal organisation of the network is orthogonal to the service that it provides,
but most of the time a datagram organisation is used to provide a connectionless
service while a virtual circuit organisation is used in networks that provide a
connection-oriented service.

Datagram organisation

The first and most popular organisation of the network layer is the datagram
organisation. This organisation is inspired by the organisation of the postal service.
Each host is identified by a network layer address. To send information to a remote
host, a host creates a packet that contains :

• the network layer address of the destination host
• its own network layer address
• the information to be sent

The network layer limits the maximum packet size. Thus, the information must have
been divided in packets by the transport layer before being passed to the network
layer.

To understand the datagram organisation, let us consider the figure below. A network
layer address, represented by a letter, has been assigned to each host and router. To
send some information to host J, host A creates a packet containing its own address,
the destination address and the information to be exchanged.

With the datagram organisation, routers use hop-by-hop forwarding. This means that
when a router receives a packet that is not destined to itself, it looks up the
destination address of the packet in its routing table. A routing table is a data structure
that maps each destination address (or set of destination addresses) to the outgoing
interface over which a packet destined to this address must be forwarded to reach its
final destination.

The main constraint imposed on the routing tables is that they must allow any host in
the network to reach any other host. This implies that each router must know a route
towards each destination, but also that the paths composed from the information
stored in the routing tables must not contain loops. Otherwise, some destinations
would be unreachable.
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:

Figure 5.4 A simple internetwork

In the example above, host A sends its packet to router R1. R1 consults its routing
table and forwards the packet towards R2. Based on its own routing table, R2 decides
to forward the packet to R5 that can deliver it to its destination.

To allow hosts to exchange packets, a network relies on two different types of
protocols and mechanisms. First, there must be a precise definition of the format of
the packets that are sent by hosts and processed by routers. Second, the algorithm
used by the routers to forward these packets must be defined. This protocol and this
algorithm are part of the data plane of the network layer. The data plane contains all
the protocols and algorithms that are used by hosts and routers to create and process
the packets that contain user data.

The data plane, and in particular the forwarding algorithm used by the routers,
depends on the routing tables that are maintained on reach router. These routing
tables can be maintained by using various techniques (manual configuration,
distributed protocols, centralised computation, etc). These techniques are part of the
control plane of the network layer. The control plane contains all the protocols and
mechanisms that are used to compute and install routing tables on the routers.

The datagram organisation has been very popular in computer networks. Datagram
based network layers include IPv4 and IPv6 in the global Internet, CLNP defined by the
ISO, IPX defined by Novell or XNS defined by Xerox [Perlman2000].

Virtual circuit organisation

The main advantage of the datagram organisation is its simplicity. The principles of
this organisation can easily be understood. Furthermore, it allows a host to easily send
a packet towards any destination at any time. However, as each packet is forwarded
independently by intermediate routers, packets sent by a host may not follow the
same path to reach a given destination. This may cause packet reordering, which may
be annoying for transport protocols. Furthermore, as a router using hop-by-hop
forwarding always forwards packets sent towards the same destination over the same
outgoing interface, this may cause congestion over some links.
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The second organisation of the network layer, called virtual circuits, has been inspired
by the organisation of telephone networks. Telephone networks have been designed
to carry phone calls that usually last a few minutes. Each phone is identified by a
telephone number and is attached to a telephone switch. To initiate a phone call, a
telephone first needs to send the destination’s phone number to its local switch. The
switch cooperates with the other switches in the network to create a bi-directional
channel between the two telephones through the network. This channel will be used
by the two telephones during the lifetime of the call and will be released at the end of
the call. Until the 1960s, most of these channels were created manually, by telephone
operators, upon request of the caller. Today’s telephone networks use automated
switches and allow several channels to be carried over the same physical link, but the
principles remain roughly the same.

In a network using virtual circuits, all hosts are identified with a network layer address.
However, a host must explicitly request the establishment of a virtual circuit before
being able to send packets to a destination host. The request to establish a virtual
circuit is processed by the control plane, which installs state to create the virtual circuit
between the source and the destination through intermediate routers. All the packets
that are sent on the virtual circuit contain a virtual circuit identifier that allows the
routers to determine to which virtual circuit each packet belongs. This is illustrated in
the figure below with one virtual circuit between host A and host I and another one
between host A and host J.

Figure 5.5 A simple internetwork using virtual-circuits

The establishment of a virtual circuit is performed using a signalling protocol in the
control plane. Usually, the source host sends a signalling message to indicate to its
router the address of the destination and possibly some performance characteristics
of the virtual circuit to be established. The first router can process the signalling
message in two different ways.

A first solution is for the router to consult its routing table, remember the
characteristics of the requested virtual circuit and forward it over its outgoing
interface towards the destination. The signalling message is thus forwarded hop-by-
hop until it reaches the destination and the virtual circuit is opened along the path
followed by the signalling message. This is illustrated with the red virtual circuit in the
figure below.
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Figure 5.6 Virtual circuit establishment

A second solution can be used if the routers know the entire topology of the network.
In this case, the first router can use a technique called source routing. Upon reception
of the signalling message, the first router chooses the path of the virtual circuit in the
network. This path is encoded as the list of the addresses of all intermediate routers
to reach the destination. It is included in the signalling message and intermediate
routers can remove their address from the signalling message before forwarding it.
This technique enables routers to spread the virtual circuits throughout the network
better. If the routers know the load of remote links, they can also select the least
loaded path when establishing a virtual circuit. This solution is illustrated with the blue
circuit in the figure above.

The last point to be discussed about the virtual circuit organisation is its data plane.
The data plane mainly defines the format of the data packets and the algorithm used
by routers to forward packets. The data packets contain a virtual circuit identifier,
encoded as a fixed number of bits. These virtual circuit identifiers are usually called
labels.

Each host maintains a flow table that associates a label with each virtual circuit that is
has established. When a router receives a packet containing a label, it extracts the
label and consults its label forwarding table. This table is a data structure that maps
each couple (incoming interface, label) to the outgoing interface to be used to forward
the packet as well as the label that must be placed in the outgoing packets. In practice,
the label forwarding table can be implemented as a vector and the couple (incoming
interface, label) is the index of the entry in the vector that contains the outgoing
interface and the outgoing label. Thus a single memory access is sufficient to consult
the label forwarding table. The utilisation of the label forwarding table is illustrated in
the figure below.
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Figure 5.7 Label forwarding tables in a network using virtual circuits

The virtual circuit organisation has been mainly used in public networks, starting from
X.25 and then Frame Relay and Asynchronous Transfer Mode (ATM) network.

Both the datagram and virtual circuit organisations have advantages and drawbacks.
The main advantage of the datagram organisation is that hosts can easily send
packets to any number of destinations while the virtual circuit organisation requires
the establishment of a virtual circuit before the transmission of a data packet. This
solution can be costly for hosts that exchange small amounts of data. On the other
hand, the main advantage of the virtual circuit organisation is that the forwarding
algorithm used by routers is simpler than when using the datagram organisation.
Furthermore, the utilisation of virtual circuits may allow the load to be better spread
through the network thanks to the utilisation of multiple virtual circuits. The
MultiProtocol Label Switching (MPLS) technique that we will discuss in another
revision of this book can be considered as a good compromise between datagram and
virtual circuits. MPLS uses virtual circuits between routers, but does not extend them
to the endhosts. Additional information about MPLS may be found in [ML2011].

5.1.2 The control plane
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

One of the objectives of the control plane in the network layer is to maintain the
routing tables that are used on all routers. As indicated earlier, a routing table is a
data structure that contains, for each destination address (or block of addresses)
known by the router, the outgoing interface over which the router must forward a
packet destined to this address. The routing table may also contain additional
information such as the address of the next router on the path towards the
destination or an estimation of the cost of this path.

In this section, we discuss the three main techniques that can be used to maintain the
routing tables in a network.
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Static routing

The simplest solution is to pre-compute all the routing tables of all routers and to
install them on each router. Several algorithms can be used to compute these tables.

A simple solution is to use shortest path routing and to minimise the number of
intermediate routers to reach each destination. More complex algorithms can take
into account the expected load on the links to ensure that congestion does not occur
for a given traffic demand. These algorithms must all ensure that :

• all routers are configured with a route to reach each destination
• none of the paths composed with the entries found in the routing tables contain

a cycle. Such a cycle would lead to a forwarding loop.

The figure below shows sample routing tables in a five routers network.

Figure 5.8 Routing tables in a simple network

The main drawback of static routing is that it does not adapt to the evolution of the
network. When a new router or link is added, all routing tables must be recomputed.
Furthermore, when a link or router fails, the routing tables must be updated as well.

Distance vector routing

Distance vector routing is a simple distributed routing protocol. Distance vector
routing allows routers to automatically discover the destinations reachable inside the
network as well as the shortest path to reach each of these destinations. The shortest
path is computed based on metrics or costs that are associated to each link. We use
l.cost to represent the metric that has been configured for link l on a router.

Each router maintains a routing table. The routing table R can be modelled as a data
structure that stores, for each known destination address d, the following attributes :

• R[d].link is the outgoing link that the router uses to forward packets towards
destination d

• R[d].cost is the sum of the metrics of the links that compose the shortest path to
reach destination d

• R[d].time is the timestamp of the last distance vector containing destination d

A router that uses distance vector routing regularly sends its distance vector over all
its interfaces. The distance vector is a summary of the router’s routing table that
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indicates the distance towards each known destination. This distance vector can be
computed from the routing table by using the pseudo-code below.

Every N seconds:

v=Vector()

for d in R[]:

# add destination d to vector

v.add(Pair(d,R[d].cost))

for i in interfaces

# send vector v on this interface

send(v,interface)

When a router boots, it does not know any destination in the network and its routing
table only contains itself. It thus sends to all its neighbours a distance vector that
contains only its address at a distance of 0. When a router receives a distance vector
on link l, it processes it as follows.

# V : received Vector

# l : link over which vector is received

def received(V,l):

# received vector from link l

for din V[]

if not (din R[]) :

# new route

R[d].cost=V[d].cost+l.cost

R[d].link=l

R[d].time=now

else :

# existing route, is the new better ?

if ( ((V[d].cost+l.cost) < R[d].cost) or ( R[d].link == l) )

:

# Better route or change to current route

R[d].cost=V[d].cost+l.cost

R[d].link=l

R[d].time=now

The router iterates over all addresses included in the distance vector. If the distance
vector contains an address that the router does not know, it inserts the destination
inside its routing table via link l and at a distance which is the sum between the
distance indicated in the distance vector and the cost associated to link l. If the
destination was already known by the router, it only updates the corresponding entry
in its routing table if either :

• the cost of the new route is smaller than the cost of the already known route (
(V[d].cost+l.cost) < R[d].cost)
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• the new route was learned over the same link as the current best route towards
this destination ( R[d].link == l)

The first condition ensures that the router discovers the shortest path towards each
destination. The second condition is used to take into account the changes of routes
that may occur after a link failure or a change of the metric associated to a link.

To understand the operation of a distance vector protocol, let us consider the network
of five routers shown below.

:

Figure 5.9 Operation of distance vector routing in a simple network

Assume that A is the first to send its distance vector [A=0].

1. B and D process the received distance vector and update their routing table with
a route towards A.

2. D sends its distance vector [D=0,A=1] to A and E. E can now reach A and D.
3. C sends its distance vector [C=0] to B and E
4. E sends its distance vector [E=0,D=1,A=2,C=2] to D, B and C. B can now reach A, C, D

and E
5. B sends its distance vector [B=0,A=1,C=1,D=2,E=1] to A, C and E. A, B, C and E can

now reach all destinations.
6. A sends its distance vector [A=0,B=1,C=2,D=1,E=2] to B and D.

At this point, all routers can reach all other routers in the network thanks to the
routing tables shown in the figure below. To deal with link and router failures, routers
use the timestamp stored in their routing table. As all routers send their distance
vector every N seconds, the timestamp of each route should be regularly refreshed.
Thus no route should have a timestamp older than N seconds, unless the route is not
reachable anymore. In practice, to cope with the possible loss of a distance vector due
to transmission errors, routers check the timestamp of the routes stored in their
routing table every N seconds and remove the routes that are older than 3 × N
seconds. When a router notices that a route towards a destination has expired, it must
first associate an ∞ cost to this route and send its distance vector to its neighbours to
inform them. The route can then be removed from the routing table after some time
(e.g. 3 × N seconds), to ensure that the neighbouring routers have received the bad
news, even if some distance vectors do not reach them due to transmission errors.
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Figure 5.10 Routing tables computed by distance vector in a simple network

Consider the example above and assume that the link between routers A and B fails.
Before the failure, A used B to reach destinations B, C and E while B only used the A-B
link to reach A. The affected entries timeout on routers A and B and they both send
their distance vector.

• A sends its distance vector [A =0,D = ∞,C = ∞,D =1,E = ∞]. D knows that it cannot
reach B anymore via A

• D sends its distance vector [D =0,B = ∞,A =1,C =2,E = 1] to A and E. A recovers
routes towards C and E via D.

• B sends its distance vector [B =0,A = ∞,C =1,D =2,E = 1] to E and C. D learns that
there is no route anymore to reach A via B.

• E sends its distance vector [E =0,A =2,C =1,D =1,B = 1] to D, B and C. D learns a route
towards

• C and B learn a route towards A.

At this point, all routers have a routing table allowing them to reach all another
routers, except router A, which cannot yet reach router B. A recovers the route
towards B once router D sends its updated distance vector [A = 1,B =2,C =2,D =1,E = 1].
This last step is illustrated in figure Routing tables computed by distance vector after a
failure, which shows the routing tables on all routers.

Figure 5.11 Routing tables computed by distance vector after a failure
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Consider now that the link between D and E fails. The network is now partitioned into
two disjoint parts : (A , D) and (B, E, C). The routes towards B, C and E expire first on
router D. At this time, router D updates its routing table.

If D sends [D =0,A =1,B = ∞,C = ∞,E = ∞], A learns that B, C and E are unreachable and
updates its routing table.

Unfortunately, if the distance vector sent to A is lost or if A sends its own distance
vector ( [A =0,D =1,B = 3,C =3,E = 2] ) at the same time as D sends its distance vector, D
updates its routing table to use the shorter routes advertised by A towards B, C and E.
After some time D sends a new distance vector : [D = 0,A =1,E =3,C =4,B = 4]. A updates
its routing table and after some time sends its own distance vector [A =0,D =1,B =5,C
=5,E = 4], etc. This problem is known as the count to infinity problem in networking
literature. Routers A and D exchange distance vectors with increasing costs until these
costs reach ∞. This problem may occur in other scenarios than the one depicted in the
above figure. In fact, distance vector routing may suffer from count to infinity
problems as soon as there is a cycle in the network. Cycles are necessary to have
enough redundancy to deal with link and router failures. To mitigate the impact of
counting to infinity, some distance vector protocols consider that 16 = ∞.
Unfortunately, this limits the metrics that network operators can use and the diameter
of the networks using distance vectors.

This count to infinity problem occurs because router A advertises to router D a route
that it has learned via router D. A possible solution to avoid this problem could be to
change how a router creates its distance vector. Instead of computing one distance
vector and sending it to all its neighbors, a router could create a distance vector that is
specific to each neighbour and only contains the routes that have not been learned via
this neighbour. This could be implemented by the following pseudocode.

Every N seconds:

# one vector for each interface

for l in interfaces:

v=Vector()

for d in R[]:

if (R[d].link != i) :

v=v+Pair(d,R[d.cost])

send(v)

# end for d in R[]

#end for l in interfaces

This technique is called split-horizon. With this technique, the count to infinity
problem would not have happened in the above scenario, as router A would have
advertised [A = 0], since it learned all its other routes via router D. Another variant
called split-horizon with poison reverse is also possible. Routers using this variant
advertise a cost of ∞ for the destinations that they reach via the router to which they
send the distance vector. This can be implemented by using the pseudo-code below.
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Every N seconds:

for l in interfaces:

# one vector for each interface

v=Vector()

for d in R[]:

if (R[d].link != i) :

v=v+Pair(d,R[d.cost])

else:

v=v+Pair(d,infinity);

send(v)

# end for d in R[]

#end for l in interfaces

Unfortunately, split-horizon, is not sufficient to avoid all count to infinity problems
with distance vector routing. Consider the failure of link A-B in the network of four
routers below.

:

Figure 5.12 Count to infinity problem

After having detected the failure, router A sends its distance vectors :

• [A = ∞,B =0,C = ∞,E = 1] to router C
• [A = ∞,B =0,C =1,E = ∞] to router E

If, unfortunately, the distance vector sent to router C is lost due to a transmission
error or because router C is overloaded, a new count to infinity problem can occur. If
router C sends its distance vector [A =2,B =1,C = 0,E = ∞] to router E, this router installs
a route of distance 3 to reach A via C. Router E sends its distance vectors [A =3,B = ∞,C
=1,E = 1] to router B and [A = ∞,B =1,C = ∞,E = 0] to router C. This distance vector allows
B to recover a route of distance 4 to reach A.

Link state routing
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Link state routing is the second family of routing protocols. While distance vector
routers use a distributed algorithm to compute their routing tables, link-state routers
exchange messages to allow each router to learn the entire network topology. Based
on this learned topology, each router is then able to compute its routing table by using
a shortest path computation [Dijkstra1959].

For link-state routing, a network is modelled as a directed weighted graph. Each router
is a node, and the links between routers are the edges in the graph. A positive weight
is associated to each directed edge and routers use the shortest path to reach each
destination. In practice, different types of weight can be associated to each directed
edge :

• unit weight. If all links have a unit weight, shortest path routing prefers the paths
with the least number of intermediate routers.

• weight proportional to the propagation delay on the link. If all link weights are
configured this way, shortest path routing uses the paths with the smallest
propagation delay.

Figure 5.13

• where C is a constant larger than the highest link bandwidth in the network. If all
link weights are configured this way, shortest path routing prefers higher
bandwidth paths over lower bandwidth paths

Usually, the same weight is associated to the two directed edges that correspond to a
physical link (i.e. R1 → R2 and R2 → R1). However, nothing in the link state protocols
requires this. For example, if the weight is set in function of the link bandwidth, then
an asymmetric ADSL link could have a different weight for the upstream and
downstream directions. Other variants are possible. Some networks use optimisation
algorithms to find the best set of weights to minimize congestion inside the network
for a given traffic demand [FRT2002].

When a link-state router boots, it first needs to discover to which routers it is directly
connected. For this, each router sends a HELLO message every N seconds on all of its
interfaces. This message contains the router’s address. Each router has a unique
address. As its neighbouring routers also send HELLO messages, the router
automatically discovers to which neighbours it is connected. These HELLO messages
are only sent to neighbours who are directly connected to a router, and a router never
forwards the HELLO messages that they receive. HELLO messages are also used to
detect link and router failures. A link is considered to have failed if no HELLO message
has been received from the neighbouring router for a period of k × N seconds.
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Figure 5.14 The exchange of HELLO messages

Once a router has discovered its neighbours, it must reliably distribute its local links to
all routers in the network to allow them to compute their local view of the network
topology. For this, each router builds a link-state packet (LSP) containing the following
information :

• LSP.Router : identification (address) of the sender of the LSP
• LSP.age : age or remaining lifetime of the LSP
• LSP.seq : sequence number of the LSP
• LSP.Links[] : links advertised in the LSP. Each directed link is represented with the

following information : -LSP.Links[i].Id : identification of the neighbour -
LSP.Links[i].cost : cost of the link

These LSPs must be reliably distributed inside the network without using the router’s
routing table since these tables can only be computed once the LSPs have been
received. The Flooding algorithm is used to efficiently distribute the LSPs of all routers.
Each router that implements flooding maintains a link state database (LSDB)
containing the most recent LSP sent by each router. When a router receives an LSP, it
first verifies whether this LSP is already stored inside its LSDB. If so, the router has
already distributed the LSP earlier and it does not need to forward it. Otherwise, the
router forwards the LSP on all links except the link over which the LSP was received.
Reliable flooding can be implemented by using the following pseudo-code.

# links is the set of all links on the router

# Router R’s LSP arrival on link l

if newer(LSP, LSDB(LSP.Router)) :

LSDB.add(LSP)

for i in links :

if i!=l :

send(LSP,i)

else:

# LSP has already been flooded

In this pseudo-code, LSDB(r) returns the most recent LSP originating from router r that
is stored in the LSDB. newer(lsp1,lsp2) returns true if lsp1 is more recent than lsp2. See
the note below for a discussion on how newer can be implemented.
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Note: Which is the most recent LSP ?
A router that implements flooding must be able to detect whether a received
LSP is newer than the stored LSP. This requires a comparison between the
sequence number of the received LSP and the sequence number of the LSP
stored in the link state database. The ARPANET routing protocol [MRR1979]
used a 6 bits sequence number and implemented the comparison as follows RF
C 789 (http://tools.ietf.org/html/rfc789.html)

def newer( lsp1, lsp2 ):

return ( ( ( lsp1.seq > lsp2.seq) and ( (lsp1.seq-lsp2.seq)<=32) )

or

( ( lsp1.seq < lsp2.seq) and ( (lsp2.seq-lsp1.seq)> 32) )

)

This comparison takes into account the modulo 2 arithmetic used to increment
the sequence numbers. Intuitively, the comparison divides the circle of all
sequence numbers into two halves. Usually, the sequence number of the
received LSP is equal to the sequence number of the stored LSP incremented by
one, but sometimes the sequence numbers of two successive LSPs may differ,
e.g. if one router has been disconnected from the network for some time. The
comparison above worked well until October 27, 1980. On this day, the
ARPANET crashed completely. The crash was complex and involved several
routers. At one point, LSP 40 and LSP 44 from one of the routers were stored in
the LSDB of some routers in the ARPANET. As LSP 44 was the newest, it should
have replaced by LSP 40 on all routers. Unfortunately, one of the ARPANET
routers suffered from a memory problem and sequence number 40 (101000 in
binary) was replaced by 8 (001000 in binary) in the buggy router and flooded.
Three LSPs were present in the network and 44 was newer than 40 which is
newer than 8, but unfortunately 8 was considered to be newer than 44... All
routers started to exchange these three link state packets for ever and the only
solution to recover from this problem was to shutdown the entire network RFC
(http://tools.ietf.org/html/rfc789.html) 789 (http://tools.ietf.org/html/rfc78
9.html).

Current link state routing protocols usually use 32 bits sequence numbers and
include a special mechanism in the unlikely case that a sequence number
reaches the maximum value (using a 32 bits sequence number space takes 136
years if a link state packet is generated every second).
To deal with the memory corruption problem, link state packets contain a
checksum. This checksum is computed by the router that generates the LSP.
Each router must verify the checksum when it receives or floods an LSP.
Furthermore, each router must periodically verify the checksums of the LSPs
stored in its LSDB.
Flooding is illustrated in the figure below. By exchanging HELLO messages,
each router learns its direct neighbours. For example, router E learns that it is
directly connected to routers D, B and C. Its first LSP has sequence number 0
and contains the directed links E->D, E->B and E->C. Router E sends its LSP on
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all its links and routers D, B and C insert the LSP in their LSDB and forward it
over their other links.

:

Figure 5.15 Flooding : example

Flooding allows LSPs to be distributed to all routers inside the network without relying
on routing tables. In the example above, the LSP sent by router E is likely to be sent
twice on some links in the network. For example, routers B and C receive E‘s LSP at
almost the same time and forward it over the B-C link. To avoid sending the same LSP
twice on each link, a possible solution is to slightly change the pseudo-code above so
that a router waits for some random time before forwarding a LSP on each link. The
drawback of this solution is that the delay to flood an LSP to all routers in the network
increases. In practice, routers immediately flood the LSPs that contain new
information (e.g. addition or removal of a link) and delay the flooding of refresh LSPs
(i.e. LSPs that contain exactly the same information as the previous LSP originating
from this router) [FFEB2005].

To ensure that all routers receive all LSPs, even when there are transmissions errors,
link state routing protocols use reliable flooding. With reliable flooding, routers use
acknowledgements and if necessary retransmissions to ensure that all link state
packets are successfully transferred to all neighbouring routers. Thanks to reliable
flooding, all routers store in their LSDB the most recent LSP sent by each router in the
network. By combining the received LSPs with its own LSP, each router can compute
the entire network topology.
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:

Figure 5.16 Link state databases received by all routers

Note: Static or dynamic link metrics ?
As link state packets are flooded regularly, routers are able to measure the
quality (e.g. delay or load) of their links and adjust the metric of each link
according to its current quality. Such dynamic adjustments were included in
the ARPANET routing protocol [MRR1979] . However, experience showed that
it was difficult to tune the dynamic adjustments and ensure that no forwarding
loops occur in the network [KZ1989]. Today’s link state routing protocols use
metrics that are manually configured on the routers and are only changed by
the network operators or network management tools [FRT2002].

When a link fails, the two routers attached to the link detect the failure by the lack of
HELLO messages received in the last k × N seconds. Once a router has detected a local
link failure, it generates and floods a new LSP that no longer contains the failed link
and the new LSP replaces the previous LSP in the network. As the two routers
attached to a link do not detect this failure exactly at the same time, some links may
be announced in only one direction. This is illustrated in the figure below. Router E has
detected the failures of link E-B and flooded a new LSP, but router B has not yet
detected the failure.

:

Figure 5.17 The two-way connectivity check
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When a link is reported in the LSP of only one of the attached routers, routers
consider the link as having failed and they remove it from the directed graph that they
compute from their LSDB. This is called the two-way connectivity check. This check
allows link failures to be flooded quickly as a single LSP is sufficient to announce such
bad news. However, when a link comes up, it can only be used once the two attached
routers have sent their LSPs. The two-way connectivity check also allows for dealing
with router failures. When a router fails, all its links fail by definition. Unfortunately, it
does not, of course, send a new LSP to announce its failure. The two-way connectivity
check ensures that the failed router is removed from the graph.

When a router has failed, its LSP must be removed from the LSDB of all routers 1. This
can be done by using the age field that is included in each LSP. The age field is used to
bound the maximum lifetime of a link state packet in the network. When a router
generates a LSP, it sets its lifetime (usually measured in seconds) in the age field. All
routers regularly decrement the age of the LSPs in their LSDB and a LSP is discarded
once its age reaches 0. Thanks to the age field, the LSP from a failed router does not
remain in the LSDBs forever.

To compute its routing table, each router computes the spanning tree rooted at itself
by using Dijkstra’s shortest path algorithm [Dijkstra1959]. The routing table can be
derived automatically from the spanning as shown in the figure below.

5.2 Internet Protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Internet Protocol (IP) is the network layer protocol of the TCP/IP protocol suite. IP
allows the applications running above the transport layer (UDP/TCP) to use a wide
range of heterogeneous datalink layers. IP was designed when most point-to-point
links were telephone lines with modems. Since then, IP has been able to use Local
Area Networks (Ethernet, Token Ring, FDDI, ...), new wide area data link layer
technologies (X.25, ATM, Frame Relay, ...) and more recently wireless networks (802.11,
802.15, UMTS, GPRS, ...). The flexibility of IP and its ability to use various types of
underlying data link layer technologies is one of its key advantages.

1. It should be noted that link state routing assumes that all routers in the network have enough memory to store the
entire LSDB. The routers that do not have enough memory to store the entire LSDB cannot participate in link state
routing. Some link state routing protocols allow routers to report that they do not have enough memory and must be
removed from the graph by the other routers in the network.
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Figure 5.18 Computation of the routing table

Figure 5.19 IP and the reference model

The current version of IP is version 4 specified in RFC 791 (http://tools.ietf.org/html/rfc
791.html). We first describe this version and later explain IP version 6, which is
expected to replace IP version 4 in the not so distant future.

5.2.1 IP version 4
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

IP version 4 is the data plane protocol of the network layer in the TCP/IP protocol
suite. The design of IP version 4 was based on the following assumptions :

• IP should provide an unreliable connectionless service (TCP provides reliability
when required by the application)

• IP operates with the datagram transmission mode
• IP addresses have a fixed size of 32 bits
• IP must be usable above different types of datalink layers
• IP hosts exchange variable length packets

The addresses are an important part of any network layer protocol. In the late 1970s,
the developers of IPv4 designed IPv4 for a research network that would interconnect
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some research labs and universities. For this utilisation, 32 bits wide addresses were
much larger than the expected number of hosts on the network. Furthermore, 32 bits
was a nice address size for software-based routers. None of the developers of IPv4
were expecting that IPv4 would become as widely used as it is today.

IPv4 addresses are encoded as a 32 bits field. IPv4 addresses are often represented in
dotted-decimal format as a sequence of four integers separated by a dot. The first
integer is the decimal representation of the most significant byte of the 32 bits IPv4
address, ... For example,

• 1.2.3.4 corresponds to 00000001000000100000001100000100
• 127.0.0.1 corresponds to 01111111000000000000000000000001
• 255.255.255.255 corresponds to 11111111111111111111111111111111

An IPv4 address is used to identify an interface on a router or a host. A router has thus
as many IPv4 addresses as the number of interfaces that it has in the datalink layer.
Most hosts have a single datalink layer interface and thus have a single IPv4 address.
However, with the growth of wireless, more and more hosts have several datalink
layer interfaces (e.g. an Ethernet interface and a WiFi interface). These hosts are said
to be multihomed. A multihomed host with two interfaces has thus two IPv4
addresses.

An important point to be defined in a network layer protocol is the allocation of the
network layer addresses. A naive allocation scheme would be to provide an IPv4
address to each host when the host is attached to the Internet on a first come first
served basis. With this solution, a host in Belgium could have address 2.3.4.5 while
another host located in Africa would use address 2.3.4.6. Unfortunately, this would
force all routers to maintain a specific route towards each host. The figure below
shows a simple enterprise network with two routers and three hosts and the
associated routing tables if such isolated addresses were used.

Figure 5.20 Scalability issues when using isolated IP addresses

To preserve the scalability of the routing system, it is important to minimize the
number of routes that are stored on each router. A router cannot store and maintain
one route for each of the almost 1 billion hosts that are connected to today’s Internet.
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Routers should only maintain routes towards blocks of addresses and not towards
individual hosts. For this, hosts are grouped in subnets based on their location in the
network. A typical subnet groups all the hosts that are part of the same enterprise. An
enterprise network is usually composed of several LANs interconnected by routers. A
small block of addresses from the Enterprise’s block is usually assigned to each LAN.
An IPv4 address is composed of two parts : a subnetwork identifier and a host
identifier. The subnetwork identifier is composed of the high order bits of the address
and the host identifier is encoded in the low order bits of the address. This is
illustrated in the figure below.

Figure 5.21 The subnetwork and host identifiers inside an IPv4 address

When a router needs to forward a packet, it must know the subnet of the destination
address to be able to consult its forwarding table to forward the packet. RFC 791 (htt
p://tools.ietf.org/html/rfc791.html) proposed to use the high-order bits of the address
to encode the length of the subnet identifier. This led to the definition of three classes
of unicast addresses 2.

Class
High-
order
bits

Length
of
subnet
id

Number
of
networks

Addresses
per
network

Class
A
Class
B
Class
C

0 10
110

8 bits
16 bits
24 bits

128
16,384
2,097,152

16,777,216
(224) 65,536
(216) 256
(28)

However, these three classes of addresses were not flexible enough. A class A subnet
was too large for most organisations and a class C subnet was too small. Flexibility
was added by the introduction of variable-length subnets in RFC 1519 (http://tools.iet
f.org/html/rfc1519.html). With variable-length subnets, the subnet identifier can be
any size, from 1 to 31 bits. Variable-length subnets allow the network operators to use
a subnet that better matches the number of hosts that are placed inside the subnet. A
subnet identifier or IPv4 prefix is usually 3 represented as A.B.C.D/p where A.B.C.D is
the network address obtained by concatenating the subnet identifier with a host

2. In addition to the A, B and C classes, RFC 791 also defined the D and E classes of IPv4 addresses. Class D (resp. E)
addresses are those whose high order bits are set to 1110 (resp. 1111). Class D addresses are used by IP multicast and
will be explained later. Class E addresses are currently unused, but there are some discussions on possible future
usages [WMH2008] [FLM2008]

3. Another way of representing IP subnets is to use netmasks. A netmask is a 32 bits field whose p high order bits are set to
1 and the low order bits are set to 0. The number of high order bits set 1 indicates the length of the subnet identifier.
Netmasks are usually represented in the same dotted decimal format as IPv4 addresses. For example 10.0.0.0/8 would
be represented as 10.0.0.0 255.0.0.0 while 192.168.1.0/24 would be represented as 192.168.1.0 255.255.255.0. In some
cases, the netmask can be represented in hexadecimal.
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identifier containing only 0 and p is the length of the subnet identifier in bits. The table
below provides examples of IP subnets.

Subnet
Number
of
addresses

Smallest
address

Highest
address

10.0.0.0/8
192.168.0.0/
16
198.18.0.0/
15
192.0.2.0/
24 10.0.0.0/
30 10.0.0.0/
31

16,777,216
65,536
131,072
256 4 2

10.0.0.0
192.168.0.0
198.18.0.0
192.0.2.0
10.0.0.0
10.0.0.0

10.255.255.255
192.168.255.255
198.19.255.255
192.0.2.255
10.0.0.3
10.0.0.1

The figure below provides a simple example of the utilisation of IPv4 subnets in an
enterprise network. The length of the subnet identifier assigned to a LAN usually
depends on the expected number of hosts attached to the LAN. For point-to-point
links, many deployments have used /30 prefixes, but recent routers are now using /31
subnets on point-to-point links RFC 3021 or do not even use IPv4 addresses on such
links 4.

Figure 5.22 IP subnets in a simple enterprise network

A second issue concerning the addresses of the network layer is the allocation scheme
that is used to allocate blocks of addresses to organisations. The first allocation
scheme was based on the different classes of addresses. The pool of IPv4 addresses
was managed by a secretariat who allocated address blocks on a first-come first
served basis. Large organisations such as IBM, BBN, as well as Stanford or the MIT
were able to obtain a class A address block. Most organisations requested a class B
address block containing 65536 addresses, which was suitable for most enterprises

4. A point-to-point link to which no IPv4 address has been allocated is called an unnumbered link. See RFC 1812 section
2.2.7 for a discussion of such unnumbered links.
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and universities. The table below provides examples of some IPv4 address blocks in
the class B space.

Subnet Organisation

130.100.0.0/16 Ericsson, Sweden

130.101.0.0/16 University of Akron, USA

130.102.0.0/16 The University of Queensland, Australia

130.103.0.0/16 Lotus Development, USA

130.104.0.0/16 Universite catholique de Louvain, Belgium

130.105.0.0/16 Open Software Foundation, USA

However, the Internet was a victim of its own success and in the late 1980s, many
organisations were requesting blocks of IPv4 addresses and started connecting to the
Internet. Most of these organisations requested class B address blocks, as class A
address blocks were too large and in limited supply while class C address blocks were
considered to be too small. Unfortunately, there were only 16,384 different class B
address blocks and this address space was being consumed quickly. As a
consequence, the routing tables maintained by the routers were growing quickly and
some routers had difficulties maintaining all these routes in their limited memory 5.

Figure 5.23 Evolution of the size of the routing tables on the Internet (Jul 1988-Dec 1992 -source : RFC

1518)

5. Example routers from this period include the Cisco AGS http://www.knossos.net.nz/don/wn1.html and AGS+
http://www.ciscopress.com/articles/article.asp?p=25296

194



Faced with these two problems, the Internet Engineering Task Force decided to
develop the Classless Interdomain Routing (CIDR) architecture RFC 1518 (http://tools.ie
tf.org/html/rfc789.html.)This architecture aims at allowing IP routing to scale better
than the class-based architecture. CIDR contains three important modifications
compared to RFC 791 (http://tools.ietf.org/html/rfc791.html).

1. IP address classes are deprecated. All IP equipment must use and support
variable-length subnets.

2. IP address blocks are no longer allocated on a first-come-first-served basis.
Instead, CIDR introduces a hierarchical address allocation scheme.

3. IP routers must use longest-prefix match when they lookup a destination address
in their forwarding table

The last two modifications were introduced to improve the scalability of the IP routing
system. The main drawback of the first-come-first-served address block allocation
scheme was that neighbouring address blocks were allocated to very different
organisations and conversely, very different address blocks were allocated to similar
organisations. With CIDR, address blocks are allocated by Regional IP Registries (RIR) in
an aggregatable manner. A RIR is responsible for a large block of addresses and a
region. For example, RIPE (http://www.ripe.net) is the RIR that is responsible for
Europe. A RIR allocates smaller address blocks from its large block to Internet Service
Providers RFC 2050 (http://tools.ietf.org/html/rfc2050.html). Internet Service Providers
then allocate smaller address blocks to their customers. When an organisation
requests an address block, it must prove that it already has or expects to have in the
near future, a number of hosts or customers that is equivalent to the size of the
requested address block.

The main advantage of this hierarchical address block allocation scheme is that it
allows the routers to maintain fewer routes. For example, consider the address blocks
that were allocated to some of the Belgian universities as shown in the table below.

Address
block

Organisation

130.104.0.0/
16

134.58.0.0/16

138.48.0.0/16

139.165.0.0/
16

164.15.0.0/16

Universite catholique de Louvain

Katholiek Universiteit Leuven

Facultes universitaires Notre-Dame de la
Paix

Universite de Liege

Universite Libre de Bruxelles

These universities are all connected to the Internet exclusively via Belnet (http://ww
w.belnet.be/). As each university has been allocated a different address block, the
routers of Belnet (http://www.belnet.be/) must announce one route for each
university and all routers on the Internet must maintain a route towards each
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university. In contrast, consider all the high schools and the government institutions
that are connected to the Internet via Belnet (http://www.belnet.be/). An address block
was assigned to these institutions after the introduction of CIDR in the 193.190.0.0/15
address block owned by Belnet (http://www.belnet.be/). With CIDR, can announce a
single route towards 193.190.0.0/15 that covers all of these high schools.

However, there is one difficulty with the aggregatable variable length subnets used by
CIDR. Consider for example FEDICT (http://www.fedict.be/), a government institution
that uses the 193.191.244.0/23 address block. Assume that in addition to being
connected to the Internet via Belnet (http://www.belnet.be/) , FEDICT (http://www.fedic
t.be/) also wants to be connected to another Internet Service Provider. The FEDICT
network is then said to be multihomed. This is shown in the figure below.

Figure 5.24 Multihoming and CIDR

With such a multihomed network, routers R1 and R2 would have two routes towards
IPv4 address 193.191.245.88 : one route via Belnet (193.190.0.0/15) and one direct
route (193.191.244.0/23). Both routes match IPv4 address 193.192.145.88. Since RFC 15
19 (http://tools.ietf.org/html/rfc1519.html) when a router knows several routes
towards the same destination address, it must forward packets along the route having
the longest prefix length. In the case of 193.191.245.88, this is the route 193.191.244.0/
23 that is used to forward the packet. This forwarding rule is called the longest prefix
match or the more specific match. All IPv4 routers implement this forwarding rule.

To understand the longest prefix match forwarding, consider the figure below. With
this rule, the route 0.0.0.0/0 plays a particular role. As this route has a prefix length of
0 bits, it matches all destination addresses. This route is often called the default route.

• a packet with destination 192.168.1.1 received by router R is destined to the
router itself. It is delivered to the appropriate transport protocol.

• a packet with destination 11.2.3.4 matches two routes : 11.0.0.0/8 and 0.0.0.0/0.
The packet is forwarded on the West interface.
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• a packet with destination 130.4.3.4 matches one route : 0.0.0.0/0. The packet is
forwarded on the North interface.

• a packet with destination 4.4.5.6 matches two routes : 4.0.0.0/8 and 0.0.0.0/0. The
packet is forwarded on the West interface.

• a packet with destination 4.10.11.254 matches three routes : 4.0.0.0/8, 4.10.11.0/
24 and ‘0.0.0.0/0. The packet is forwarded on the South interface.

Figure 5.25 Longest prefix match example

The longest prefix match can be implemented by using different data structures. One
possibility is to use a trie. The figure below shows a trie that encodes six routes having
different outgoing interfaces.

Figure 5.26 A trie representing a routing table
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Note: Special IPv4 addresses
Most unicast IPv4 addresses can appear as source and destination addresses in
packets on the global Internet. However, it is worth noting that some blocks of
IPv4 addresses have a special usage, as described in RFC 5735 (http://tools.iet
f.org/html/rfc5735.html). These include :

• 0.0.0.0/8, which is reserved for self-identification. A common address in
this block is 0.0.0.0, which is sometimes used when a host boots and does
not yet know its IPv4 address.

• 127.0.0.0/8, which is reserved for loopback addresses. Each host
implementing IPv4 must have a loopback interface (that is not attached to
a datalink layer). By convention, IPv4 address 127.0.0.1 is assigned to this
interface. This allows processes running on a host to use TCP/IP to contact
other processes running on the same host. This can be very useful for
testing purposes.

• 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16 are reserved for private
networks that are not directly attached to the Internet. These addresses
are often called private addresses or RFC 1918 (http://tools.ietf.org/html/rf
c1918.html) addresses.

• 169.254.0.0/16 is used for link-local addresses RFC 3927 (http://tools.ietf.o
rg/html/rfc3927.html). Some hosts use an address in this block when they
are connected to a network that does not allocate addresses as expected.

IPv4 packets

Now that we have clarified the allocation of IPv4 addresses and the utilisation of the
longest prefix match to forward IPv4 packets, we can have a more detailed look at IPv4
by starting with the format of the IPv4 packets. The IPv4 packet format was defined in
RFC 791 (http://tools.ietf.org/html/rfc791.html). Apart from a few clarifications and
some backward compatible changes, the IPv4 packet format did not change
significantly since the publication of RFC 791. All IPv4 packets use the 20 bytes header
shown below. Some IPv4 packets contain an optional header extension that is
described later.

Figure 5.27 The IP version 4 header

The main fields of the IPv4 header are :
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• a 4 bits version that indicates the version of IP used to build the header. Using a
version field in the header allows the network layer protocol to evolve.

• a 4 bits IP Header Length (IHL) that indicates the length of the IP header in 32 bits
words. This field allows IPv4 to use options if required, but as it is encoded as a 4
bits field, the IPv4 header cannot be longer than 64 bytes.

• an 8 bits DS field that is used for Quality of Service and whose usage is described
later.

• an 8 bits Protocol field that indicates the transport layer protocol that must
process the packet’s payload at the destination. Common values for this field are 6

for TCP and 17 for UDP
• a 16 bits length field that indicates the total length of the entire IPv4 packet

(header and payload) in bytes. This implies that an IPv4 packet cannot be longer
than 65535 bytes.

• a 32 bits source address field that contains the IPv4 address of the source host
• a 32 bits destination address field that contains the IPv4 address of the destination

host
• a 16 bits checksum that protects only the IPv4 header against transmission errors

The other fields of the IPv4 header are used for specific purposes. The first is the 8 bits
Time To Live (TTL) field. This field is used by IPv4 to avoid the risk of having an IPv4
packet caught in an infinite loop due to a transient or permanent error in routing
tables 7. Consider for example the situation depicted in the figure below where
destination D uses address 11.0.0.56. If S sends a packet towards this destination, the
packet is forwarded to router B which forwards it to router C that forwards it back to
router A, etc.

Figure 5.28 Forwarding loops in an IP network

Unfortunately, such loops can occur for two reasons in IP networks. First, if the
network uses static routing, the loop can be caused by a simple configuration error.
Second, if the network uses dynamic routing, such a loop can occur transiently, for
example during the convergence of the routing protocol after a link or router failure.
The TTL field of the IPv4 header ensures that even if there are forwarding loops in the
network, packets will not loop forever. Hosts send their IPv4 packets with a positive

6. See http://www.iana.org/assignments/protocol-numbers/ for the list of all assigned Protocol numbers
7. The initial IP specification in RFC 791 suggested that routers would decrement the TTL at least once every second. This

would ensure that a packet would never remain for more than TTL seconds in the network. However, in practice most
router implementations simply chose to decrement the TTL by one.
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TTL (usually 64 or more 8). When a router receives an IPv4 packet, it first decrements
the TTL by one. If the TTL becomes 0, the packet is discarded and a message is sent
back to the packet’s source (see section ICMP). Otherwise, the router performs a
lookup in its forwarding table to forward the packet.

A second problem for IPv4 is the heterogeneity of the datalink layer. IPv4 is used
above many very different datalink layers. Each datalink layer has its own
characteristics and as indicated earlier, each datalink layer is characterised by a
maximum frame size. From IP’s point of view, a datalink layer interface is
characterised by its Maximum Transmission Unit (MTU). The MTU of an interface is the
largest IPv4 packet (including header) that it can send. The table below provides some
common MTU sizes 9.

Datalink layer MTU

Ethernet 1500 bytes

WiFi 2272 bytes

ATM (AAL5) 9180 bytes

802.15.4 102 or 81 bytes

Token Ring 4464 bytes

FDDI 4352 bytes

Although IPv4 can send 64 KBytes long packets, few datalink layer technologies that
are used today are able to send a 64 KBytes IPv4 packet inside a frame. Furthermore,
as illustrated in the figure below, another problem is that a host may send a packet
that would be too large for one of the datalink layers used by the intermediate
routers.

Figure 5.29 The need for fragmentation and reassembly

8. The initial TTL value used to send IP packets vary from one implementation to another. Most current IP implementations
use an initial TTL of 64 or more. See http://members.cox.net/~ndav1/self_published/TTL_values.html for additional
information.

9. Supporting IP over the 802.15.4 datalink layer technology requires special mechanisms. See RFC 4944 for a discussion of
the special problems posed by 802.15.4
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To solve these problems, IPv4 includes a packet fragmentation and reassembly
mechanism. Both hosts and intermediate routers may fragment an IPv4 packet if the
packet is too long to be sent via the datalink layer. In IPv4, fragmentation is completely
performed in the IP layer and a large IPv4 is fragmented into two or more IPv4 packets
(called fragments). The IPv4 fragments of a large packet are normal IPv4 packets that
are forwarded towards the destination of the large packet by intermediate routers.

The IPv4 fragmentation mechanism relies on four fields of the IPv4 header : Length,
Identification, the flags and the Fragment Offset. The IPv4 header contains two flags :
More fragments and Don’t Fragment (DF). When the DF flag is set, this indicates that
the packet cannot be fragmented.

The basic operation of the IPv4 fragmentation is as follows. A large packet is
fragmented into two or more fragments. The size of all fragments, except the last one,
is equal to the Maximum Transmission Unit of the link used to forward the packet.
Each IPv4 packet contains a 16 bits Identification field. When a packet is fragmented,
the Identification of the large packet is copied in all fragments to allow the destination
to reassemble the received fragments together. In each fragment, the Fragment Offset
indicates, in units of 8 bytes, the position of the payload of the fragment in the
payload of the original packet. The Length field in each fragment indicates the length
of the payload of the fragment as in a normal IPv4 packet. Finally, the More fragments
flag is set only in the last fragment of a large packet.

The following pseudo-code details the IPv4 fragmentation, assuming that the packet
does not contain options.

#mtu : maximum size of the packet (including header) of outgoing link

if p.len < mtu :

send(p)

# packet is too large

maxpayload=8*int((mtu-20)/8) # must be n times 8 bytes

if p.flags==’DF’ :

discard(p)

# packet must be fragmented

payload=p[IP].payload

pos=0

while len(payload) > 0 :

if len(payload) > maxpayload :

toSend=IP(dest=p.dest,src=p.src,

ttl=p.ttl, id=p.id,

frag=p.frag+(pos/8),

len=mtu, proto=p.proto)/payload[0:maxpayload]

pos=pos+maxpayload

payload=payload[maxpayload+1:]

else

toSend=IP(dest=p.dest,src=p.src,
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ttl=p.ttl, id=p.id,

frag=p.frag+(pos/8),

flags=p.flags,

len=len(payload), proto=p.proto)/payload

forward(toSend)

The fragments of an IPv4 packet may arrive at the destination in any order, as each
fragment is forwarded independently in the network and may follow different paths.
Furthermore, some fragments may be lost and never reach the destination.

The reassembly algorithm used by the destination host is roughly as follows. First, the
destination can verify whether a received IPv4 packet is a fragment or not by checking
the value of the More fragments flag and the Fragment Offset. If the Fragment Offset is
set to 0 and the More fragments flag is reset, the received packet has not been
fragmented. Otherwise, the packet has been fragmented and must be reassembled.
The reassembly algorithm relies on the Identification field of the received fragments to
associate a fragment with the corresponding packet being reassembled. Furthermore,
the Fragment Offset field indicates the position of the fragment payload in the original
unfragmented packet. Finally, the packet with the More fragments flag reset allows
the destination to determine the total length of the original unfragmented packet.

Note that the reassembly algorithm must deal with the unreliability of the IP network.
This implies that a fragment may be duplicated or a fragment may never reach the
destination. The destination can easily detect fragment duplication thanks to the
Fragment Offset. To deal with fragment losses, the reassembly algorithm must bound
the time during which the fragments of a packet are stored in its buffer while the
packet is being reassembled. This can be implemented by starting a timer when the
first fragment of a packet is received. If the packet has not been reassembled upon
expiration of the timer, all fragments are discarded and the packet is considered to be
lost.

The original IP specification, in RFC 791 (http://tools.ietf.org/html/rfc791.html), defined
several types of options that can be added to the IP header. Each option is encoded
using a type length value format. They are not widely used today and are thus only
briefly described. Additional details may be found in RFC 791.

The most interesting options in IPv4 are the three options that are related to routing.
The Record route option was defined to allow network managers to determine the
path followed by a packet. When the Record route option was present, routers on the
packet’s path had to insert their IP address in the option. This option was
implemented, but as the optional part of the IPv4 header can only contain 44 bytes, it
is impossible to discover an entire path on the global Internet. traceroute(8), despite
its limitations, is a better solution to record the path towards a destination.

The other routing options are the Strict source route and the Loose source route
option. The main idea behind these options is that a host may want, for any reason, to
specify the path to be followed by the packets that it sends. The Strict source route
option allows a host to indicate inside each packet the exact path to be followed. The
Strict source route option contains a list of IPv4 address and a pointer to indicate the
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next address in the list. When a router receives a packet containing this option, it does
not lookup the destination address in its routing table but forwards the packet directly
to the next router in the list and advances the pointer. This is illustrated in the figure
below where S forces its packets to follow the RA-RB-RD path.

Figure 5.30 Usage of the Strict source route option

The maximum length of the optional part of the IPv4 header is a severe limitation for
the Strict source route option as for the Record Route option. The Loose source route
option does not suffer from this limitation. This option allows the sending host to
indicate inside its packet some of the routers that must be traversed to reach the
destination. This is shown in the figure below. S sends a packet containing a list of
addresses and a pointer to the next router in the list. Initially, this pointer points to RB.
When RA receives the packet sent by S, it looks up in its forwarding table the address
pointed in the Loose source route option and not the destination address. The packet
is then forwarded to router RB that recognises its address in the option and advances
the pointer. As there is no address listed in the Loose source route option anymore, RB
and other downstream routers forward the packet by performing a lookup for the
destination address.

Figure 5.31 Usage of the Loose source route option These two options are usually ignored by routers

because they cause security problems RFC 6274

5.2.2 ICMP version 4
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

It is sometimes necessary for intermediate routers or the destination host to inform
the sender of the packet of a problem that occurred while processing a packet. In the
TCP/IP protocol suite, this reporting is done by the Internet Control Message Protocol
(ICMP). ICMP is defined in RFC 792 (http://tools.ietf.org/html/rfc792.html). ICMP
messages are carried as the payload of IP packets (the protocol value reserved for
ICMP is 1). An ICMP message is composed of an 8 byte header and a variable length
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payload that usually contains the first bytes of the packet that triggered the
transmission of the ICMP message.

Figure 5.32 ICMP version 4 ( RFC 792)

In the ICMP header, the Type and Code fields indicate the type of problem that was
detected by the sender of the ICMP message. The Checksum protects the entire ICMP
message against transmission errors and the Data field contains additional
information for some ICMP messages.

The main types of ICMP messages are :

• Destination unreachable :a Destination unreachable ICMP message is sent when a
packet cannot be delivered to its destination due to routing problems. Different
types of unreachability are distinguished :
◦ Network unreachable : this ICMP message is sent by a router that does not

have a route for the subnet containing the destination address of the packet
◦ Host unreachable : this ICMP message is sent by a router that is attached to

the subnet that contains the destination address of the packet, but this
destination address cannot be reached at this time

◦ Protocol unreachable : this ICMP message is sent by a destination host that
has received a packet, but does not support the transport protocol indicated
in the packet’s Protocol field

◦ Port unreachable : this ICMP message is sent by a destination host that has
received a packet destined to a port number, but no server process is bound
to this port

1. Fragmentation needed : this ICMP message is sent by a router that receives a
packet with the Don’t Fragment flag set that is larger than the MTU of the
outgoing interface

2. Redirect : this ICMP message can be sent when there are two routers on the same
LAN. Consider a LAN with one host and two routers : R1 and R2. Assume that R1
is also connected to subnet 130.104.0.0/16 while R2 is connected to subnet
138.48.0.0/16. If a host on the LAN sends a packet towards 130.104.1.1 to R2, R2
needs to forward the packet again on the LAN to reach R1. This is not optimal as
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the packet is sent twice on the same LAN. In this case, R2 could send an ICMP
Redirect message to the host to inform it that it should have sent the packet
directly to R1. This allows the host to send the other packets to 130.104.1.1
directly via R1.

3. Parameter problem : this ICMP message is sent when a router or a host receives
an IP packet containing an error (e.g. an invalid option)

Figure 5.33 ICMP redirect

1. Source quench : a router was supposed to send this message when it had to
discard packets due to congestion. However, sending ICMP messages in case of
congestion was not the best way to reduce congestion and since the inclusion of
a congestion control scheme in TCP, this ICMP message has been deprecated.

• Time Exceeded : there are two types of Time Exceeded ICMP messages
◦ TTL exceeded :a TTL exceeded message is sent by a router when it discards an

IPv4 packet because its TTL reached 0.
◦ Reassembly time exceeded : this ICMP message is sent when a destination has

been unable to reassemble all the fragments of a packet before the
expiration of its reassembly timer.

• Echo request and Echo reply : these ICMP messages are used by the ping(8)
network debugging software.

Note: Redirection attacks
ICMP redirect messages are useful when several routers are attached to the
same LAN as hosts. However, they should be used with care as they also create
an important security risk. One of the most annoying attacks in an IP network
is called the man in the middle attack. Such an attack occurs if an attacker is able
to receive, process, possibly modify and forward all the packets exchanged
between a source and a destination. As the attacker receives all the packets it
can easily collect passwords or credit card numbers or even inject fake
information in an established TCP connection. ICMP redirects unfortunately
enable an attacker to easily perform such an attack. In the figure above,
consider host H that is attached to the same LAN as A and R1. If H sends to A
an ICMP redirect for prefix 138.48.0.0/16, A forwards to H all the packets that it
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wants to send to this prefix. H can then forward them to R2. To avoid these
attacks, hosts should ignore the ICMP redirect messages that they receive.

ping(8) is often used by network operators to verify that a given IP address is
reachable. Each host is supposed 10 to reply with an ICMP Echo reply message when its
receives an ICMP Echo request message. A sample usage of ping(8) is shown below.

ping 130.104.1.1

PING 130.104.1.1 (130.104.1.1): 56 data bytes

64 bytes from 130.104.1.1: icmp_seq=0 ttl=243 time=19.961 ms

64 bytes from 130.104.1.1: icmp_seq=1 ttl=243 time=22.072 ms

64 bytes from 130.104.1.1: icmp_seq=2 ttl=243 time=23.064 ms

64 bytes from 130.104.1.1: icmp_seq=3 ttl=243 time=20.026 ms

64 bytes from 130.104.1.1: icmp_seq=4 ttl=243 time=25.099 ms

---130.104.1.1 ping statistics --5 packets transmitted,

5 packets received, 0% packet loss

round-trip min/avg/max/stddev = 19.961/22.044/25.099/1.938 ms

Another very useful debugging tool is traceroute(8). The traceroute man page
describes this tool as “print the route packets take to network host”. traceroute uses the
TTL exceeded ICMP messages to discover the intermediate routers on the path
towards a destination. The principle behind traceroute is very simple. When a router
receives an IP packet whose TTL is set to 1 it decrements the TTL and is forced to
return to the sending host a TTL exceeded ICMP message containing the header and
the first bytes of the discarded IP packet. To discover all routers on a network path, a
simple solution is to first send a packet whose TTL is set to 1, then a packet whose TTL
is set to 2, etc. A sample traceroute output is shown below.

traceroute www.ietf.org

traceroute to www.ietf.org (64.170.98.32), 64 hops max, 40 byte

packets

1 CsHalles3.sri.ucl.ac.be (192.168.251.230) 5.376 ms 1.217 ms 1.137

ms

2 CtHalles.sri.ucl.ac.be (192.168.251.229) 1.444 ms 1.669 ms 1.301

ms

3 CtPythagore.sri.ucl.ac.be (130.104.254.230) 1.950 ms 4.688 ms

1.319 ms

4 fe.m20.access.lln.belnet.net (193.191.11.9) 1.578 ms 1.272 ms

1.259 ms

5 10ge.cr2.brueve.belnet.net (193.191.16.22) 5.461 ms 4.241 ms

4.162 ms

6 212.3.237.13 (212.3.237.13) 5.347 ms 4.544 ms 4.285 ms

10. Until a few years ago, all hosts replied to Echo request ICMP messages. However, due to the security problems that have
affected TCP/IP implementations, many of these implementations can now be configured to disable answering Echo
request ICMP messages.
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7 ae-11-11.car1.Brussels1.Level3.net (4.69.136.249) 5.195 ms 4.304

ms 4.329 ms

8 ae-6-6.ebr1.London1.Level3.net (4.69.136.246) 8.892 ms 8.980 ms

8.830 ms

9 ae-100-100.ebr2.London1.Level3.net (4.69.141.166) 8.925 ms 8.950

ms 9.006 ms

10 ae-41-41.ebr1.NewYork1.Level3.net (4.69.137.66) 79.590 ms

ae-43-43.ebr1.NewYork1.Level3.net (4.69.137.74) 78.140 ms

ae-42-42.ebr1.NewYork1.Level3.net (4.69.137.70) 77.663 ms

11 ae-2-2.ebr1.Newark1.Level3.net (4.69.132.98) 78.290 ms 83.765 ms

90.006 ms

12 ae-14-51.car4.Newark1.Level3.net (4.68.99.8) 78.309 ms 78.257 ms

79.709 ms

13 ex1-tg2-0.eqnwnj.sbcglobal.net (151.164.89.249) 78.460 ms 78.452

ms 78.292 ms

14 151.164.95.190 (151.164.95.190) 157.198 ms 160.767 ms 159.898 ms

15 ded-p10-0.pltn13.sbcglobal.net (151.164.191.243) 161.872 ms

156.996 ms 159.425 ms

16 AMS-1152322.cust-rtr.swbell.net (75.61.192.10) 158.735 ms

158.485 ms 158.588

ms

17 mail.ietf.org (64.170.98.32) 158.427 ms 158.502 ms 158.567 ms

The above traceroute(8) output shows a 17 hops path between a host at UCLouvain
and one of the main IETF servers. For each hop, traceroute provides the IPv4 address
of the router that sent the ICMP message and the measured round-trip-time between
the source and this router. traceroute sends three probes with each TTL value. In
some cases, such as at the 10th hop above, the ICMP messages may be received from
different addresses. This is usually because different packets from the same source
have followed different paths 11 in the network.

Another important utilisation of ICMP messages is to discover the maximum MTU that
can be used to reach a destination without fragmentation. As explained earlier, when
an IPv4 router receives a packet that is larger than the MTU of the outgoing link, it
must fragment the packet. Unfortunately, fragmentation is a complex operation and
routers cannot perform it at line rate [KM1995]. Furthermore, when a TCP segment is
transported in an IP packet that is fragmented in the network, the loss of a single
fragment forces TCP to retransmit the entire segment (and thus all the fragments). If
TCP was able to send only packets that do not require fragmentation in the network, it
could retransmit only the information that was lost in the network. In addition, IP
reassembly causes several challenges at high speed as discussed in RFC 4963 (http://t
ools.ietf.org/html/rfc4963.html). Using IP fragmentation to allow UDP applications to
exchange large messages raises several security issues [KPS2003].

11. A detailed analysis of traceroute output is outside the scope of this document. Additional information may be found in
[ACO+2006] and [DT2007]
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ICMP, combined with the Don’t fragment (DF) IPv4 flag, is used by TCP implementations
to discover the largest MTU size that is allowed to reach a destination host without
causing network fragmentation. This is the Path MTU discovery mechanism defined in
RFC 1191 (http://tools.ietf.org/html/rfc1191.html). A TCP implementation that includes
Path MTU discovery (most do) requests the IPv4 layer to send all segments inside IPv4
packets having the DF flag set. This prohibits intermediate routers from fragmenting
these packets. If a router needs to forward an unfragmentable packet over a link with
a smaller MTU, it returns a Fragmentation needed ICMP message to the source,
indicating the MTU of its outgoing link. This ICMP message contains in the MTU of the
router’s outgoing link in its Data field. Upon reception of this ICMP message, the
source TCP implementation adjusts its Maximum Segment Size (MSS) so that the
packets containing the segments that it sends can be forwarded by this router without
requiring fragmentation.

Interactions between IPc4 and the datalink layer

As mentioned in the first section of this chapter, there are three main types of datalink
layers : point-to-point links, LANs supporting broadcast and multicast and NBMA
networks. There are two important issues to be addressed when using IPv4 in these
types of networks. The first issue is how an IPv4 device obtains its IPv4 address. The
second issue is how IPv4 packets are exchanged over the datalink layer service.

On a point-to-point link, the IPv4 addresses of the communicating devices can be
configured manually or by using a simple protocol. IPv4 addresses are often
configured manually on point-to-point links between routers. When point-to-point links
are used to attach hosts to the network, automatic configuration is often preferred in
order to avoid problems with incorrect IPv4 addresses. For example, the PPP, specified
in RFC 1661 (http://tools.ietf.org/html/rfc1661.html), includes an IP network control
protocol that can be used by the router in the figure below to send the IPv4 address
that the attached host must configure for its interface. The transmission of IPv4
packets on a point-to-point link will be discussed in chapter chap:lan.

Figure 5.34 IPv4 on point-to-point links
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Using IPv4 in a LAN introduces an additional problem. On a LAN, each device is
identified by its unique datalink layer address. The datalink layer service can be used
by any host attached to the LAN to send a frame to any other host attached to the
same LAN. For this, the sending host must know the datalink layer address of the
destination host. For example, the figure below shows four hosts attached to the
same LAN configured with IPv4 addresses in the 10.0.1.0/24 subnet and datalink layer
addresses represented as a single character 12. In this network, if host 10.0.1.22/24
wants to send an IPv4 packet to the host having address 10.0.1.8, it must know that
the datalink layer address of this host is C.

Figure 5.35 A simple LAN

In a simple network such as the one shown above, it could be possible to manually
configure the mapping between the IPv4 addresses of the hosts and the
corresponding datalink layer addresses. However, in a larger LAN this is impossible.
To ease the utilisation of LANs, IPv4 hosts must be able to automatically obtain the
datalink layer address corresponding to any IPv4 address on the same LAN. This is the
objective of the Address Resolution Protocol (ARP) defined in RFC 826 (http://tools.ietf.or
g/html/rfc826.html). ARP is a datalink layer protocol that is used by IPv4. It relies on
the ability of the datalink layer service to easily deliver a broadcast frame to all devices
attached to the same LAN.

The easiest way to understand the operation of ARP is to consider the simple network
shown above and assume that host 10.0.1.22/24 needs to send an IPv4 packet to host
10.0.1.8. As this IP address belongs to the same subnet, the packet must be sent
directly to its destination via the datalink layer service. To use this service, the sending
host must find the datalink layer address that is attached to host 10.0.1.8. Each IPv4
host maintains an ARP cache containing the list of all mappings between IPv4
addresses and datalink layer addresses that it knows. When an IPv4 hosts boots, its
ARP cache is empty. 10.0.1.22 thus first consults its ARP cache. As the cache does not
contain the requested mapping, host 10.0.1.22 sends a broadcast ARP query frame on
the LAN. The frame contains the datalink layer address of the sending host (A) and the
requested IPv4 address (10.0.1.8). This broadcast frame is received by all devices on
the LAN and only the host that owns the requested IPv4 address replies by returning a
unicast ARP reply frame with the requested mapping. Upon reception of this reply, the
sending host updates its ARP cache and sends the IPv4 packet by using the datalink
layer service. To deal with devices that move or whose addresses are reconfigured,
most ARP implementations remove the cache entries that have not been used for a
few minutes. Some implementations re-validate ARP cache entries from time to time
by sending ARP queries .

12. In practice, most local area networks use addresses encoded as a 48 bits field [802]_ . Some recent local area network
technologies use 64 bits addresses.
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Note: Security issues with the Address Resolution Protocol
ARP is an old and widely used protocol that was unfortunately designed when
security issues were not a concern. ARP is almost insecure by design. Hosts
using ARP can be subject to several types of attack. First, a malicious host could
create a denial of service attack on a LAN by sending random replies to the
received ARP queries. This would pollute the ARP cache of the other hosts on
the same LAN. On a fixed network, such attacks can be detected by the system
administrator who can physically remove the malicious hosts from the LAN.
On a wireless network, removing a malicious host is much more difficult.

A second type of attack are the man-in-the-middle attacks. This name is used
for network attacks where the attacker is able to read and possibly modify all
the messages sent by the attacked devices. Such an attack is possible in a LAN.
Assume, in the figure above, that host 10.0.1.9 is malicious and would like to
receive and modify all the packets sent by host 10.0.1.22 to host 10.0.1.8. This
can be achieved easily if host 10.0.1.9 manages, by sending fake ARP replies, to
convince host 10.0.1.22 (resp. 10.0.1.8) that its own datalink layer address must
be used to reach 10.0.1.8 (resp. 10.0.1.22).

ARP is used by all devices that are connected to a LAN and implement IPv4. Both
routers and endhosts implement ARP. When a host needs to send an IPv4 packet to a
destination outside of its local subnet, it must first send the packet to one of the
routers that reside on this subnet. Consider for example the network shown in the
figure below. Each host is configured with an IPv4 address in the 10.0.1.0/24 subnet
and uses 10.0.1.1 as its default router. To send a packet to address 1.2.3.4, host
10.0.1.8 will first need to know the datalink layer of the default router. It will thus send
an ARP request for 10.0.1.1. Upon reception of the ARP reply, host 10.0.1.8 updates its
ARP table and sends its packet in a frame to its default router. The router will then
forward the packet towards its final destination.

Figure 5.36 A simple LAN with a router

In the early days of the Internet, IP addresses were manually configured on both hosts
and routers and almost never changed. However, this manual configuration can be
complex and often causes errors that are sometimes difficult to debug. Recent TCP/IP
implementations are able to detect some of these misconfigurations. For example, if
two hosts are attached to the same subnet with the same IPv4 address they will be
unable to communicate. To detect this problem hosts send an ARP request for their
configured address each time their addressed is changed RFC 5227 (http://tools.ietf.or
g/html/rfc5227.html). If they receive an answer to this ARP request, they trigger an
alarm or inform the system administrator.
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To ease the attachment of hosts to subnets, most networks now support the Dynamic
Host Configuration Protocol (DHCP) RFC 2131 (http://tools.ietf.org/html/rfc2131.html).
DHCP allows a host to automatically retrieve its assigned IPv4 address. A DHCP server
is associated to each subnet. Each DHCP server manages a pool of IPv4 addresses
assigned to the subnet 13. When a host is first attached to the subnet, it sends a DHCP
request message in a UDP segment (the DHCP server listens on port 67). As the host
knows neither its IPv4 address nor the IPv4 address of the DHCP server, this UDP
segment is sent inside an IPv4 packet whose source and destination addresses are
respectively 0.0.0.0 and 255.255.255.255. The DHCP request may contain various
options such as the name of the host, its datalink layer address, etc. The server
captures the DHCP request and selects an unassigned address in its address pool. It
then sends the assigned IPv4 address in a DHCP reply message which contains the
datalink layer address of the host and additional information such as the subnet mask
of the IPv4 address, the address of the default router or the address of the DNS
resolver. This DHCP reply message is sent in an IPv4 packet whose source and
destination addresses are respectively the IPv4 address of the DHCP server and the
255.255.255.255 broadcast address. The DHCP reply also specifies the lifetime of the
address allocation. This forces the host to renew its address allocation once it expires.
Thanks to the limited lease time, IP addresses are automatically returned to the pool
of addresses hosts are powered off. This reduces the waste of IPv4 addresses.

In an NBMA network, the interactions between IPv4 and the datalink layer are more
complex as the ARP protocol cannot be used as in a LAN. Such NBMA networks use
special servers that store the mappings between IP addresses and the corresponding
datalink layer address. Asynchronous Transfer Mode (ATM) networks for example can
use either the ATMARP protocol defined in RFC 2225 (http://tools.ietf.org/html/rfc222
5.html) or the NextHop Resolution Protocol (NHRP) defined in RFC 2332 (http://tools.ie
tf.org/html/rfc2332.html). ATM networks are less frequently used today and we will
not describe the detailed operation of these servers.

Operation of IPv4 devices

At this point of the description of IPv4, it is useful to have a detailed look at how an
IPv4 implementation sends, receives and forwards IPv4 packets. The simplest case is
when a host needs to send a segment in an IPv4 packet. The host performs two
operations. First, it must decide on which interface the packet will be sent. Second it
must create the corresponding IP packet(s).

To simplify the discussion in this section, we ignore the utilisation of IPv4 options. This
is not a severe limitation as today IPv4 packets rarely contain options. Details about
the processing of the IPv4 options may be found in the relevant RFCs, such as RFC 791
(http://tools.ietf.org/html/rfc791.html). Furthermore, we also assume that only point-
to-point links are used. We defer the explanation of the operation of IPv4 over Local
Area Networks until the next chapter.

An IPv4 host having n datalink layer interfaces manages n +1 IPv4 addresses :

• the 127.0.0.1/32 IPv4 address assigned by convention to its loopback address
• one A.B.C.D/p IPv4 address assigned to each of its n datalink layer interfaces

13. In practice, there is usually one DHCP server per group of subnets and the routers capture on each subnet the DHCP
messages and forward them to the DHCP server.
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Such a host maintains a routing table containing one entry for its loopback address
and one entry for each subnet identifier assigned to its interfaces. Furthermore, the
host usually uses one of its interfaces as the default interface when sending packets
that are not addressed to a directly connected destination. This is represented by the
default route : 0.0.0.0/0 that is associated to one interface.

When a transport protocol running on the host requests the transmission of a
segment, it usually provides the IPv4 destination address to the IPv4 layer in addition
to the segment 14. The IPv4 implementation first performs a longest prefix match with
the destination address in its routing table. The lookup returns the identification of
the interface that must be used to send the packet. The host can then create the IPv4
packet containing the segment. The source IPv4 address of the packet is the IPv4
address of the host on the interface returned by the longest prefix match. The
Protocol field of the packet is set to the identification of the local transport protocol
which created the segment. The TTL field of the packet is set to the default TTL used
by the host. The host must now choose the packet’s Identification. This Identification is
important if the packet becomes fragmented in the network, as it ensures that the
destination is able to reassemble the received fragments. Ideally, a sending host
should never send a packet twice with the same Identification to the same destination
host, in order to ensure that all fragments are correctly reassembled by the
destination. Unfortunately, with a 16 bits Identification field and an expected MSL of 2
minutes, this implies that the maximum bandwidth to a given destination is limited to
roughly 286 Mbps. With a more realistic 1500 bytes MTU, that bandwidth drops to 6.4
Mbps RFC 4963 if fragmentation must be possible 15. This is very low and is another
reason why hosts are highly encouraged to avoid fragmentation. If; despite all of this,
the MTU of the outgoing interface is smaller than the packet’s length, the packet is
fragmented. Finally, the packet’s checksum is computed before transmission.

When a host receives an IPv4 packet destined to itself, there are several operations
that it must perform. First, it must check the packet’s checksum. If the checksum is
incorrect, the packet is discarded. Then, it must check whether the packet has been
fragmented. If yes, the packet is passed to the reassembly algorithm described earlier.
Otherwise, the packet must be passed to the upper layer. This is done by looking at
the Protocol field (6 for TCP, 17 for UDP). If the host does not implement the transport
layer protocol corresponding to the received Protocol field, it sends a Protocol
unreachable ICMP message to the sending host. If the received packet contains an
ICMP message (Protocol field set to 1), the processing is more complex. An Echo-
request ICMP message triggers the transmission of an ICMP Echo-reply message. The
other types of ICMP messages indicate an error that was caused by a previously
transmitted packet. These ICMP messages are usually forwarded to the transport
protocol that sent the erroneous packet. This can be done by inspecting the contents
of the ICMP message that includes the header and the first 64 bits of the erroneous
packet. If the IP packet did not contain options, which is the case for most IPv4
packets, the transport protocol can find in the first 32 bits of the transport header the

14. A transport protocol implementation can also specify whether the packet must be sent with the DF set or set. A TCP
implementation using Path MTU Discovery would always request the transmission of IPv4 packets with the DF flag set.

15. It should be noted that only the packets that can be fragmented (i.e. whose DF flag is reset) must have different
Identification fields. The Identification field is not used in the packets having the DF flag set.
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source and destination ports to determine the affected transport flow. This is
important for Path MTU discovery for example.

When a router receives an IPv4 packet, it must first check the packet’s checksum. If the
checksum is invalid, it is discarded. Otherwise, the router must check whether the
destination address is one of the IPv4 addresses assigned to the router. If so, the
router must behave as a host and process the packet as described above. Although
routers mainly forward IPv4 packets, they sometimes need to be accessed as hosts by
network operators or network management software.

If the packet is not addressed to the router, it must be forwarded on an outgoing
interface according to the router’s routing table. The router first decrements the
packet’s TTL. If the TTL reaches 0,a TTL Exceeded ICMP message is sent back to the
source. As the packet header has been modified, the checksum must be recomputed.
Fortunately, as IPv4 uses an arithmetic checksum, a router can incrementally update
the packet’s checksum as described in RFC 1624 (http://tools.ietf.org/html/rfc1624.htm
l). Then, the router performs a longest prefix match for the packet’s destination
address in its forwarding table. If no match is found, the router must return a
Destination unreachable ICMP message to the source. Otherwise, the lookup returns
the interface over which the packet must be forwarded. Before forwarding the packet
over this interface, the router must first compare the length of the packet with the
MTU of the outgoing interface. If the packet is smaller than the MTU, it is forwarded.
Otherwise, a Fragmentation needed ICMP message is sent if the DF flag was sent or the
packet is fragmented if the DF was not set.

Note: Longest prefix match in IP routers
Performing the longest prefix match at line rate on routers requires highly
tuned data structures and algorithms. Consider for example an
implementation of the longest match based on a Radix tree on a router with a
10 Gbps link. On such a link, a router can receive 31,250,000 40 bytes IPv4
packets every second. To forward the packets at line rate, the router must
process one IPv4 packet every 32 nanoseconds. This cannot be achieved by a
software implementation. For a hardware implementation, the main difficulty
lies in the number of memory accesses that are necessary to perform the
longest prefix match. 32 nanoseconds is very small compared to the memory
accesses that are required by a naive longest prefix match implement.
Additional information about faster longest prefix match algorithms may be
found in [Varghese2005].

5.2.3 IP version 6
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the late 1980s and early 1990s the growth of the Internet was causing several
operational problems on routers. Many of these routers had a single CPU and up to 1
MByte of RAM to store their operating system, packet buffers and routing tables.
Given the rate of allocation of IPv4 prefixes to companies and universities willing to
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join the Internet, the routing tables where growing very quickly and some feared that
all IPv4 prefixes would quickly be allocated. In 1987, a study cited in RFC 1752 (http://t
ools.ietf.org/html/rfc1752.html), estimated that there would be 100,000 networks in
the near future. In August 1990, estimates indicated that the class B space would be
exhausted by March 1994. Two types of solution were developed to solve this
problem. The first short term solution was the introduction of Classless Inter Domain
Routing (CIDR). A second short term solution was the Network Address Translation
(NAT) mechanism, defined in RFC 1631 (http://tools.ietf.org/html/rfc1631.html). NAT
allowed multiple hosts to share a single public IP address, it is explained in section
Middleboxes.

However, in parallel with these short-term solutions, which have allowed the IPv4
Internet to continue to be usable until now, the Internet Engineering Task Force
started to work on developing a replacement for IPv4. This work started with an open
call for proposals, outlined in RFC 1550 (http://tools.ietf.org/html/rfc1550.html.)
Several groups responded to this call with proposals for a next generation Internet
Protocol (IPng) :

• TUBA proposed in RFC 1347 (http://tools.ietf.org/html/rfc1347.html) and RFC 1561
(http://tools.ietf.org/html/rfc1561.html)

• PIP proposed in RFC 1621 (http://tools.ietf.org/html/rfc1621.html)
• SIPP proposed in RFC 1710 (http://tools.ietf.org/html/rfc1710.html)

The IETF decided to pursue the development of IPng based on the SIPP proposal. As IP
version 5 was already used by the experimental ST-2 protocol defined in RFC 1819 (htt
p://tools.ietf.org/html/rfc1819.html), the successor of IP version 4 is IP version 6. The
initial IP version 6 defined in RFC 1752 (http://tools.ietf.org/html/rfc1752.html) was
designed based on the following assumptions :

• IPv6 addresses are encoded as a 128 bits field
• The IPv6 header has a simple format that can easily be parsed by hardware

devices
• A host should be able to configure its IPv6 address automatically
• Security must be part of IPv6

Note: The IPng address size
When the work on IPng started, it was clear that 32 bits was too small to
encode an IPng address and all proposals used longer addresses. However,
there were many discussions about the most suitable address length. A first
approach, proposed by SIP in RFC 1710 (http://tools.ietf.org/html/rfc1710.htm
l), was to use 64 bit addresses. A 64 bits address space was 4 billion times
larger than the IPv4 address space and, furthermore, from an implementation
perspective, 64 bit CPUs were being considered and 64 bit addresses would
naturally fit inside their registers. Another approach was to use an existing
address format. This was the TUBA proposal (RFC 1347 (http://tools.ietf.org/ht
ml/rfc1347.html)) that reuses the ISO CLNP 20 bytes addresses. The 20 bytes
addresses provided room for growth, but using ISO CLNP was not favored by
the IETF partially due to political reasons, despite the fact that mature CLNP
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implementations were already available. 128 bits appeared to be a reasonable
compromise at that time.

IPv6 addressing architecture

The experience of IPv4 revealed that the scalability of a network layer protocol heavily
depends on its addressing architecture. The designers of IPv6 spent a lot of effort
defining its addressing architecture RFC 3513 (http://tools.ietf.org/html/rfc3513.html).
All IPv6 addresses are 128 bits wide. This implies that there are 340, 282, 366, 920,
938, 463, 463, 374, 607, 431, 768, 211, 456(3.4 × 1038) different IPv6 addresses. As the
sur face of the Earth is about 510,072,000 km2, this implies that there are about 6.67 ×
1023 IPv6 addresses per square meter on Earth. Compared to IPv4, which offers only
8 addresses per square kilometer, this is a significant improvement on paper.

IPv6 supports unicast, multicast and anycast addresses. As with IPv4, an IPv6 unicast
address is used to identify one datalink-layer interface on a host. If a host has several
datalink layer interfaces (e.g. an Ethernet interface and a WiFi interface), then it needs
several IPv6 addresses. In general, an IPv6 unicast address is structured as shown in
the figure below.

An IPv6 unicast address is composed of three parts :

1. A global routing prefix that is assigned to the Internet Service Provider that owns
this block of addresses

2. A subnet identifier that identifies a customer of the ISP
3. An interface identifier that identifies a particular interface on an endsystem

Figure 5.37 Structure of IPv6 unicast addresses

In today’s deployments, interface identifiers are always 64 bits wide. This implies that

while there are 2128 different IPv6 addresses, they must be grouped in 264 subnets.
This could appear as a waste of resources, however using 64 bits for the host identifier
allows IPv6 addresses to be auto-configured and also provides some benefits from a
security point of view, as explained in section ICMPv6

Note: Textual representation of IPv6 addresses
It is sometimes necessary to write IPv6 addresses in text format, e.g. when
manually configuring addresses or for documentation purposes. The preferred
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format for writing IPv6 addresses is x:x:x:x:x:x:x:x, where the x ‘s are
hexadecimal digits representing the eight 16-bit parts of the address. Here are
a few examples of IPv6 addresses :

• ABCD:EF01:2345:6789:ABCD:EF01:2345:6789
• 2001:DB8:0:0:8:800:200C:417A
• FE80:0:0:0:219:E3FF:FED7:1204

IPv6 addresses often contain a long sequence of bits set to 0. In this case, a
compact notation has been defined. With this notation, :: is used to indicate
one or more groups of 16 bits blocks containing only bits set to 0. For example,

• 2001:DB8:0:0:8:800:200C:417A is represented as
2001:DB8::8:800:200C:417A

• FF01:0:0:0:0:0:0:101 is represented as FF01::101
• 0:0:0:0:0:0:0:1 is represented as ::1
• 0:0:0:0:0:0:0:0 is represented as ::

An IPv6 prefix can be represented as address/length, where length is the
length of the prefix in bits. For example, the three notations below correspond
to the same IPv6 prefix :

• 2001:0DB8:0000:CD30:0000:0000:0000:0000/60
• 2001:0DB8::CD30:0:0:0:0/60
• 2001:0DB8:0:CD30::/60

In practice, there are several types of IPv6 unicast address. Most of the IPv6 unicast ad
dresses (http://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xht
ml) are allocated in blocks under the responsibility of IANA (http://www.iana.org). The
current IPv6 allocations are part of the 2000::/3 address block. Regional Internet
Registries (RIR) such as RIPE (http://www.ripe.net) in Europe, ARIN (http://www.arin.ne
t) in North-America or AfriNIC in Africa have each received a block of IPv6 addresses (h
ttp://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-addre
ss-assignments.xhtml) that they sub-allocate to Internet Service Providers in their
region. The ISPs then sub-allocate addresses to their customers.

When considering the allocation of IPv6 addresses, two types of address allocations
are often distinguished. The RIRs allocate provider-independent (PI) addresses. PI
addresses are usually allocated to Internet Service Providers and large companies that
are connected to at least two different ISPs [CSP2009]. Once a PI address block has
been allocated to a company, this company can use its address block with the
provider of its choice and change its provider at will. Internet Service Providers
allocate provider-aggregatable (PA) address blocks from their own PI address block to
their customers. A company that is connected to only one ISP should only use PA
addresses.

The drawback of PA addresses is that when a company using a PA address block
changes its provider, it needs to change all the addresses that it uses. This can be a
nightmare from an operational perspective and many companies are lobbying to
obtain PI address blocks even if they are small and connected to a single provider. The
typical size of the IPv6 address blocks are:
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• /32 for an Internet Service Provider
• /48 for a single company
• /64 for a single user (e.g. a home user connected via ADSL)
• /128 in the rare case when it is known that no more than one endhost will be

attached

For the companies that want to use IPv6 without being connected to the IPv6 Internet,
RFC 4193 (http://tools.ietf.org/html/rfc4193.html) defines the Unique Local Unicast
(ULA) addresses (FC00::/7). These ULA addresses play a similar role as the private IPv4
addresses defined in RFC 1918 (http://tools.ietf.org/html/rfc1918.html). However, the
size of the FC00::/7 address block allows ULA to be much more flexible than private
IPv4 addresses.

Furthermore, the IETF has reserved some IPv6 addresses for a special usage. The two
most important ones are :

• 0:0:0:0:0:0:0:1 (::1 in compact form) is the IPv6 loopback address. This is the
address of a logical interface that is always up and running on IPv6 enabled hosts.
This is the equivalent of 127.0.0.1 in IPv4.

• 0:0:0:0:0:0:0:0 (:: in compact form) is the unspecified IPv6 address. This is the IPv6
address that a host can use as source address when trying to acquire an official
address.

The last type of unicast IPv6 addresses are the Link Local Unicast addresses. These
addresses are part of the FE80::/10 address block and are defined in RFC 4291 (http://t
ools.ietf.org/html/rfc4291.html). Each host can compute its own link local address by
concatenating the FE80::/64 prefix with the 64 bits identifier of its interface. Link local
addresses can be used when hosts that are attached to the same link (or local area
network) need to exchange packets. They are used notably for address discovery and
auto-configuration purposes. Their usage is restricted to each link and a router cannot
forward a packet whose source or destination address is a link local address. Link local
addresses have also been defined for IPv4 RFC 3927 (http://tools.ietf.org/html/rfc392
7.html). However, the IPv4 link local addresses are only used when a host cannot
obtain a regular IPv4 address, e.g. on an isolated LAN.

Figure 5.38 IPv6 link local address structure

An important consequence of the IPv6 unicast addressing architecture and the
utilisation of link-local addresses is that an IPv6 host has several IPv6 addresses. This
implies that an IPv6 stack must be able to handle multiple IPv6 addresses. This was
not always the case with IPv4.

RFC 4291 (http://tools.ietf.org/html/rfc4291.html) defines a special type of IPv6 anycast
address. On a subnetwork having prefix p/n, the IPv6 address whose 128-n low-order
bits are set to 0 is the anycast address that corresponds to all routers inside this
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subnetwork. This anycast address can be used by hosts to quickly send a packet to
any of the routers inside their own subnetwork.

Finally, RFC 4291 (http://tools.ietf.org/html/rfc4291.html) defines the structure of the
IPv6 multicast addresses 16. This structure is depicted in the figure below

The low order 112 bits of an IPv6 multicast address are the group’s identifier. The high
order bits are used as a marker to distinguish multicast addresses from unicast
addresses. Notably, the 4 bits flag field indicates whether the address is temporary or
permanent. Finally, the scope field indicates the boundaries of the forwarding of
packets destined to a particular address. A link-local scope indicates that a router
should not forward a packet destined to such a multicast address. An organisation
local-scope indicates that a packet sent to such a multicast destination address should
not leave the organisation. Finally the global scope is intended for multicast groups
spanning the global Internet.

Figure 5.39 IPv6 multicast address structure

Among these addresses, some are well known. For example, all endsystem
automatically belong to the FF02::1 multicast group while all routers automatically
belong to the FF02::2 multicast group. We discuss IPv6 multicast later.

IPv6 packet format

The IPv6 packet format was heavily inspired by the packet format proposed for the
SIPP protocol in RFC 1710 (http://tools.ietf.org/html/rfc1710.html). The standard IPv6
header defined in RFC 2460 (http://tools.ietf.org/html/rfc2460.html) occupies 40 bytes
and contains 8 different fields, as shown in the figure below.

16. The full list of allocated IPv6 multicast addresses is available at http://www.iana.org/assignments/ipv6-multicast-
addresses
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Figure 5.40 The IP version 6 header ( RFC 2460)

Apart from the source and destination addresses, the IPv6 header contains the
following fields :

• version : a 4 bits field set to 6 and intended to allow IP to evolve in the future if
needed

• Traffic class : this 8 bits field plays a similar role as the DS byte in the IPv4 header
• Flow label : this field was initially intended to be used to tag packets belonging to

the same flow. However, as of this writing, there is no clear guideline on how this
field should be used by hosts and routers

• Payload length : this is the size of the packet payload in bytes. As the length is
encoded as a 16 bits field, an IPv6 packet can contain up to 65535 bytes of
payload.

• Next Header : this 8 bits field indicates the type 17 of header that follows the IPv6
header. It can be a transport layer header (e.g. 6 for TCP or 17 for UDP) or an IPv6
option. Handling options as a next header allows simplifying the processing of
IPv6 packets compared to IPv4.

• Hop Limit : this 8 bits field indicates the number of routers that can forward the
packet. It is decremented by one by each router and has the same purpose as the
TTL field of the IPv4 header.

In comparison with IPv4, the IPv6 packets are much simpler and easier to process by
routers. A first important difference is that there is no checksum inside the IPv6
header. This is mainly because all datalink layers and transport protocols include a
checksum or a CRC to protect their frames/segments against transmission errors.
Adding a checksum in the IPv6 header would have forced each router to recompute
the checksum of all packets, with limited benefit in detecting errors. In practice, an IP
checksum allows for catching errors that occur inside routers (e.g. due to memory
corruption) before the packet reaches its destination. However, this benefit was found

17. The IANA maintains the list of all allocated Next Header types at http://www.iana.org/assignments/protocol-numbers/
The same registry is used for the IPv4 protocol field and for the IPv6 Next Header.
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to be too small given the reliability of current memories and the cost of computing the
checksum on each router.

A second difference with IPv4 is that the IPv6 header does not support fragmentation
and reassembly. Experience with IPv4 has shown that fragmenting packets in routers
was costly [KM1995] and the developers of IPv6 have decided that routers would not
fragment packets anymore. If a router receives a packet that is too long to be
forwarded, the packet is dropped and the router returns an ICMPv6 messages to
inform the sender of the problem. The sender can then either fragment the packet or
perform Path MTU discovery. In IPv6, packet fragmentation is performed only by the
source by using IPv6 options.

The third difference are the IPv6 options, which are simpler and easier to process than
the IPv4 options.

Note: Header compression on low bandwidth links
Given the size of the IPv6 header, it can cause huge overhead on low bandwidth
links, especially when small packets are exchanged such as for Voice over IP
applications. In such environments, several techniques can be used to reduce
the overhead. A first solution is to use data compression in the datalink layer
to compress all the information exchanged [Thomborson1992]. These
techniques are similar to the data compression algorithms used in tools such
as compress(1) or gzip(1)RFC 1951 (http://tools.ietf.org/html/rfc1951.html).
They compress streams of bits without taking advantage of the fact that these
streams contain IP packets with a known structure. A second solution is to
compress the IP and TCP header. These header compression techniques, such
as the one defined in RFC 2507 (http://tools.ietf.org/html/rfc2507.html)take
advantage of the redundancy found in successive packets from the same flow
to significantly reduce the size of the protocol headers. Another solution is to
define a compressed encoding of the IPv6 header that matches the capabilities
of the underlying datalink layer RFC 4944 (http://tools.ietf.org/html/rfc4944.h
tml).

IPv6 options

In IPv6, each option is considered as one header containing a multiple of 8 bytes to
ensure that IPv6 options in a packet are aligned on 64 bit boundaries. IPv6 defines
several type of options :

• the hop-by-hop options are options that must be processed by the routers on the
packet’s path

• the type 0 routing header, which is similar to the IPv4 loose source routing option
• the fragmentation option, which is used when fragmenting an IPv6 packet
• the destination options
• the security options that allow IPv6 hosts to exchange packets with cryptographic

authentication (AH header) or encryption and authentication (ESP header)

RFC 2460 (http://tools.ietf.org/html/rfc2460.html) provides lots of detail on the
encodings of the different types of options. In this section, we only discus some of
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them. The reader may consult RFC 2460 (http://tools.ietf.org/html/rfc2460.html) for
more information about the other options. The first point to note is that each option
contains a Next Header field, which indicates the type of header that follows the
option. A second point to note is that in order to allow routers to efficiently parse IPv6
packets, the options that must be processed by routers (hop-by-hop options and type
0 routing header) must appear first in the packet. This allows the router to process a
packet without being forced to analyse all the packet’s options. A third point to note is
that hop-by-hop and destination options are encoded using a type length value
format. Furthermore, the type field contains bits that indicate whether a router that
does not understand this option should ignore the option or discard the packet. This
allows the introduction of new options into the network without forcing all devices to
be upgraded to support them at the same time.

Two hop-by-hop options have been defined. RFC 2675 (http://tools.ietf.org/html/rfc267
5.html) specifies the jumbogram that enables IPv6 to support packets containing a
payload larger than 65535 bytes. These jumbo packets have their payload length set to
0 and the jumbogram option contains the packet length as a 32 bits field. Such
packets can only be sent from a source to a destination if all the routers on the path
support this option. However, as of this writing it does not seem that the jumbogram
option has been implemented. The router alert option defined in RFC 2711 (http://tool
s.ietf.org/html/rfc2711.html) is the second example of a hop-by-hop option. The
packets that contain this option should be processed in a special way by intermediate
routers. This option is used for IP packets that carry Resource Reservation Protocol
(RSVP) messages. Its usage is explained later.

The type 0 routing header defined in RFC 2460 (http://tools.ietf.org/html/rfc2460.html)
is an example of an IPv6 option that must be processed by some routers. This option
is encoded as shown below.
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Figure 5.41 The Type 0 routing header (RFC 2460)

The type 0 routing option was intended to allow a host to indicate a loose source
route that should be followed by a packet by specifying the addresses of some of the
routers that must forward this packet. Unfortunately, further work with this routing
header, including an entertaining demonstration with scapy (http://www.secdev.org/p
rojects/scapy/) [BE2007] , revealed some severe security problems with this routing
header. For this reason, loose source routing with the type 0 routing header has been
removed from the IPv6 specification RFC 5095 (http://tools.ietf.org/html/rfc5095.html).

In IPv6, fragmentation is performed exclusively by the source host and relies on the
fragmentation header. This 64 bits header is composed of six fields :

• a Next Header field that indicates the type of the header that follows the
fragmentation header

• a reserved field set to 0.
• the Fragment Offset is a 13-bit unsigned integer that contains the offset, in 8 bytes

units, of the data following this header, relative to the start of the original packet.
• the More flag, which is set to 0 in the last fragment of a packet and to 1 in all other

fragments.
• the 32 bits Identification field indicates to which original packet a fragment

belongs. When a host sends fragmented packets, it should ensure that it does not
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reuse the same identification field for packets sent to the same destination
during a period of MSL seconds. This is easier with the 32 bits identification used
in the IPv6 fragmentation header, than with the 16 bits identification field of the
IPv4 header.

Some IPv6 implementations send the fragments of a packet in increasing fragment
offset order, starting from the first fragment. Others send the fragments in reverse
order, starting from the last fragment. The latter solution can be advantageous for the
host that needs to reassemble the fragments, as it can easily allocate the buffer
required to reassemble all fragments of the packet upon reception of the last
fragment. When a host receives the first fragment of an IPv6 packet, it cannot know a
priori the length of the entire IPv6 packet.

The figure below provides an example of a fragmented IPv6 packet containing a UDP
segment. The Next Header type reserved for the IPv6 fragmentation option is 44.

Figure 5.42 IPv6 fragmentation example

Finally, the last type of IPv6 options is the Encaspulating Security Payload (ESP) defined
in RFC 4303 (http://tools.ietf.org/html/rfc4303.html) and the Authentication Header
(AH) defined in RFC 4302 (http://tools.ietf.org/html/rfc4302.html). These two headers
are used by IPSec RFC 4301 (http://tools.ietf.org/html/rfc4301.html). They are
discussed in another chapter.

5.2.4 ICMP version 6
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

ICMPv6 defined in RFC 4443 (http://tools.ietf.org/html/rfc4443.html) is the companion
protocol for IPv6 as ICMPv4 is the companion protocol for IPv4. ICMPv6 is used by
routers and hosts to report problems when processing IPv6 packets. However, as we
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will see in chapter The datalink layer and the Local Area Networks (Page 287), ICMPv6
is also used when auto-configuring addresses.

The traditional utilisation of ICMPv6 is similar to ICMPv4. ICMPv6 messages are carried
inside IPv6 packets (the Next Header field for ICMPv6 is 58). Each ICMP message
contains an 8 bits header with a type field, a code field and a 16 bits checksum
computed over the entire ICMPv6 message. The message body contains a copy of the
IPv6 packet in error.

Figure 5.43 ICMP version 6 packet format

ICMPv6 specifies two classes of messages : error messages that indicate a problem in
handling a packet and informational messages. Four types of error messages are
defined in RFC 4443 (http://tools.ietf.org/html/rfc4443.html):

• 1 [Destination Unreachable. Such an ICMPv6 message is sent when the
destination address of a packet is unreachable. The code field of the ICMP header
contains additional information about the type of unreachability. The following
codes are specified in RFC 4443]
◦ 0 : No route to destination. This indicates that the router that sent the

ICMPv6 message did not have a route towards the packet’s destination
◦ 1 : Communication with destination administratively prohibited. This

indicates that a firewall has refused to forward the packet towards its
destination.

◦ 2 : Beyond scope of source address. This message can be sent if the source is
using link-local addresses to reach a global unicast address outside its
subnet.

◦ 3 : Address unreachable. This message indicates that the packet reached the
subnet of the destination, but the host that owns this destination address
cannot be reached.

◦ 4 : Port unreachable. This message indicates that the IPv6 packet was
received by the destination, but there was no application listening to the
specified port.

• 2 : Packet Too Big. The router that was to send the ICMPv6 message received an
IPv6 packet that is larger than the MTU of the outgoing link. The ICMPv6 message
contains the MTU of this link in bytes. This allows the sending host to implement
Path MTU discovery RFC 1981 (http://tools.ietf.org/html/rfc1981.html)

• 3 : Time Exceeded. This error message can be sent either by a router or by a host.
A router would set code to 0 to report the reception of a packet whose Hop Limit
reached 0. A host would set code to 1 to report that it was unable to reassemble
received IPv6 fragments.

• 4 : Parameter Problem. This ICMPv6 message is used to report either the
reception of an IPv6 packet with an erroneous header field (type 0) or an
unknown Next Header or IP option (types 1 and 2). In this case, the message body
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contains the erroneous IPv6 packet and the first 32 bits of the message body
contain a pointer to the error.

Two types of informational ICMPv6 messages are defined in RFC 4443 (http://tools.iet
f.org/html/rfc4443.html): echo request and echo reply, which are used to test the
reachability of a destination by using ping6(8).

ICMPv6 also allows the discovery of the path between a source and a destination by
using traceroute6(8). The output below shows a traceroute between a host at
UCLouvain and one of the main IETF servers. Note that this IPv6 path is different than
the IPv4 path that was described earlier although the two traceroutes were performed
at the same time.

traceroute6 www.ietf.org

traceroute6 to www.ietf.org (2001:1890:1112:1::20) from

2001:6a8:3080:2:217:f2ff:fed6:65c0, 30 hops

1 2001:6a8:3080:2::1 13.821 ms 0.301 ms 0.324 ms

2 2001:6a8:3000:8000::1 0.651 ms 0.51 ms 0.495 ms

3 10ge.cr2.bruvil.belnet.net 3.402 ms 3.34 ms 3.33 ms

4 10ge.cr2.brueve.belnet.net 3.668 ms 10ge.cr2.brueve.belnet.net

3.988 ms 10ge.cr2.brueve.belnet.net

5 belnet.rt1.ams.nl.geant2.net 10.598 ms 7.214 ms 10.082 ms

6 so-7-0-0.rt2.cop.dk.geant2.net 20.19 ms 20.002 ms 20.064 ms

7 kbn-ipv6-b1.ipv6.telia.net 21.078 ms 20.868 ms 20.864 ms

8 s-ipv6-b1-link.ipv6.telia.net 31.312 ms 31.113 ms 31.411 ms

9 s-ipv6-b1-link.ipv6.telia.net 61.986 ms 61.988 ms 61.994 ms

10 2001:1890:61:8909::1 121.716 ms 121.779 ms 121.177 ms

11 2001:1890:61:9117::2 203.709 ms 203.305 ms 203.07 ms

12 mail.ietf.org 204.172 ms 203.755 ms 203.748 ms

Note: Rate limitation of ICMP messages
High-end hardware based routers use special purpose chips on their interfaces
to forward IPv6 packets at line rate. These chips are optimised to process
correct IP packets. They are not able to create ICMP messages at line rate.
When such a chip receives an IP packet that triggers an ICMP message, it
interrupts the main CPU of the router and the software running on this CPU
processes the packet. This CPU is much slower than the hardware acceleration
found on the interfaces [Gill2004]. It would be overloaded if it had to process
IP packets at line rate and generate one ICMP message for each received
packet. To protect this CPU, high-end routers limit the rate at which the
hardware can interrupt the main CPU and thus the rate at which ICMP
messages can be generated. This implies that not all erroneous IP packets
cause the transmission of an ICMP message. The risk of overloading the main
CPU of the router is also the reason why using hop-by-hop IPv6 options,

225

http://tools.ietf.org/html/rfc4443.html
http://tools.ietf.org/html/rfc4443.html
http://tools.ietf.org/html/rfc4443.html


including the router alter option is discouraged 18.

There are several differences between IPv6 and IPv4 when considering their
interactions with the datalink layer. In IPv6, the interactions between the network and
the datalink layer is performed using ICMPv6.

First ICMPv6 is used to resolve the datalink layer address that corresponds to a given
IPv6 address. This part of ICMPv6 is the Neighbour Discovery Protocol (NDP) defined
in RFC 4861 (http://tools.ietf.org/html/rfc4861.html). NDP is similar to ARP, but there
are two important differences. First, NDP messages are exchanged in ICMPv6
messages while ARP messages are sent as datalink layer frames. Second, an ARP
request is sent as a broadcast frame while an NDP solicitation message is sent as a
multicast ICMPv6 packet that is transported inside a multicast frame. The operation of
the NDP protocol is similar to ARP. To obtain an address mapping, a host sends a
Neighbour Solicitation message. This message is sent inside an ICMPv6 message that
is placed in an IPv6 packet whose source address is the IPv6 address of the requesting
host and the destination address is the all-hosts IPv6 multicast address (FF02::1) to
which all IPv6 hosts listen. The Neighbour Solicitation contains the requested IPv6
address. The owner of the requested address replies by sending a unicast Neighbour
Advertisement message to the requesting host. NDP suffers from similar security
issues as the ARP protocol. However, it is possible to secure NDP by using the
Cryptographically Generated IPv6 Addresses (CGA) defined in RFC 3972 (http://tools.ietf.o
rg/html/rfc3972.html). The Secure Neighbour Discovery Protocol is defined in RFC 397
1 (http://tools.ietf.org/html/rfc3971.html), but a detailed description of this protocol is
outside the scope of this chapter.

IPv6 networks also support the Dynamic Host Configuration Protocol. The IPv6
extensions to DHCP are defined in RFC 3315 (http://tools.ietf.org/html/rfc3315.html).
The operation of DHCPv6 is similar to DHCP that was described earlier. In addition to
DHCPv6, IPv6 networks support another mechanism to assign IPv6 addresses to
hosts. This is the Stateless Address Configuration (SLAC) defined in RFC 4862 (http://to
ols.ietf.org/html/rfc4862.html). When a host boots, it derives its identifier from its
datalink layer address 19 and concatenates this 64 bits identifier to the FE80::/64 prefix
to obtain its link-local IPv6 address. It then sends a Neighbour Solicitation with its link-
local address as a target to verify whether another host is using the same link-local
address on this subnet. If it receives a Neighbour Advertisement indicating that the
link-local address is used by another host, it generates another 64 bits identifier and
sends again a Neighbour Solicitation. If there is no answer, the host considers its link-
local address to be valid. This address will be used as the source address for all NDP
messages sent on the subnet. To automatically configure its global IPv6 address, the
host must know the globally routable IPv6 prefix that is used on the local subnet. IPv6
routers regularly send ICMPv6 Router Advertisement messages that indicate the IPv6
prefix assigned to each subnet. Upon reception of this message, the host can derive

18. For a discussion of the issues with the router alert IP option, see http://tools.ietf.org/html/draft-rahman-rtg-
router-alert-dangerous-00 or http://tools.ietf.org/html/draft-rahman-rtg-router-alert-considerations-03

19. Using a datalink layer address to derive a 64 bits identifier for each host raises privacy concerns as the host will always
use the same identifier. Attackers could use this to track hosts on the Internet. An extension to the Stateless Address
Configuration mechanism that does not raise privacy concerns is defined in RFC 4941. These privacy extensions allow a
host to generate its 64 bits identifier randomly every time it attaches to a subnet. It then becomes impossible for an
attacker to use the 64-bits identifier to track a host.
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its global IPv6 address by concatenating its 64 bits identifier with the received prefix. It
concludes the SLAC by sending a Neighbour Solicitation message targeted at its global
IPv6 address to ensure that another host is not using the same IPv6 address.

5.2.5 Middleboxes
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When the TCP/IP architecture and the IP protocol were defined, two type of devices
were considered in the network layer : endhosts and routers. Endhosts are the
sources and destinations of IP packets while routers forward packets. When a router
forwards an IP packet, it consults its forwarding table, updates the packet’s TTL,
recomputes its checksum and forwards it to the next hop. A router does not need to
read or change the contents of the packet’s payload.

However, in today’s Internet, there exist devices that are not strictly routers but which
process, sometimes modify, and forward IP packets. These devices are often called
middleboxes RFC 3234 (http://tools.ietf.org/html/rfc3234.html). Some middleboxes
only operate in the network layer, but most middleboxes are able to analyse the
payload of the received packets and extract the transport header, and in some cases
the application layer protocols.

In this section, we briefly describe two type of middleboxes : firewalls and network
address translation (NAT) devices. A discussion of the different types of middleboxes
with references may be found in RFC 3234 (http://tools.ietf.org/html/rfc3234.html).

Firewalls

When the Internet was only a research network interconnecting research labs, security
was not a concern, and most hosts agreed to exchange packets over TCP connections
with most other hosts. However, as more and more

Figure 5.44 IP middleboxes and the reference model users and companies became connected to the

Internet, allowing unlimited access to hosts that they managed started to concern companies.

Furthermore, at the end of the 1980s, several security issues affected the Internet, such as the first

Internet worm [RE1989] and some widely publicised security breaches [Stoll1988] [CB2003]

[Cheswick1990] .

These security problems convinced the industry that IP networks are a key part of a
company’s infrastructure, that should be protected by special devices like security
guards and fences are used to protect buildings. These special devices were quickly
called firewalls. A typical firewall has two interfaces :
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• an external interface connected to the global Internet
• an internal interface connected to a trusted network

The first firewalls included configurable packet filters. A packet filter is a set of rules
defining the security policy of a network. In practice, these rules are based on the
values of fields in the IP or transport layer headers. Any field of the IP or transport
header can be used in a firewall rule, but the most common ones are:

• filter on the source address. For example, a company may decide to discard all
packets received from one of its competitors. In this case, all packets whose
source address belong to the competitor’s address block would be rejected

• filter on destination address. For example, the hosts of the research lab of a
company may receive packets from the global Internet, but not the hosts of the
financial department

• filter on the Protocol number found in the IP header. For example, a company
may only allow its hosts to use TCP or UDP, but not other, more experimental,
transport protocols

• filter on the TCP or UDP port numbers. For example, only the DNS server of a
company should received UDP segments whose destination port is set to 53 or
only the official SMTP servers of the company can send TCP segments whose
source ports are set to 25

• filter on the TCP flags. For example, a simple solution to prohibit external hosts
from opening TCP connections with hosts inside the company is to discard all TCP
segments received from the external interface with only the SYN flag set.

Such firewalls are often called stateless firewalls because they do not maintain any
state about the TCP connections that pass through them.

Another type of firewalls are stateful firewalls. A stateful firewall tracks the state of
each TCP connection passing through it and maintains a TCB for each of these TCP
connection. This TCB allows it to reassemble the received segments in order to extract
their payload and perform verifications in the application layer. Some firewalls are
able to inspect the URLs accessed using HTTP and log all URLs visited or block TCP
connections where a dangerous URL is exchanged. Some firewalls can verify that
SMTP commands are used when a TCP connection is established on port 25 or that a
TCP connection on port 80 carries HTTP commands and responses.

Note: Beyond firewalls
Apart from firewalls, different types of “security” devices have been installed
at the periphery of corporate networks. Intrusion Detection Systems (IDS),
such as the popular snort , are stateful devices that are capable of matching
reassembled segments against regular expressions corresponding to
signatures of viruses, worms or other types of attacks. Deep Packet Inspection
(DPI) is another type of middlebox that analyses the packet’s payload and is
able to reassemble TCP segments in order to detect inappropriate usages.
While IDS are mainly used in corporate networks, DPI is mainly used in
Internet Service Providers. Some ISPs use DPI to detect and limit the
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bandwidth consumed by peer-to-peer applications. Some countries such as
China or Iran use DPI to detect inappropriate Internet usage.

NAT

Network Address Translation (NAT) was proposed in [TE1993] and RFC 3022 (http://too
ls.ietf.org/html/rfc3022.html) as a short term solution to deal with the expected
shortage of IPv4 addresses in the late 1980s -early 1990s. Combined with CIDR, NAT
helped to significantly slow down the consumption of IPv4 addresses. A NAT is a
middlebox that interconnects two networks that are using IPv4 addresses from
different addressing spaces. Usually, one of these addressing spaces is the public
Internet while the other is using the private IPv4 addresses defined in RFC 1918 (htt
p://tools.ietf.org/html/rfc1918.html).

A very common deployment of NAT is in broadband access routers as shown in the
figure below. The broadband access router interconnects a home network, either WiFi
or Ethernet based, and the global Internet via one ISP over ADSL or CATV. A single IPv4
address is allocated to the broadband access router and network address translation
allows all of the hosts attached to the home network to share a single public IPv4
address.

Figure 5.45 A simple NAT with one public IPv4 address

A second type of deployment is in enterprise networks as shown in the figure below.
In this case, the NAT functionality is installed on a border router of the enterprise. A
private IPv4 address is assigned to each enterprise host while the border router
manages a pool containing several public IPv4 addresses.

Figure 5.46 An enterprise NAT with several public IPv4 addresses

As the name implies, a NAT is a device that “translates” IP addresses. A NAT maintains
a mapping table between the private IP addresses used in the internal network and
the public IPv4 addresses. NAT allows a large number of hosts to share a pool of IP
addresses, as these hosts do not all access the global Internet at the same time.
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The simplest NAT is a middlebox that uses a one-to-one mapping between a private IP
address and a public IP address. To understand its operation, let us assume that a
NAT, such as the one shown above, has just booted. When the NAT receives the first
packet from source S in the internal network which is destined to the public Internet, it
creates a mapping between internal address S and the first address of its pool of
public addresses (P1). Then, it translates the received packet so that it can be sent to
the public Internet. This translation is performed as followed :

• the source address of the packet (S) is replaced by the mapped public address
(P1)

• the checksum of the IP header is incrementally updated as its content has
changed

• if the packet carried a TCP or UDP segment, the transport layer checksum found
in the included segment must also be updated as it is computed over the
segment and a pseudo-header that includes the source and destination
addresses

When a packet destined to P1 is received from the public Internet, the NAT consults its
mapping table to find S. The received packet is translated and forwarded in the
internal network.

This works as long as the pool of public IP addresses of the NAT does not become
empty. In this case, a mapping must be removed from the mapping table to allow a
packet from a new host to be translated. This garbage collection can be implemented
by adding to each entry in the mapping table a timestamp that contains the last
utilisation time of a mapping entry. This timestamp is updated each time the
corresponding entry is used. Then, the garbage collection algorithm can remove the
oldest mapping entry in the table.

A drawback of such a simple enterprise NAT is the size of the pool of public IPv4
addresses which is often too small to allow a large number of hosts share such a NAT.
In this case, a better solution is to allow the NAT to translate both IP addresses and
port numbers.

Such a NAT maintains a mapping table that maps an internal IP address and TCP port
number with an external IP address and TCP port number. When such a NAT receives
a packet from the internal network, it performs a lookup in the mapping table with the
packet’s source IP address and source TCP port number. If a mapping is found, the
source IP address and the source TCP port number of the packet are translated with
the values found in the mapping table, the checksums are updated and the packet is
sent to the global Internet. If no mapping is found, a new mapping is created with the
first available couple (IP address, TCP port number) and the packet is translated. The
entries of the mapping table are either removed at the end of the corresponding TCP
connection as the NAT tracks TCP connection state like a stateful firewall or after some
idle time.

When such a NAT receives a packet from the global Internet, it looks up its mapping
table for the packet’s destination IP address and destination TCP port number. If a
mapping is found, the packet is translated and forwarded into the internal network.
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Otherwise, the packet is discarded as the NAT cannot determine to which particular
internal host the packet should be forwarded. For this reason,

With 216 different port numbers, a NAT may support a large number of hosts with a
single public IPv4 address. However, it should be noted that some applications open a
large number of TCP connections [Miyakawa2008]. Each of these TCP connections
consumes one mapping entry in the NAT’s mapping table.

NAT allows many hosts to share one or a few public IPv4 addresses. However, using
NAT has two important drawbacks. First, it is difficult for external hosts to open TCP
connections with hosts that are behind a NAT. Some consider this to be a benefit from
a security perspective. However, a NAT should not be confused with a firewall as there
are some techniques to traverse NATs. Second, NAT breaks the end-to-end
transparency of the network and transport layers. The main problem is when an
application layer protocol uses IP addresses in some of the ADUs that it sends. A
popular example is ftp defined in RFC 959 (http://tools.ietf.org/html/rfc959.html). In
this case, there is a mismatch between the packet header translated by the NAT and
the packet payload. The only solution to solve this problem is to place an Application
Level Gateway (ALG) on the NAT that understands the application layer protocol and
can thus translate the IP addresses and port numbers found in the ADUs. However,
defining an ALG for each application is costly and application developers should avoid
using IP addresses in the messages exchanged in the application layer RFC 3235 (htt
p://tools.ietf.org/html/rfc3235.html).

Note: IPv6 and NAT
NAT has been very successful with IPv4. Given the size of the IPv6 addressing
space, the IPv6 designers expected that NAT would never be useful with IPv6.
The end-to-end transparency of IPv6 has been one of its key selling points
compared to IPv4. However, the expected shortage of IPv4 addresses lead
enterprise network administrators to consider IPv6 more seriously. One of the
results of this analysis is that the IETF defined NAT devices [WB2008] that are
IPv6 specific. Another usage of NAT with IPv6 is to allow IPv6 hosts to access
IPv4 destinations and conversely. The early IPv6 specifications included the
Network Address Translation -Protocol Translation (NATPT) mechanism
defined in RFC 2766 (http://tools.ietf.org/html/rfc2766.html). This
mechanism was later deprecated in RFC 4966 (http://tools.ietf.org/html/rfc496
6.html) but has been recently restarted under the name NAT64 [BMvB2009]. A
NAT64 is a middlebox that performs the IPv6<->IPv4 packet translation to
allow IPv6 hosts to contact IPv4 servers RFC 6144 (http://tools.ietf.org/html/rf
c6144.html.)
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5.3 Routing in IP networks
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In a large IP network such as the global Internet, routers need to exchange routing
information. The Internet is an interconnection of networks, often called domains, that
are under different responsibilities. As of this writing, the Internet is composed on
more than 30,000 different domains and this number is still growing. A domain can be
a small enterprise that manages a few routers in a single building, a larger enterprise
with a hundred routers at multiple locations, or a large Internet Service Provider
managing thousands of routers. Two classes of routing protocols are used to allow
these domains to efficiently exchange routing information.

Figure 5.47 Organisation of a small Internet

The first class of routing protocols are the intradomain routing protocols (sometimes
also called the interior gateway protocols or IGP). An intradomain routing protocol is
used by all routers inside a domain to exchange routing information about the
destinations that are reachable inside the domain. There are several intradomain
routing protocols. Some domains use RIP, which is a distance vector protocol. Other
domains use link-state routing protocols such as OSPF or IS-IS. Finally, some domains
use static routing or proprietary protocols such as IGRP or EIGRP.

These intradomain routing protocols usually have two objectives. First, they distribute
routing information that corresponds to the shortest path between two routers in the
domain. Second, they should allow the routers to quickly recover from link and router
failures.

The second class of routing protocols are the interdomain routing protocols
(sometimes also called the exterior gateway protocols or EGP). The objective of an
interdomain routing protocol is to distribute routing information between domains.
For scalability reasons, an interdomain routing protocol must distribute aggregated
routing information and considers each domain as a black box.

A very important difference between intradomain and interdomain routing are the
routing policies that are used by each domain. Inside a single domain, all routers are
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considered equal, and when several routes are available to reach a given destination
prefix, the best route is selected based on technical criteria such as the route with the
shortest delay, the route with the minimum number of hops or the route with the
highest bandwidth.

When we consider the interconnection of domains that are managed by different
organisations, this is no longer true. Each domain implements its own routing policy. A
routing policy is composed of three elements : an import filter that specifies which
routes can be accepted by a domain, an export filter that specifies which routes can be
advertised by a domain and a ranking algorithm that selects the best route when a
domain knows several routes towards the same destination prefix. As we will see
later, another important difference is that the objective of the interdomain routing
protocol is to find the cheapest route towards each destination. There is only one
interdomain routing protocol : BGP.

5.3.1 Intradomain routing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this section, we briefly describe the key features of the two main intradomain
unicast routing protocols : RIP and OSPF.

RIP

The Routing Information Protocol (RIP) is the simplest routing protocol that was
standardised for the TCP/IP protocol suite. RIP is defined in RFC 2453 (http://tools.iet
f.org/html/rfc2453.html). Additional information about RIP may be found in
[Malkin1999]

RIP routers periodically exchange RIP messages. The format of these messages is
shown below. A RIP message is sent inside a UDP segment whose destination port is
set to 521. A RIP message contains several fields. The Cmd field indicates whether the
RIP message is a request or a response. Routers send one of more RIP response
messages every 30 seconds. These messages contain the distance vectors that
summarize the router’s routing table. The RIP request messages can be used by
routers or hosts to query other routers about the content of their routing table. A
typical usage is when a router boots and quickly wants to receive the RIP responses
from its neighbours to compute its own routing table. The current version of RIP is
version 2 defined in RFC 2453 (http://tools.ietf.org/html/rfc2453.html)for IPv4 and RFC
2080 (http://tools.ietf.org/html/rfc2080.html) for IPv6.
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Figure 5.48 RIP message format

The RIP header contains an authentication field. This authentication can be used by
network administrators to ensure that only the RIP messages sent by the routers that
they manage are used to build the routing tables. RFC 2453 (http://tools.ietf.org/html/r
fc2453.html) only supports a basic authentication scheme where all routers are
configured with the same password and include this password in all RIP messages.
This is not very secure since an attacker can know the password by capturing a single
RIP message. However, this password can protect against configuration errors.
Stronger authentication schemes are described in RFC 2082 (http://tools.ietf.org/html/
rfc2082.html) and RFC 4822 (http://tools.ietf.org/html/rfc4822.html), but the details of
these mechanisms are outside the scope of this section.

Each RIP message contains a set of route entries. Each route entry is encoded as a 20
bytes field whose format is shown below. RIP was initially designed to be suitable for
different network layer protocols. Some implementations of RIP were used in XNS or
IPX networks. The first field of the RIP route entry is the Address Family Identifier (AFI).
This identifier indicates the type of address found in the route entry 20. IPv4 uses
AFI=1. The other important fields of the route entry are the IPv4 prefix, the netmask
that indicates the length of the subnet identifier and is encoded as a 32 bits netmask
and the metric. Although the metric is encoded as a 32 bits field, the maximum RIP
metric is 15 (for RIP, 16 = ∞)

Figure 5.49 Format of the RIP IPv4 route entries ( RFC 2453)

With a 20 bytes route entry, it was difficult to use the same format as above to support
IPv6. Instead of defining a variable length route entry format, the designers of RFC 208
0 (http://tools.ietf.org/html/rfc2080.html) defined a new format that does not include
an AFI field. The format of the route entries used by RFC 2080 (http://tools.ietf.org/htm

20. The Address Family Identifiers are maintained by IANA at http://www.iana.org/assignments/address-family-numbers/

234

http://tools.ietf.org/html/rfc2453.html
http://tools.ietf.org/html/rfc2453.html
http://tools.ietf.org/html/rfc2453.html
http://tools.ietf.org/html/rfc2082.html
http://tools.ietf.org/html/rfc2082.html
http://tools.ietf.org/html/rfc2082.html
http://tools.ietf.org/html/rfc4822.html
http://tools.ietf.org/html/rfc4822.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc2080.html
http://tools.ietf.org/html/rfc2080.html


l/rfc2080.html) is shown below. Plen is the length of the subnet identifier in bits and
the metric is encoded as one byte. The maximum metric is still 15.

Figure 5.50 Format of the RIP IPv6 route entries

Note: A note on timers
The first RIP implementations sent their distance vector exactly every 30
seconds. This worked well in most networks, but some researchers noticed
that routers were sometimes overloaded because they were processing too
many distance vectors at the same time [FJ1994]. They collected packet traces
in these networks and found that after some time the routers’ timers became
synchronised, i.e. almost all routers were sending their distance vectors at
almost the same time. This synchronisation of the transmission times of the
distance vectors caused an overload on the routers’ CPU but also increased the
convergence time of the protocol in some cases. This was mainly due to the
fact that all routers set their timers to the same expiration time after having
processed the received distance vectors. Sally Floyd and Van Jacobson proposed
in [FJ1994] a simple solution to solve this synchronisation problem. Instead of
advertising their distance vector exactly after 30 seconds, a router should send
its next distance vector after a delay chosen randomly in the [15,45] interval RF
C 2080 (http://tools.ietf.org/html/rfc2080.html). This randomisation of the
delays prevents the synchronisation that occurs with a fixed delay and is now a
recommended practice for protocol designers.

OSPF

Link-state routing protocols are used in IP networks. Open Shortest Path First (OSPF),
defined in RFC 2328 (http://tools.ietf.org/html/rfc2328.html), is the link state routing
protocol that has been standardised by the IETF. The last version of OSPF, which
supports IPv6, is defined in RFC 5340. OSPF is frequently used in enterprise networks
and in some ISP networks. However, ISP networks often use the IS-IS link-state routing
protocol [ISO10589] , which was developed for the ISO CLNP protocol but was adapted
to be used in IP RFC 1195 (http://tools.ietf.org/html/rfc4861.html) networks before the
finalisation of the standardisation of OSPF. A detailed analysis of ISIS and OSPF may be
found in [BMO2006] and [Perlman2000]. Additional information about OSPF may be
found in [Moy1998].

Compared to the basics of link-state routing protocols that we discussed in section
Link state routing, there are some particularities of OSPF that are worth discussing.
First, in a large network, flooding the information about all routers and links to
thousands of routers or more may be costly as each router needs to store all the
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information about the entire network. A better approach would be to introduce
hierarchical routing. Hierarchical routing divides the network into regions. All the
routers inside a region have detailed information about the topology of the region but
only learn aggregated information about the topology of the other regions and their
interconnections. OSPF supports a restricted variant of hierarchical routing. In OSPF’s
terminology, a region is called an area.

OSPF imposes restrictions on how a network can be divided into areas. An area is a set
of routers and links that are grouped together. Usually, the topology of an area is
chosen so that a packet sent by one router inside the area can reach any other router
in the area without leaving the area 21. An OSPF area contains two types of routers RFC
2328 (http://tools.ietf.org/html/rfc2328.html):

• Internal router : A router whose directly connected networks belong to the area

• Area border routers : A router that is attached to several areas.

For example, the network shown in the figure below has been divided into three areas
: area 1, containing routers R1, R3, R4, R5 and RA, area 2 containing R7, R8, R9, R10, RB
and RC. OSPF areas are identified by a 32 bit integer, which is sometimes represented
as an IP address. Among the OSPF areas, area 0, also called the backbone area has a
special role. The backbone area groups all the area border routers (routers RA, RB and
RC in the figure below) and the routers that are directly connected to the backbone
routers but do not belong to another area (router RD in the figure below). An
important restriction imposed by OSPF is that the path between two routers that
belong to two different areas (e.g. R1 and R8 in the figure below) must pass through
the backbone area.

21. OSPF can support virtual links to connect routers together that belong to the same area but are not directly connected.
However, this goes beyond this introduction to OSPF.
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Figure 5.51 OSPF areas

Inside each non-backbone area, routers distribute the topology of the area by
exchanging link state packets with the other routers in the area. The internal routers
do not know the topology of other areas, but each router knows how to reach the
backbone area. Inside an area, the routers only exchange link-state packets for all
destinations that are reachable inside the area. In OSPF, the inter-area routing is done
by exchanging distance vectors. This is illustrated by the network topology shown
below.

Let us first consider OSPF routing inside area 2. All routers in the area learn a route
towards 192.168.1.0/24 and 192.168.10.0/24. The two area border routers, RB and RC,
create network summary advertisements. Assuming that all links have a unit link
metric, these would be:

• RB advertises 192.168.1.0/24 at a distance of 2 and 192.168.10.0/24 at a distance of
• RC advertises 192.168.1.0/24 at a distance of 3 and 192.168.10.0/24 at a distance of

These summary advertisements are flooded through the backbone area attached to
routers RB and RC. In its routing table, router RA selects the summary advertised by
RB to reach 192.168.1.0/24 and the summary advertised by RC to reach 192.168.10.0/
24. Inside area 1, router RA advertises a summary indicating that 192.168.1.0/24 and
192.168.10.0/24 are both at a distance of 3 from itself.

On the other hand, consider the prefixes 10.0.0.0/24 and 10.0.1.0/24 that are inside
area 1. Router RA is the only area border router that is attached to this area. This
router can create two different network summary advertisements :

• 10.0.0.0/24 at a distance of 1 and 10.0.1.0/24 at a distance of 2 from RA

237



• 10.0.0.0/23 at a distance of 2 from RA

The first summary advertisement provides precise information about the distance
used to reach each prefix. However, all routers in the network have to maintain a
route towards 10.0.0.0/24 and a route towards 10.0.1.0/24 that are both via router RA.
The second advertisement would improve the scalability of OSPF by reducing the
number of routes that are advertised across area boundaries. However, in practice
this requires manual configuration on the border routers.

The second OSPF particularity that is worth discussing is the support of Local Area
Networks (LAN). As shown in the example below, several routers may be attached to
the same LAN.

Figure 5.52 Hierarchical routing with OSPF

Figure 5.53 An OSPF LAN containing several routers

A first solution to support such a LAN with a link-state routing protocol would be to
consider that a LAN is equivalent to a full-mesh of point-to-point links as if each router
can directly reach any other router on the LAN. However, this approach has two
important drawbacks :
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1. Each router must exchange HELLOs and link state packets with all the other
routers on the LAN. This increases the number of OSPF packets that are sent and
processed by each router.

2. Remote routers, when looking at the topology distributed by OSPF, consider that
there is a full-mesh of links between all the LAN routers. Such a full-mesh implies
a lot of redundancy in case of failure, while in practice the entire LAN may
completely fail. In case of a failure of the entire LAN, all routers need to detect the
failures and flood link state packets before the LAN is completely removed from
the OSPF topology by remote routers.

To better represent LANs and reduce the number of OSPF packets that are
exchanged, OSPF handles LAN differently. When OSPF routers boot on a LAN, they
elect 22 one of them as the Designated Router (DR) RFC 2328 (http://tools.ietf.org/html/rf
c2328.html). The DR router represents the local area network, and advertises the LAN’s
subnet (138.48.4.0/24 in the example above). Furthermore, LAN routers only exchange
HELLO packets with the DR. Thanks to the utilisation of a DR, the topology of the LAN
appears as a set of point-to-point links connected to the DR as shown in the figure
below.

Figure 5.54 OSPF representation of a LAN

Note: How to quickly detect a link failure ?
Network operators expect an OSPF network to be able to quickly recover from
link or router failures [VPD2004]. In an OSPF network, the recovery after a
failure is performed in three steps [FFEB2005] :

• the routers that are adjacent to the failure detect it quickly. The default
solution is to rely on the regular exchange of HELLO packets. However, the
interval between successive HELLOs is often set to 10 seconds... Setting
the HELLO timer down to a few milliseconds is difficult as HELLO packets
are created and processed by the main CPU of the routers and these
routers cannot easily generate and process a HELLO packet every
millisecond on each of their interfaces. A better solution is to use a
dedicated failure detection protocol such as the Bidirectional Forwarding
Detection (BFD) protocol defined in [KW2009] that can be implemented
directly on the router interfaces. Another solution to be able to detect the
failure is to instrument the physical and the datalink layer so that they can
interrupt the router when a link fails. Unfortunately, such a solution
cannot be used on all types of physical and datalink layers.

22. The OSPF Designated Router election procedure is defined in RFC 2328. Each router can be configured with a router
priority that influences the election process since the router with the highest priority is preferred when an election is
run.
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• the routers that have detected the failure flood their updated link state
packets in the network

• all routers update their routing table

5.3.2 Interdomain routing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

As explained earlier, the Internet is composed of more than 30,000 different networks
23 called domains. Each domain is composed of a group of routers and hosts that are
managed by the same organisation. Example domains include belnet (http://www.beln
et.be), sprint (http://www.sprint.net), level3 (http://www.level3.com), geant (http://ww
w.geant.net), abilene (http://www.internet2.edu), cisco (http://www.cisco.com) or googl
e (http://www.google.com) ...

Each domain contains a set of routers. From a routing point of view, these domains
can be divided into two classes : the transit and the stub domains. A stub domain
sends and receives packets whose source or destination are one of its own hosts. A
transit domain is a domain that provides a transit service for other domains, i.e. the
routers in this domain forward packets whose source and destination do not belong
to the transit domain. As of this writing, about 85% of the domains in the Internet are
stub domains. A stub domain that is connected to a single transit domain is called a
single-homed stub.A multihomed stub is a stub domain connected to two or more
transit providers.

Figure 5.55 Transit and stub domains

The stub domains can be further classified by considering whether they mainly send
or receive packets. An access-rich stub domain is a domain that contains hosts that
mainly receive packets. Typical examples include small ADSL-or cable modem-based
Internet Service Providers or enterprise networks. On the other hand, a content-rich
stub domain is a domain that mainly produces packets. Examples of content-rich stub
domains include google (http://www.google.com), yahoo (http://www.yahoo.com), mic
rosoft (http://www.microsoft.com), facebook (http://www.facebook.com) or content
distribution networks such as akamai (http://www.akamai.com) or limelight (http://uk.l
imelightnetworks.com/index.php) For the last few years, we have seen a rapid growth
of these content-rich stub domains. Recent measurements [ATLAS2009] indicate that

23. An analysis of the evolution of the number of domains on the global Internet during the last ten years may be found in
http://www.potaroo.net/tools/asn32/
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a growing fraction of all the packets exchanged on the Internet are produced in the
data centers managed by these content providers.

Domains need to be interconnected to allow a host inside a domain to exchange IP
packets with hosts located in other domains. From a physical perspective, domains
can be interconnected in two different ways. The first solution is to directly connect a
router belonging to the first domain with a router inside the second domain. Such
links between domains are called private interdomain links or private peering links. In
practice, for redundancy or performance reasons, distinct physical links are usually
established between different routers in the two domains that are interconnected.

Figure 5.56 Interconnection of two domains via a private peering link

Such private peering links are useful when, for example, an enterprise or university
network needs to be connected to its Internet Service Provider. However, some
domains are connected to hundreds of other domains 24. For some of these domains,
using only private peering links would be too costly. A better solution to allow many
domains to interconnect cheaply are the Internet eXchange Points (IXP). An IXP is usually
some space in a data center that hosts routers belonging to different domains. A
domain willing to exchange packets with other domains present at the IXP installs one
of its routers on the IXP and connects it to other routers inside its own network. The
IXP contains a Local Area Network to which all the participating routers are connected.
When two domains that are present at the IXP wish 25 to exchange packets, they
simply use the Local Area Network. IXPs are very popular in Europe and many Internet
Service Providers and Content providers are present in these IXPs.

Figure 5.57 Interconnection of two domains at an Internet eXchange Point

In the early days of the Internet, domains would simply exchange all the routes they
know to allow a host inside one domain to reach any host in the global Internet.
However, in today’s highly commercial Internet, this is no longer true as interdomain
routing mainly needs to take into account the economical relationships between the
domains. Furthermore, while intradomain routing usually prefers some routes over
others based on their technical merits (e.g. prefer route with the minimum number of

24. See http://as-rank.caida.org/ for an analysis of the interconnections between domains based on measurements
collected in the global Internet.

25. Two routers that are attached to the same IXP only exchange packets when the owners of their domains have an
economical incentive to exchange packets on this IXP. Usually, a router on an IXP is only able to exchange packets with a
small fraction of the routers that are present on the same IXP.
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hops, prefer route with the minimum delay, prefer high bandwidth routes over low
bandwidth ones, etc) interdomain routing mainly deals with economical issues. For
interdomain routing, the cost of using a route is often more important than the quality
of the route measured by its delay or bandwidth.

There are different types of economical relationships that can exist between domains.
Interdomain routing converts these relationships into peering relationships between
domains that are connected via peering links.

The first category of peering relationship is the customer->provider relationship. Such
a relationship is used when a customer domain pays an Internet Service Provider to
be able to exchange packets with the global Internet over an interdomain link. A
similar relationship is used when a small Internet Service Provider pays a larger
Internet Service Provider to exchange packets with the global Internet.

Figure 5.58 A simple Internet with peering relationships

To understand the customer->provider relationship, let us consider the simple
internetwork shown in the figure above. In this internetwork, AS7 is a stub domain that
is connected to one provider : AS4. The contract between AS4 and AS7 allows a host
inside AS7 to exchange packets with any host in the internetwork. To enable this
exchange of packets, AS7 must know a route towards any domain and all the domains
of the internetwork must know a route via AS4 that allows them to reach hosts inside
AS7. From a routing perspective, the commercial contract between AS7 and AS4 leads
to the following routes being exchanged :

• over a customer->provider relationship, the customer domain advertises to its
provider all its routes and all the routes that it has learned from its own
customers.

• over a provider->customer relationship, the provider advertises all the routes that it
knows to its customer.

The second rule ensures that the customer domain receives a route towards all
destinations that are reachable via its provider. The first rule allows the routes of the
customer domain to be distributed throughout the Internet.

Coming back to the figure above, AS4 advertises to its two providers AS1 and AS2 its
own routes and the routes learned from its customer, AS7. On the other hand, AS4
advertises to AS7 all the routes that it knows.
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The second type of peering relationship is the shared-cost peering relationship. Such a
relationship usually does not involve a payment from one domain to the other in
contrast with the customer->provider relationship. A shared-cost peering relationship is
usually established between domains having a similar size and geographic coverage.
For example, consider the figure above. If AS3 and AS4 exchange many packets via AS1,
they both need to pay AS1. A cheaper alternative for AS3 and AS4 would be to establish
a shared-cost peering. Such a peering can be established at IXPs where both AS3 and
AS4 are present or by using private peering links. This shared-cost peering should be
used to exchange packets between hosts inside AS3 and hosts inside AS4. However,
AS3 does not want to receive on the AS3-AS4 shared-cost peering links packets whose
destination belongs to AS1 as AS3 would have to pay to send these packets to AS1.

From a routing perspective, over a shared-cost peering relationship a domain only
advertises its internal routes and the routes that it has learned from its customers.
This restriction ensures that only packets destined to the local domain or one of its
customers is received over the shared-cost peering relationship. This implies that the
routes that have been learned from a provider or from another shared-cost peer is not
advertised over a shared-cost peering relationship. This is motivated by economical
reasons. If a domain were to advertise the routes that it learned from a provider over
a shared-cost peering relationship that does not bring revenue, it would have allowed
its shared-cost peer to use the link with its provider without any payment. If a domain
were to advertise the routes it learned over a shared cost peering over another shared-
cost peering relationship, it would have allowed these shared-cost peers to use its own
network (which may span one or more continents) freely to exchange packets.

Finally, the last type of peering relationship is the sibling. Such a relationship is used
when two domains exchange all their routes in both directions. In practice, such a
relationship is only used between domains that belong to the same company.

These different types of relationships are implemented in the interdomain routing
policies defined by each domain. The interdomain routing policy of a domain is
composed of three main parts :

• the import filter that specifies, for each peering relationship, the routes that can
be accepted from the neighbouring domain (the non-acceptable routes are
ignored and the domain never uses them to forward packets)

• the export filter that specifies, for each peering relationship, the routes that can
be advertised to the neighbouring domain

• the ranking algorithm that is used to select the best route among all the routes
that the domain has received towards the same destination prefix

A domain’s import and export filters can be defined by using the Route Policy
Specification Language (RPSL) specified in RFC 2622 (http://tools.ietf.org/html/rfc262
2.html) [GAVE1999] . Some Internet Service Providers, notably in Europe, use RPSL to
document 26 their import and export policies. Several tools help to easily convert a
RPSL policy into router commands.

The figure below provides a simple example of import and export filters for two
domains in a simple internetwork. In RPSL, the keyword ANY is used to replace any

26. See ftp://ftp.ripe.net/ripe/dbase for the RIPE database that contains the import and export policies of many European
ISPs
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route from any domain. It is typically used by a provider to indicate that it announces
all its routes to a customer over a provider->customer relationship. This is the case for
AS4‘s export policy. The example below clearly shows the difference between a
provider->customer and a shared-cost peering relationship. AS4‘s export filter
indicates that it announces only its internal routes (AS4) and the routes learned from
its clients (AS7) over its shared-cost peering with AS3, while it advertises all the routes
that it uses (including the routes learned from AS3) to AS7.

The Border Gateway Protocol

The Internet uses a single interdomain routing protocol : the Border Gateway Protocol
(BGP). The current version of BGP is defined in RFC 4271 (http://tools.ietf.org/html/rfc4
271.html). BGP differs from the intradomain routing protocols that we have already
discussed in several ways. First, BGP is a path-vector protocol. When a BGP router
advertises a route towards a prefix, it announces the IP prefix and the interdomain
path used to reach this prefix. From BGP’s point of view, each domain is identified by a
unique Autonomous System (AS) number 27 and the interdomain path contains the AS
numbers of the transit domains that are used to reach the associated prefix. This
interdomain path is called the AS Path. Thanks to these AS-Paths, BGP does not suffer
from the count-to-infinity problems that affect distance vector routing protocols.
Furthermore, the AS-Path can be used to implement some routing policies. Another
difference between BGP and the intradomain routing protocols is that a BGP router
does not send the entire contents of its routing table to its neighbours regularly. Given
the size of the global Internet, routers would be overloaded by the number of BGP
messages that they would need to process. BGP uses incremental updates, i.e. it only
announces the routes that have changed to its neighbours.

This Figure 5.60 shows a simple example of the BGP routes that are exchanged
between domains. In this example, prefix 1.0.0.0/8 is announced by AS1. AS1
advertises a BGP route towards this prefix to AS2. The AS-Path of this route indicates
that AS1 is the originator of the prefix. When AS4 receives the BGP route from AS1, it
re-announces it to AS2 and adds its AS number to the AS-Path. AS2 has learned two
routes towards prefix 1.0.0.0/8. It compares the two routes and prefers the route
learned from AS4 based on its own ranking algorithm. AS2 advertises to AS5 a route
towards 1.0.0.0/8 with its AS-Path set to AS2:AS4:AS1. Thanks to the AS-Path, AS5
knows that if it sends a packet towards 1.0.0.0/8 the packet first passes through AS2,
then through AS4 before reaching its destination inside AS1.

27. In this text, we consider Autonomous System and domain as synonyms. In practice, a domain may be divided into
several Autonomous Systems, but we ignore this detail.
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Figure 5.59 Import and export policies

Figure 5.60 Simple exchange of BGP routes

BGP routers exchange routes over BGP sessions. A BGP session is established
between two routers belonging to two different domains that are directly connected.
As explained earlier, the physical connection between the two routers can be
implemented as a private peering link or over an Internet eXchange Point. A BGP
session between two adjacent routers runs above a TCP connection (the default BGP
port is 179). In contrast with intradomain routing protocols that exchange IP packets
or UDP segments, BGP runs above TCP because TCP ensures a reliable delivery of the
BGP messages sent by each router without forcing the routers to implement
acknowledgements, checksums, etc. Furthermore, the two routers consider the
peering link to be up as long as the BGP session and the underlying TCP connection
remain up 28. The two endpoints of a BGP session are called BGP peers.

28. The BGP sessions and the underlying TCP connection are typically established by the routers when they boot based on
information found in their configuration. The BGP sessions are rarely released, except if the corresponding peering link
fails or one of the endpoints crashes or needs to be rebooted.
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Figure 5.61 A BGP peering session between two directly connected routers

In practice, to establish a BGP session between routers R1 and R2 in the figure above,
the network administrator of AS3 must first configure on R1 the IP address of R2 on
the R1-R2 link and the AS number of R2. Router R1 then regularly tries to establish the
BGP session with R2. R2 only agrees to establish the BGP session with R1 once it has
been configured with the IP address of R1 and its AS number. For security reasons, a
router never establishes a BGP session that has not been manually configured on the
router.

The BGP protocol RFC 4271 (http://tools.ietf.org/html/rfc4271.html) defines several
types of messages that can be exchanged over a BGP session :

• OPEN : this message is sent as soon as the TCP connection between the two
routers has been established. It initialises the BGP session and allows the
negotiation of some options. Details about this message may be found in RFC 427
1 (http://tools.ietf.org/html/rfc4271.html)

• NOTIFICATION : this message is used to terminate a BGP session, usually because
an error has been detected by the BGP peer. A router that sends or receives a
NOTIFICATION message immediately shutdowns the corresponding BGP session.

• UPDATE: this message is used to advertise new or modified routes or to withdraw
previously advertised routes.

• KEEPALIVE : this message is used to ensure a regular exchange of messages on the
BGP session, even when no route changes. When a BGP router has not sent an
UPDATE message during the last 30 seconds, it shall send a KEEPALIVE message to
confirm to the other peer that it is still up. If a peer does not receive any BGP
message during a period of 90 seconds 29, the BGP session is considered to be
down and all the routes learned over this session are withdrawn.

As explained earlier, BGP relies on incremental updates. This implies that when a BGP
session starts, each router first sends BGP UPDATE messages to advertise to the other
peer all the exportable routes that it knows. Once all these routes have been
advertised, the BGP router only sends BGP UPDATE messages about a prefix if the
route is new, one of its attributes has changed or the route became unreachable and
must be withdrawn. The BGP UPDATE message allows BGP routers to efficiently
exchange such information while minimising the number of bytes exchanged. Each
UPDATE message contains :

29. 90 seconds is the default delay recommended by RFC 4271. However, two BGP peers can negotiate a different timer
during the establishment of their BGP session. Using a too small interval to detect BGP session failures is not
recommended. BFD [KW2009] can be used to replace BGP’s KEEPALIVE mechanism if fast detection of interdomain link
failures is required.
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• a list of IP prefixes that are withdrawn
• a list of IP prefixes that are (re-)advertised
• the set of attributes (e.g. AS-Path) associated to the advertised prefixes

In the remainder of this chapter, and although all routing information is exchanged
using BGP UPDATE messages, we assume for simplicity that a BGP message contains
only information about one prefix and we use the words :

• Withdraw message to indicate a BGP UPDATE message containing one route that is
withdrawn

• Update message to indicate a BGP UPDATE containing a new or updated route
towards one destination prefix with its attributes needs to be rebooted

From a conceptual point of view, a BGP router connected to N BGP peers, can be
described as being composed of four parts as shown in the figure below.

Figure 5.62 Organisation of a BGP router

In this figure, the router receives BGP messages on the left part of the figure,
processes these messages and possibly sends BGP messages on the right part of the
figure. A BGP router contains three important data structures :

• the Adj-RIB-In contains the BGP routes that have been received from each BGP
peer. The routes in the Adj-RIB-In are filtered by the import filter before being
placed in the BGP-Loc-RIB. There is one import filter per BGP peer.

• the Local Routing Information Base (Loc-RIB) contains all the routes that are
considered as acceptable by the router. The Loc-RIB may contain several routes,
learned from different BGP peers, towards the same destination prefix.

• the Forwarding Information Base (FIB) is used by the dataplane to forward packets
towards their destination. The FIB contains, for each destination, the best route
that has been selected by the BGP decision process. This decision process is an
algorithm that selects, for each destination prefix, the best route according to the
router’s ranking algorithm that is part of its policy.

• the Adj-RIB-Out contains the BGP routes that have been advertised to each BGP
peer. The Adj-RIB-Out for a given peer is built by applying the peer‘s export filter
on the routes that have been installed in the FIB. There is one export filter per
BGP peer. For this reason, the Adj-RIB-Out of a peer may contain different routes
than the Adj-RIB-Out of another peer.

When a BGP session starts, the routers first exchange OPEN messages to negotiate the
options that apply throughout the entire session. Then, each router extracts from its
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FIB the routes to be advertised to the peer. It is important to note that, for each
known destination prefix, a BGP router can only advertise to a peer the route that it
has itself installed inside its FIB. The routes that are advertised to a peer must pass the
peer’s export filter. The export filter is a set of rules that define which routes can be
advertised over the corresponding session, possibly after having modified some of its
attributes. One export filter is associated to each BGP session. For example, on a
shared-cost peering, the export filter only selects the internal routes and the routes that
have been learned from a customer. The pseudo-code below shows the initialisation of
a BGP session.

def initiliaze_BGP_session( RemoteAS, RemoteIP):

# Initialize and start BGP session

# Send BGP OPEN Message to RemoteIP on port 179

# Follow BGP state machine

# advertise local routes and routes learned from peers*/

for d in BGPLocRIB :

B=build_BGP_Update(d)

S=Apply_Export_Filter(RemoteAS,B)

if (S != None) :

send_Update(S,RemoteAS,RemoteIP)

# entire RIB has been sent

# new Updates will be sent to reflect local or distant

# changes in routers

In the above pseudo-code, the build_BGP_UPDATE(d) procedure extracts from the BGP
Loc-RIB the best path towards destination d (i.e. the route installed in the FIB) and
prepares the corresponding BGP UPDATE message.

This message is then passed to the export filter that returns NULL if the route cannot
be advertised to the peer or the (possibly modified) BGP UPDATE message to be
advertised. BGP routers allow network administrators to specify very complex export
filters, see e.g. [WMS2004]. A simple export filter that implements the equivalent of split
horizon is shown below.

def apply_export_filter(RemoteAS, BGPMsg) :

# check if RemoteAS already received route

if RemoteAS is BGPMsg.ASPath : BGPMsg=None

# Many additional export policies can be configured :

# Accept or refuse the BGPMsg

# Modify selected attributes inside BGPMsg

return BGPMsg

At this point, the remote router has received all the exportable BGP routes. After this
initial exchange, the router only sends BGP UPDATE messages when there is a change
(addition of a route, removal of a route or change in the attributes of a route) in one of
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these exportable routes. Such a change can happen when the router receives a BGP
message. The pseudo-code below summarizes the processing of these BGP messages.

def Recvd_BGPMsg(Msg, RemoteAS) :

B=apply_import_filer(Msg,RemoteAS)

if (B== None): # Msg not acceptable

return

if IsUPDATE(Msg):

Old_Route=BestRoute(Msg.prefix)

Insert_in_RIB(Msg)

Run_Decision_Process(RIB)

if (BestRoute(Msg.prefix) != Old_Route) :

# best route changed

B=build_BGP_Message(Msg.prefix);

S=apply_export_filter(RemoteAS,B);

if (S!=None) : # announce best route

send_UPDATE(S,RemoteAS,RemoteIP);

else if (Old_Route != None) :

send_WITHDRAW(Msg.prefix,RemoteAS, RemoteIP)

else : # Msg is WITHDRAW

Old_Route=BestRoute(Msg.prefix)

Remove_from_RIB(Msg)

Run_Decision_Process(RIB)

if (Best_Route(Msg.prefix) !=Old_Route):

# best route changed

B=build_BGP_Message(Msg.prefix)

S=apply_export_filter(RemoteAS,B)

if (S != None) : # still one best route towards Msg.prefix

send_UPDATE(S,RemoteAS, RemoteIP);

else if(Old_Route != None) : # No best route anymore

send_WITHDRAW(Msg.prefix,RemoteAS,RemoteIP);

When a BGP message is received, the router first applies the peer’s import filter to
verify whether the message is acceptable or not. If the message is not acceptable, the
processing stops. The pseudo-code below shows a simple import filter. This import
filter accepts all routes, except those that already contain the local AS in their AS-Path.
If such a route was used, it would cause a routing loop. Another example of an import
filter would be a filter used by an Internet Service Provider on a session with a
customer to only accept routes towards the IP prefixes assigned to the customer by
the provider. On real routers, import filters can be much more complex and some
import filters modify the attributes of the received BGP UPDATE [WMS2004] .

def apply_import_filter (RemoteAS, BGMsg)
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if MysAS in BGPMsg.ASPath :

BGPMsg=None

# Many additional import policies can be configured :

# Accept or refuse the BGPMsg

# Modify selected attributes inside BGPMsg

return BGPMsg

Note: The bogon filters
Another example of frequently used import filters are the filters that Internet
Service Providers use to ignore bogon routes. In the ISP community, a bogon
route is a route that should not be advertised on the global Internet. Typical
examples include the private IPv4 prefixes defined in RFC 1918 (http://tools.iet
f.org/html/rfc1918.html), the loopback prefixes (127.0.0.1/8 and ::1/128) or the
IP prefixes that have not yet been allocated by IANA. A well managed BGP
router should ensure that it never advertises bogons on the global Internet.
Detailed information about these bogons may be found here (http://www.tea
m-cymru.org/Services/Bogons/).

If the import filter accepts the BGP message, the pseudo-code distinguishes two cases.
If this is an Update message for prefix p, this can be a new route for this prefix or a
modification of the route’s attributes. The router first retrieves from its RIB the best
route towards prefix p. Then, the new route is inserted in the RIB and the BGP
decision process is run to find whether the best route towards destination p changes.
A BGP message only needs to be sent to the router’s peers if the best route has
changed. For each peer, the router applies the export filter to verify whether the route
can be advertised. If yes, the filtered BGP message is sent. Otherwise, a Withdraw
message is sent. When the router receives a Withdraw message, it also verifies whether
the removal of the route from its RIB caused its best route towards this prefix to
change. It should be noted that, depending on the content of the RIB and the export
filters, a BGP router may need to send a Withdraw message to a peer after having
received an Update message from another peer and conversely.

Let us now discuss in more detail the operation of BGP in an IPv4 network. For this, let
us consider the simple network composed of three routers located in three different
ASes and shown in the figure below.

Figure 5.63 Utilisation of the BGP nexthop attribute

This network contains three routers : R1, R2 and R3. Each router is attached to a local
IPv4 subnet that it advertises using BGP. There are two BGP sessions, one between R1
and R2 and the second between R2 and R3.A /30 subnet is used on each interdomain
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link (195.100.0.0/30 on R1-R2 and 195.100.0.4/30 on R2-R3). The BGP sessions run
above TCP connections established between the neighbouring routers (e.g.
195.100.0.1 -195.100.0.2 for the R1-R2 session).

Let us assume that the R1-R2 BGP session is the first to be established. A BGP Update
message sent on such a session contains three fields :

• the advertised prefix
• the BGP nexthop
• the attributes including the AS-Path

We use the notation U(prefix, nexthop, attributes) to represent such a BGP Update
message in this section. Similarly, W(prefix) represents a BGP withdraw for the
specified prefix. Once the R1-R2 session has been established, R1 sends
U(194.100.0.0/24,195.100.0.1,AS10) to R2 and R2 sends U(194.100.2.0/
23,195.100.0.2,AS20). At this point, R1 can reach 194.100.2.0/23 via 195.100.0.2 and R2
can reach 194.100.0.0/24 via 195.100.0.1.

Once the R2-R3 has been established, R3 sends U (194.100.1.0/24,195.100.0.6,AS30). R2
announces on the R2R3 session all the routes inside its RIB. It thus sends to R3 :
U(194.100.0.0/24,195.100.0.5,AS20:AS10) and U(194.100.2.0/23,195.100.0.5,AS20). Note
that when R2 advertises the route that it learned from R1, it updates the BGP nexthop
and adds its AS number to the AS-Path. R2 also sends U(194.100.1.0/
24,195.100.0.2,AS20:AS30) to R1 on the R1-R3 session. At this point, all BGP routes have
been exchanged and all routers can reach 194.100.0.0/24, 194.100.2.0/23 and
194.100.1.0/24.

If the link between R2 and R3 fails, R3 detects the failure as it did not receive
KEEPALIVE messages recently from R2. At this time, R3 removes from its RIB all the
routes learned over the R2-R3 BGP session. R2 also removes from its RIB the routes
learned from R3. R2 also sends W(194.100.1.0/24) to R1 over the R1-R3 BGP session
since it does not have a route anymore towards this prefix.

Note: Origin of the routes advertised by a BGP router
A frequent practical question about the operation of BGP is how a BGP router
decides to originate or advertise a route for the first time. In practice, this
occurs in two situations :

• the router has been manually configured by the network operator to
always advertise one or several routes on a BGP session. For example, on
the BGP session between UCLouvain and its provider, belnet , UCLouvain’s
router always advertises the 130.104.0.0/16 IPv4 prefix assigned to the
campus network

• the router has been configured by the network operator to advertise over
its BGP session some of the routes that it learns with its intradomain
routing protocol. For example, an enterprise router may advertise over a
BGP session with its provider the routes to remote sites when these routes
are reachable and advertised by the intradomain routing protocol
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The first solution is the most frequent. Advertising routes learned from an
intradomain routing protocol is not recommended, this is because if the route
flaps 30, this would cause a large number of BGP messages being exchanged in
the global Internet.

Most networks that use BGP contain more than one router. For example, consider the
network shown in the figure below where AS20 contains two routers attached to
interdomain links : R2 and R4. In this network, two routing protocols are used by R2
and R4. They use an intradomain routing protocol such as OSPF to distribute the
routes towards the internal prefixes : 195.100.0.8/30, 195.100.0.0/30, ... R2 and R4 also
use BGP. R2 receives the routes advertised by AS10 while R4 receives the routes
advertised by AS30. These two routers need to exchange the routes that they have
respectively received over their BGP sessions.

Figure 5.64 A larger network using BGP

A first solution to allow R2 and R3 to exchange the interdomain routes that they have
learned over their respective BGP sessions would be to configure the intradomain
routing protocol to distribute inside AS20 the routes learned over the BGP sessions.
Although current routers support this feature, this is a bad solution for two reasons :

1. Intradomain routing protocols cannot distribute the attributes that are attached
to a BGP route. If R4 received via the intradomain routing protocol a route
towards 194.100.0.0/23 that R2 learned via BGP, it would not know that the route
was originated by AS10 and the only advertisement that it could send to R3 would
contain an incorrect AS-Path

2. Intradomain routing protocols have not been designed to support the hundreds
of thousands of routes that a BGP router can receive on today’s global Internet.

The best solution to allow BGP routers to distribute, inside an AS, all the routes
learned over BGP sessions is to establish BGP sessions among all the BGP routers
inside the AS. In practice, there are two types of BGP sessions :

• eBGP session or external BGP session. Such a BGP session is established between
two routers that are directly connected and belong to two different domains.

• iBGP session or internal BGP session. Such a BGP session is established between
two routers belonging to the same domain. These two routers do not need to be
directly connected.

30. A link is said to be flapping if it switches several between an operational state and a disabled state within a short
period of time. A router attached to such a link would need to frequently send routing messages.

252



In practice, each BGP router inside a domain maintains an iBGP session with every
other BGP router in the domain 31. This creates a full-mesh of iBGP sessions among all
BGP routers of the domain. iBGP sessions, like eBGP sessions run over TCP
connections. Note that in contrast with eBGP sessions that are established between
directly connected routers, iBGP sessions are often established between routers that
are not directly connected.

An important point to note about iBGP sessions is that a BGP router only advertises a
route over an iBGP session provided that :

• the router uses this route to forward packets, and
• the route was learned over one of the router’s eBGP sessions

A BGP router does not advertise a route that it has learned over an iBGP session over
another iBGP session. Note that a router can, of course, advertise over an eBGP
session a route that it has learned over an iBGP session. This difference between the
behaviour of a BGP router over iBGP and eBGP session is due to the utilisation of a
full-mesh of iBGP sessions. Consider a network containing three BGP routers : A, B
and C interconnected via a full-mesh of iBGP sessions. If router A learns a route
towards prefix p from router B, router A does not need to advertise the received route
to router C since router C also learns the same route over the C-B iBGP session.

To understand the utilisation of an iBGP session, let us consider what happens when
router R1 sends U(194.100.0.0/23,195.100.0.1,AS10) in the network shown below. This
BGP message is processed by R2 which advertises it over its iBGP session with R4. The
BGP Update sent by R2 contains the same nexthop and the same AS-Path as in the BGP
Update received by R2. R4 then sends U(194.100.0.0/23,195.100.0.5,AS20:AS10) to R3.
Note that the BGP nexthop and the AS-Path are only updated 32 when a BGP route is
advertised over an eBGP session.

Figure 5.65 iBGP and eBGP sessions

Note: Loopback interfaces and iBGP sessions
In addition to their physical interfaces, routers can also be configured with a

31. Using a full-mesh of iBGP sessions is suitable in small networks. However, this solution does not scale in large networks
containing hundreds or more routers since n(n-1)/2 iBGP sessions must be established in a domain containing n BGP
routers. Large domains use either Route Reflection RFC 4456 or confederations RFC 5065 to scale their iBGP, but this
goes beyond this introduction.

32. Some routers, when they receive a BGP Update over an eBGP session, set the nexthop of the received route to one of
their own addresses. This is called nexthop-self. See e.g. [WMS2004] for additional details.
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special loopback interface. A loop-back interface is a software interface that is
always up. When a loopback interface is configured on a router, the address
associated to this interface is advertised by the intradomain routing protocol.
Consider for example a router with two point-to-point interfaces and one
loopback interface. When a point-to-point interface fails, it becomes
unreachable and the router cannot receive anymore packets via this IP address.
This is not the case for the loopback interface. It remains reachable as long as
at least one of the router’s interfaces remains up. iBGP sessions are usually
established using the router’s loopback addresses as endpoints. This allows
the iBGP session and its underlying TCP connection to remain up even if
physical interfaces fail on the routers.

Now that routers can learn interdomain routes over iBGP and eBGP sessions, let us
examine what happens when router R3 sends a packet destined to 194.100.1.234. R3
forwards this packet to R4. R4 uses an intradomain routing protocol and BGP. Its BGP
routing table contains the following longest prefix match :

• 194.100.0.0/23 via 195.100.0.1

This routes indicates that to forward a packet towards 194.100.0.0/23, R4 needs to
forward the packet along the route towards 195.100.0.1. However, R4 is not directly
connected to 195.100.0.1. R4 learned a route that matches this address thanks to its
intradomain routing protocol that distributed the following routes :

• 195.100.0.0/30 via 195.100.0.10
• 195.100.0.4/30 East
• 195.100.0.8/30 North
• 194.100.2.0/23 via 195.100.0.10
• 194.100.0.4/23 West

To build its forwarding table, R4 must combine the routes learned from the
intradomain routing protocol with the routes learned from BGP. Thanks to its
intradomain routing table, for each interdomain route R4 replaces the BGP nexthop
with its shortest path computed by the intradomain routing protocol. In the figure
above, R4 forwards packets to 194.100.0.0/23 via 195.100.0.10 to which it is directly
connected via its North interface. R4 ‘s resulting forwarding table, which associates an
outgoing interface for a directly connected prefix or a directly connected nexthop and
an outgoing interface for prefixes learned via BGP, is shown below :

• 194.100.0.0/23 via 195.100.0.10 (North)
• 195.100.0.0/30 via 195.100.0.10 (North)
• 195.100.0.4/30 East
• 195.100.0.8/30 North
• 194.100.2.0/23 via 195.100.0.10 (North)
• 194.100.4.0/23 West

There is thus a coupling between the interdomain and the intradomain routing tables.
If the intradomain routes change, e.g. due to link failures or changes in link metrics,
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then the forwarding table must be updated on each router as the shortest path
towards a BGP nexthop may have changed.

The last point to be discussed before looking at the BGP decision process is that a
network may contain routers that do not maintain any eBGP session. These routers
can be stub routers attached to a single router in the network or core routers that
reside on the path between two border routers that are using BGP as illustrated in the
figure below.

In the scenario above, router R2 needs to be able to forward a packet towards any
destination in the 12.0.0.0/8 prefix inside AS30. Such a packet would need to be
forwarded by router R5 since this router resides on the path between R2 and its BGP
nexthop attached to R4. Two solutions can be used to ensure that R2 is able to
forward such interdomain packets :

• enable BGP on router R5 and include this router in the iBGP full-mesh. Two iBGP
sessions would be added in the figure above : R2-R5 and R4-R5. This solution
works and is used by many ASes. However, it forces all routers to have enough
resources (CPU and memory) to run BGP and maintain a large forwarding table

• encapsulate the interdomain packets sent through the AS so that router R5 never
needs to forward a packet whose destination is outside the local AS. Different
encapsulation mechanisms exist. MultiProtocol Label Switching (MPLS) RFC 3031
(http://tools.ietf.org/html/rfc3031.html) and the Layer 2 Tunneling Protocol (L2TP)
RFC 3931 (http://tools.ietf.org/html/rfc3931.html) are frequently used in large
domains, but a detailed explanation of these techniques is outside the scope of
this section. The simplest encapsulation scheme to understand is in IP in IP
defined in RFC 2003 (http://tools.ietf.org/html/rfc2003.html). This encapsulation
scheme places an IP packet (called the inner packet), including its payload, as the
payload of a larger IP packet (called the outer packet). It can be used by border
routers to forward packets via routers that do not maintain a BGP routing table.
For example, in the figure above, if router R2 needs to forward a packet towards
destination 12.0.0.1, it can add at the front of this packet an IPv4 header whose
source address is set to one of its IPv4 addresses and whose destination address
is one of the IPv4 addresses of R4. The Protocol field of the IP header is set to 4 to
indicate that it contains an IPv4 packet. The packet is forwarded by R5 to R4
based on the forwarding table that it built thanks to its intradomain routing table.
Upon reception of the packet, R4 removes the outer header and consults its (BGP)
forwarding table to forward the packet towards R3.

Figure 5.66 How to deal with non-BGP routers ?
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The BGP decision process

Besides the import and export filters, a key difference between BGP and the
intradomain routing protocols is that each domain can define is own ranking
algorithm to determine which route is chosen to forward packets when several routes
have been learned towards the same prefix. This ranking depends on several BGP
attributes that can be attached to a BGP route.

The first BGP attribute that is used to rank BGP routes is the local-preference (local-
pref) attribute. This attribute is an unsigned integer that is attached to each BGP route
received over an eBGP session by the associated import filter.

When comparing routes towards the same destination prefix, a BGP router always
prefers the routes with the highest local-pref. If the BGP router knows several routes
with the same local-pref, it prefers among the routes having this local-pref the ones
with the shortest AS-Path.

The local-pref attribute is often used to prefer some routes over others. This attribute
is always present inside BGP Updates exchanged over iBGP sessions, but never
present in the messages exchanged over eBGP sessions.

A common utilisation of local-pref is to support backup links. Consider the situation
depicted in the figure below. AS1 would always like to use the high bandwidth link to
send and receive packets via AS2 and only use the backup link upon failure of the
primary one.

As BGP routers always prefer the routes with the highest local-pref attribute, this
policy can be implemented using the following import filter on R1

import: from AS2 RA at R1 set localpref=100;

from AS2 RB at R1 set localpref=200;

accept ANY

With this import filter, all the BGP routes learned from RB over the high bandwidth
links are preferred over the routes learned over the backup link. If the primary link
fails, the corresponding routes are removed from R1‘s RIB and R1 uses the route
learned from RA. R1 reuses the routes via RB as soon as they are advertised by RB
once the R1-RB link comes back.
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Figure 5.67 How to create a backup link with BGP ?

The import filter above modifies the selection of the BGP routes inside AS1. Thus, it
influences the route followed by the packets forwarded by AS1. In addition to using
the primary link to send packets, AS1 would like to receive its packets via the high
bandwidth link. For this, AS2 also needs to set the local-pref attribute in its import
filter.

import: from AS1 R1 at RA set localpref=100;

from AS1 R1 at RB set localpref=200;

accept AS1

Sometimes, the local-pref attribute is used to prefer a cheap link compared to a more
expensive one. For example, in the network below, AS1 could wish to send and receive
packets mainly via its interdomain link with AS4.

Figure 5.68 How to prefer a cheap link over an more expensive one ?

AS1 can install the following import filter on R1 to ensure that it always sends packets
via R2 when it has learned a route via AS2 and another via AS4.

import: from AS2 RA at R1 set localpref=100;

from AS4 R2 at R1 set localpref=200;

accept ANY

However, this import filter does not influence how AS3 , for example, prefers some
routes over others. If the link between AS3 and AS2 is less expensive than the link
between AS3 and AS4, AS3 could send all its packets via AS2 and AS1 would receive
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packets over its expensive link. An important point to remember about local-pref is
that it can be used to prefer some routes over others to send packets, but it has no
influence on the routes followed by received packets.

Another important utilisation of the local-pref attribute is to support the customer-
>provider and shared-cost peering relationships. From an economic point of view,
there is an important difference between these three types of peering relationships. A
domain usually earns money when it sends packets over a provider->customer
relationship. On the other hand, it must pay its provider when it sends packets over a
customer->provider relationship.

Using a shared-cost peering to send packets is usually neutral from an economic
perspective. To take into account these economic issues, domains usually configure
the import filters on their routers as follows :

• insert a high local-pref attribute in the routes learned from a customer
• insert a medium local-pref attribute in the routes learned over a shared-cost

peering
• insert a low local-pref attribute in the routes learned from a provider

With such an import filter, the routers of a domain always prefer to reach destinations
via their customers whenever such a route exists. Otherwise, they prefer to use
shared-cost peering relationships and they only send packets via their providers when
they do not know any alternate route. A consequence of setting the local-pref attribute
like this is that Internet paths are often asymmetrical. Consider for example the
internetwork shown in the figure below.

Figure 5.69 Asymmetry of Internet paths

Consider in this internetwork the routes available inside AS1 to reach AS5. AS1 learns
the AS4:AS6:AS7:AS5 path from AS4, the AS3:AS8:AS5 path from AS3 and the AS2:AS5 path
from AS2. The first path is chosen since it was from learned from a customer. AS5 on
the other hand receives three paths towards AS1 via its providers. It may select any of
these paths to reach AS1 , depending on how it prefers one provider over the others.
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Coming back to the organisation of a BGP router shown in figure Figure 5.62, the last
part to be discussed is the BGP decision process. The BGP Decision Process is the
algorithm used by routers to select the route to be installed in the FIB when there are
multiple routes towards the same prefix. The BGP decision process receives a set of
candidate routes towards the same prefix and uses seven steps. At each step, some
routes are removed from the candidate set and the process stops when the set only
contains one route 33:

1. Ignore routes having an unreachable BGP nexthop
2. Prefer routes having the highest local-pref
3. Prefer routes having the shortest AS-Path
4. Prefer routes having the smallest MED
5. Prefer routes learned via eBGP sessions over routes learned via iBGP sessions
6. Prefer routes having the closest next-hop
7. Tie breaking rules : prefer routes learned from the router with lowest router id

The first step of the BGP decision process ensures that a BGP router does not install in
its FIB a route whose nexthop is considered to be unreachable by the intradomain
routing protocol. This could happen, for example, when a router has crashed. The
intradomain routing protocol usually advertises the failure of this router before the
failure of the BGP sessions that it terminates. This rule implies that the BGP decision
process must be re-run each time the intradomain routing protocol reports a change
in the reachability of a prefix containing one of more BGP nexthops.

The second rule allows each domain to define its routing preferences. The local-pref
attribute is set by the import filter of the router that learned a route over an eBGP
session.

In contrast with intradomain routing protocols, BGP does not contain an explicit
metric. This is because in the global Internet it is impossible for all domains to agree
on a common metric that meets the requirements of all domains. Despite this, BGP
routers prefer routes having a short AS-Path attribute over routes with a long AS-Path.
This step of the BGP decision process is motivated by the fact that operators expect
that a route with a long AS-Path is lower quality than a route with a shorter AS-Path.
However, studies have shown that there was not always a strong correlation between
the quality of a route and the length of its AS-Path [HFPMC2002].

Before explaining the fourth step of the BGP decision process, let us first describe the
fifth and the sixth steps of the BGP decision process. These two steps are used to
implement hot potato routing. Intuitively, when a domain implements hot potato
routing, it tries to forward packets that are destined to addresses outside of its
domain, to other domains as quickly as possible.

To understand hot potato routing, let us consider the two domains shown in the figure
below. AS2 advertises prefix 1.0.0.0/8 over the R2-R6 and R3-R7 peering links. The
routers inside AS1 learn two routes towards 1.0.0.0/8: one via R6-R2 and the second
via R7-R3.

33. Some BGP implementations can be configured to install several routes towards a single prefix in their FIB for load-
balancing purposes. However, this goes beyond this introduction to BGP.
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Figure 5.70 Hot and cold potato routing

With the fifth step of the BGP decision process, a router always prefers to use a route
learned over an eBGP session compared to a route learned over an iBGP session. Thus,
router R6 (resp. R7) prefers to use the route via router R2 (resp. R3) to reach prefix
1.0.0.0/8.

The sixth step of the BGP decision process takes into account the distance, measured
as the length of the shortest intradomain path, between a BGP router and the BGP
nexthop for routes learned over iBGP sessions. This rule is used on router R8 in the
example above. This router has received two routes towards 1.0.0.0/8:

• 1.0.0.0/8 via R7 that is at a distance of 1 from R8
• 1.0.0.0/8 via R6 that is at a distance of 50 from R8

The first route, via R7 is the one that router R8 prefers, as this is the route that
minimises the cost of forwarding packets inside AS1 before sending them to AS2.

Hot potato routing allows AS1 to minimise the cost of forwarding packets towards AS2.
However, there are situations where this is not desirable. For example, assume that
AS1 and AS2 are domains with routers on both the East and the West coast of the US.
In these two domains, the high metric associated to links R6-R8 and R0-R2 correspond
to the cost of forwarding a packet across the USA. If AS2 is a customer that pays AS1, it
would prefer to receive the packets destined to 1.0.0.0/8 via the R2-R6 link instead of
the R7-R3 link. This is the objective of cold potato routing.

Cold potato routing is implemented using the Multi-Exit Discriminator (MED) attribute.
This attribute is an optional BGP attribute that may be set 34 by border routers when
advertising a BGP route over an eBGP session. The MED attribute is usually used to
indicate over an eBGP session the cost to reach the BGP nexthop for the advertised
route. The MED attribute is set by the router that advertises a route over an eBGP
session. In the example above, router R2 sends U(1.0.0.0/8,R2,AS2,MED=1) while R3
sends U(1.0.0.0/8,R3,AS2,MED=98).

Assume that the BGP session R7-3 is the first to be established. R7 sends U(1.0.0.0/
8,R3,AS2,MED=98) to both R8 and R6. At this point, all routers inside AS1 send the

34. The MED attribute can be used on customer->provider peering relationships upon request of the customer. On shared-
cost peering relationship, the MED attribute is only enabled when there is a explicit agreement between the two peers.
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packets towards 1.0.0.0/8 via R7-R3. Then, the R6R2 BGP session is established and
router R6 receives U(1.0.0.0/8,R2,AS2,MED=1). Router R6 runs its decision process for
destination 1.0.0.0/8 and selects the route via R2 as its chosen route to reach this
prefix since this is the only route that it knows. R6 sends U(1.0.0.0/8,R2,AS2,MED=1) to
routers R8 and R7. They both run their decision process and prefer the route
advertised by R6, as it contains the smallest MED. Now, all routers inside AS1 forward
the packets to 1.0.0.0/8 via link R6-R2 as expected by AS2. As router R7 no longer uses
the BGP route learned via R3, it must stop advertising it over iBGP sessions and sends
W(1.0.0.0/8) over its iBGP sessions with R6 and R8. However, router R7 still keeps the
route learned from R3 inside its Adj-RIB-In. If the R6-R2 link fails, R6 sends W(1.0.0.0/8)
over its iBGP sessions and router R7 responds by sending U(1.0.0.0/8,R3,AS2,MED=98)
over its iBGP sessions.

In practice, the fifth step of the BGP decision process is slightly more complex, as the
routes towards a given prefix can be learned from different ASes. For example,
assume that in figure Hot and cold potato routing, 1.0.0.0/8 is also advertised by AS3
(not shown in the figure) that has peering links with routers R6 and R8. If AS3
advertises a route whose MED attribute is set to 2 and another with a MED set to 3,
how should AS1‘s router compare the four BGP routes towards 1.0.0.0/8 ? Is a MED
value of 1 from AS2 better than a MED value of 2 from AS3 ? The fifth step of the BGP
decision process solves this problem by only comparing the MED attribute of the
routes learned from the same neighbour AS. Additional details about the MED
attribute may be found in RFC 4451 (http://tools.ietf.org/html/rfc4451.html). It should
be noted that using the MED attribute may cause some problems in BGP networks as
explained in [GW2002]. In practice, the MED attribute is not used on eBGP sessions
unless the two domains agree to enable it.

The last step of the BGP decision allows the selection of a single route when a BGP
router has received several routes that are considered as equal by the first six steps of
the decision process. This can happen for example in a dual-homed stub attached to
two different providers. As shown in the figure below, router R1 receives two equally
good BGP routes towards 1.0.0.0/8. To break the ties, each router is identified by a
unique router-id which in practice is one of the IP addresses assigned to the router.
On some routers, the lowest router id step in the BGP decision process is replaced by
the selection of the oldest route RFC 5004 (http://tools.ietf.org/html/rfc50404.html).
Preferring the oldest route when breaking ties is used to prefer stable paths over
unstable paths. However, a drawback of this approach is that the selection of the BGP
routes depends on the arrival times of the corresponding messages. This makes the
BGP selection process non-deterministic and can lead to problems that are difficult to
debug.
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Figure 5.71 A stub connected to two providers

BGP convergence

In the previous sections, we have explained the operation of BGP routers. Compared
to intradomain routing protocols, a key feature of BGP is its ability to support
interdomain routing policies that are defined by each domain as its import and export
filters and ranking process. A domain can define its own routing policies and router
vendors have implemented many configuration tweaks to support complex routing
policies. However, the routing policy chosen by a domain may interfere with the
routing policy chosen by another domain. To understand this issue, let us first
consider the simple internetwork shown below.

Figure 5.72 The disagree internetwork

In this internetwork, we focus on the route towards 1.0.0.0/8 which is advertised by
AS1. Let us also assume that AS3 (resp. AS4) prefers, e.g. for economic reasons, a route
learned from AS4 (AS3) over a route learned from AS1. When AS1 sends U(1.0.0.0/8,AS1)
to AS3 and AS4, three sequences of exchanges of BGP messages are possible :

1. AS3 sends first U(1.0.0.0/8,AS3:AS1) to AS4. AS4 has learned two routes towards
1.0.0.0/8. It runs its BGP decision process and selects the route via AS3 and does
not advertise a route to AS3

2. AS4 first sends U(1.0.0.0/8,AS3:AS1) to AS3. AS3 has learned two routes towards
1.0.0.0/8. It runs its BGP decision process and selects the route via AS4 and does
not advertise a route to AS4

3. AS3 sends U(1.0.0.0/8,AS3:AS1) to AS4 and, at the same time, AS4 sends U(1.0.0.0/
8,AS4:AS1). AS3 prefers the route via AS4 and thus sends W(1.0.0.0/8) to AS4. In
the mean time, AS4 prefers the route via AS3 and thus sends W(1.0.0.0/8) to AS3.
Upon reception of the BGP Withdraws, AS3 and AS4 only know the direct route
towards 1.0.0.0/8. AS3 (resp. AS4) sends U(1.0.0.0/8,AS3:AS1) (resp. U(1.0.0.0/
8,AS4:AS1)) to AS4 (resp. AS3). AS3 and AS4 could in theory continue to exchange
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BGP messages for ever. In practice, one of them sends one message faster than
the other and BGP converges.

The example above has shown that the routes selected by BGP routers may
sometimes depend on the ordering of the BGP messages that are exchanged. Other
similar scenarios may be found in RFC 4264 (http://tools.ietf.org/html/rfc4264.html).

From an operational perspective, the above configuration is annoying since the
network operators cannot easily predict which paths are chosen. Unfortunately, there
are even more annoying BGP configurations. For example, let us consider the
configuration below which is often named Bad Gadget [GW1999]

In this internetwork, there are four ASes. AS0 advertises one route towards one prefix
and we only analyse the routes towards this prefix. The routing preferences of AS1,
AS3 and AS4 are the following :

• AS1 prefers the path AS3:AS0 over all other paths
• AS3 prefers the path AS4:AS0 over all other paths
• AS4 prefers the path AS1:AS0 over all other paths

AS0 sends U(p,AS0) to AS1, AS3 and AS4. As this is the only route known by AS1, AS3 and
AS4 towards p, they all select the direct path. Let us now consider one possible
exchange of BGP messages :

1. AS1 sends U(p, AS1:AS0) to AS3 and AS4. AS4 selects the path via AS1 since this is its
preferred path. AS3 still uses the direct path.

2. AS4 advertises U(p,AS4:AS1:AS0) to AS3.
3. AS3 sends U(p, AS3:AS0) to AS1 and AS4. AS1 selects the path via AS3 since this is its

preferred path. AS4 still uses the path via AS1.
4. As AS1 has changed its path, it sends U(p,AS1:AS3:AS0) to AS4 and W(p) to AS3

since its new path is via AS3. AS4 switches back to the direct path.
5. AS4 sends U(p,AS4:AS0) to AS1 and AS3. AS3 prefers the path via AS4.
6. AS3 sends U(p,AS3:AS4:AS0) to AS1 and W(p) to AS4. AS1 switches back to the direct

path and we are back at the first step.

Figure 5.73 The bad gadget internetwork

This example shows that the convergence of BGP is unfortunately not always
guaranteed as some interdomain routing policies may interfere with each other in
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complex ways. [GW1999] have shown that checking for global convergence is either
NP-complete or NP-hard. See [GSW2002] for a more detailed discussion.

Fortunately, there are some operational guidelines [GR2001] [GGR2001] that can
guarantee BGP convergence in the global Internet. To ensure that BGP will converge,
these guidelines consider that there are two types of peering relationships : customer-
>provider and shared-cost. In this case, BGP convergence is guaranteed provided that
the following conditions are fulfilled :

1. The topology composed of all the directed customer->provider peering links is an
acyclic graph

2. An AS always prefers a route received from a customer over a route received
from a shared-cost peer or a provider.

The first guideline implies that the provider of the provider of ASx cannot be a
customer of ASx. Such a relationship would not make sense from an economic
perspective as it would imply circular payments. Furthermore, providers are usually
larger than customers.

The second guideline also corresponds to economic preferences. Since a provider
earns money when sending packets to one of its customers, it makes sense to prefer
such customer learned routes over routes learned from providers. [GR2001] also
shows that BGP convergence is guaranteed even if an AS associates the same
preference to routes learned from a shared-cost peer and routes learned from a
customer.

From a theoretical perspective, these guidelines should be verified automatically to
ensure that BGP will always converge in the global Internet. However, such a
verification cannot be performed in practice because this would force all domains to
disclose their routing policies (and few are willing to do so) and furthermore the
problem is known to be NP-hard [GW1999].

In practice, researchers and operators expect that these guidelines are verified 35 in
most domains. Thanks to the large amount of BGP data that has been collected by
operators and researchers 36, several studies have analysed the AS-level topology of
the Internet. [SARK2002] is one of the first analysis. More recent studies include
[COZ2008] and [DKF+2007]

Based on these studies and [ATLAS2009], the AS-level Internet topology can be
summarised as shown in the figure below.

35. Some researchers such as [MUF+2007] have shown that modelling the Internet topology at the AS-level requires more
than the sharedcost and customer->provider peering relationships. However, there is no publicly available model that
goes beyond these classical peering relationships.

36. BGP data is often collected by establishing BGP sessions between Unix hosts running a BGP daemon and BGP routers in
different ASes. The Unix hosts stores all BGP messages received and regular dumps of its BGP routing table. See
http://www.routeviews.org, http://www.ripe.net/ris, http://bgp.potaroo.net or http://irl.cs.ucla.edu/topology/
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Figure 5.74 The layered structure of the global Internet

The domains on the Internet can be divided in about four categories according to their
role and their position in the AS-level topology.

• the core of the Internet is composed of a dozen-twenty Tier-1 ISPs. A Tier-1 is a
domain that has no provider. Such an ISP has shared-cost peering relationships
with all other Tier-1 ISPs and provider->customer relationships with smaller ISPs.
Examples of Tier-1 ISPs include sprint (http://sprint.net/), level3 (http://level3.com)
or opentransit (http://www.opentransit.net)

• the Tier-2 ISPs are national or continental ISPs that are customers of Tier-1 ISPs.
These Tier-2 ISPs have smaller customers and shared-cost peering relationships
with other Tier-2 ISPs. Example of Tier-2 ISPs include France Telecom, Belgacom,
British Telecom, ...

• the Tier-3 networks are either stub domains such as enterprise or campus
networks networks and smaller ISPs. They are customers of Tier-1 and Tier-2 ISPs
and have sometimes shared-cost peering relationships

• the large content providers that are managing large datacenters. These content
providers are producing a growing fraction of the packets exchanged on the
global Internet [ATLAS2009]. Some of these content providers are customers of
Tier-1 or Tier-2 ISPs, but they often try to establish shared-cost peering
relationships, e.g. at IXPs, with many Tier-1 and Tier-2 ISPs.

Due to this organisation of the Internet and due to the BGP decision process, most AS-
level paths on the Internet have a length of 3-5 AS hops.
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5.4 Summary

5.5 Exercises

5.5.1 Principles
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. Routing protocols used in data networks only use positive link weights. What
would happen with a distance vector routing protocol in the network below that
contains a negative link weight ?

Figure 5.75 Simple network

2. When a network specialist designs a network, one of the problems that he needs
to solve is to set the metrics the links in his network. In the USA, the Abilene
network interconnects most of the research labs and universities. The figure
below shows the topology 37 of this network in 2009.

Figure 5.76 The Abilene network

In this network, assume that all the link weights are set to 1. What is the paths
followed by a packet sent by the router located in Los Angeles to reach :

37. This figure was downloaded from the Abilene observatory. This observatory contains a detailed description of the
Abilene network including detailed network statistics and all the configuration of the equipment used in the network.
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• the router located in New York
• the router located in Washington ?

Is it possible to configure the link metrics so that the packets sent by the router
located in Los Angeles to the routers located in respectively New York and Washington
do not follow the same path ?

Is it possible to configure the link weights so that the packets sent by the router
located in Los Angeles to router located in New York follow one path while the packets
sent by the router located in New York to the router located in Los Angeles follow a
completely different path ?

Assume that the routers located in Denver and Kansas City need to exchange lots of
packets. Can you configure the link metrics such that the link between these two
routers does not carry any packet sent by another router in the network ?

3. In the five nodes network shown below, can you configure the link metrics so that
the packets sent by router E to router A use link B->A while the packets sent by
router B use links B->D and D->A?

Figure 5.77 Simple five nodes network

4. In the five nodes network shown above, can you configure the link weights so that
the packets sent by router E (resp. F) follow the E->B->A path (resp. F->D->B->A)?
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5. In the above questions, you have worked on the stable state of the routing tables
computed by routing protocols. Let us now consider the transient problems that
main happen when the network topology changes 38. For this, consider the
network topology shown in the figure below and assume that all routers use a
distance vector protocol that uses split horizon.

Figure 5.78 Simple network with redundant links

If you compute the routing tables of all routers in this network, you would obtain a
table such as the table below :

Destination
Routes
on A

Routes
on B

Routes
on C

Routes
on D

Routes
on E

A 0 1 via A 2 via B 3 via C 4 via D

B 1 via B 0 1 via B 2 via C 3 via D

C 2 via B 1 via C 0 1 via C 2 via D

D 3 via B 2 via C 1 via D 0 1 via D

E 4 via B 3 via C 2 via D 1 via E 0

Distance vector protocols can operate in two different modes : periodic updates and
triggered updates. Periodic updates is the default mode for a distance vector protocol.
For example, each router could advertise its distance vector every thirty seconds. With
the triggered updates a router sends its distance vector when its routing table
changes (and periodically when there are no changes).

• Consider a distance vector protocol using split horizon and periodic updates.
Assume that the link B-C fails. B and C update their local routing table but they
will only advertise it at the end of their period. Select one ordering for the periodic
updates and every time a router sends its distance vector, indicate the vector sent
to each neighbor and update the table above. How many periods are required to
allow the network to converge to a stable state ?

38. The main events that can affect the topology of a network are : - the failure of a link. Measurements performed in IP
networks have shown that such failures happen frequently and usually for relatively short periods of time - the addition
of one link in the network. This may be because a new link has been provisioned or more frequently because the link
failed some time ago and is now back - the failure/crash of a router followed by its reboot. - a change in the metric of a
link by reconfiguring the routers attached to the link See http://totem.info.ucl.ac.be/lisis_tool/lisis-example/ for an
analysis of the failures inside the Abilene network in June 2005 or http://citeseer.ist.psu.edu/old/
markopoulou04characterization.html for an analysis of the failures affecting a larger ISP network
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• Consider the same distance vector protocol, but now with triggered updates. When
link B-C fails, assume that B updates its routing table immediately and sends its
distance vector to A and D. Assume that both A and D process the received
distance vector and that A sends its own distance vector, ... Indicate all the
distance vectors that are exchanged and update the table above each time a
distance vector is sent by a router (and received by other routers) until all routers
have learned a new route to each destination. How many distance vector
messages must be exchanged until the network converges to a stable state ?

6. Consider the network shown below. In this network, the metric of each link is set
to 1 except link A-B whose metric is set to 4 in both directions. In this network,
there are two paths with the same cost between D and C. Old routers would
randomly select one of these equal cost paths and install it in their forwarding
table. Recent routers are able to use up to N equal cost paths towards the same
destination.

Figure 5.79 A simple network running OSPF

On recent routers, a lookup in the forwarding table for a destination address returns a
set of outgoing interfaces. How would you design an algorithm that selects the
outgoing interface used for each packet, knowing that to avoid reordering, all
segments of a given TCP connection should follow the same path ?
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7. Consider again the network shown above. After some time, OSPF converges and
all routers compute the following routing tables :

Destination
Routes
on A

Routes
on B

Routes
on C

Routes
on D

Routes
on E

A 0 2 via C 1 via A 3 via B,E 2 via C

B 2 via C 0 1 via B 1 via B 2 via D,C

C 1 via C 1 via C 0 2 via B,E 1 via C

D 3 via C 1 via D 2 via B,E 0 1 via D

E 2 via C 2 via C,D 1 via E 1 via E 0

An important difference between OSPF and RIP is that OSPF routers flood link state
packets that allow the other routers to recompute their own routing tables while RIP
routers exchange distance vectors. Consider that link B-C fails and that router B is the
first to detect the failure. At this point, B cannot reach anymore A, C and 50% of its
paths towards E have failed. C cannot reach B anymore and half of its paths towards D
have failed.

Router B will flood its updated link state packet through the entire network and all
routers will recompute their forwarding table. Upon reception of a link state packet,
routers usually first flood the received link-state packet and then recompute their
forwarding table. Assume that B is the first to recompute its forwarding table,
followed by D, A, C and finally E

8. After each update of a forwarding table, verify which pairs of routers are able to
exchange packets. Provide your answer using a table similar to the one shown
above.

9. Can you find an ordering of the updates of the forwarding tables that avoids all
transient problems ?

10. Consider the network shown in the figure below and explain the path that will be
followed by the packets to reach 194.100.10.0/23

Figure 5.80 A stub connected to one provider
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11. Consider, now, as shown in the figure below that the stub AS is now also
connected to provider AS789. Via which provider will the packets destined to
194.100.10.0/23 will be received by AS4567 ? Should AS123 change its configuration
?

12. Consider that stub shown in the figure below decides to advertise two /24
prefixes instead of its allocated /23 prefix.

1. Via which provider does AS4567 receive the packets destined to 194.100.11.99
and 194.100.10.1 ?

2. How is the reachability of these addresses affected when link R1-R3 fails ?
3. Propose a configuration on R1 that achieves the same objective as the one

shown in the figure but also preserves the reachability of all IP addresses
inside AS4567 if one of AS4567‘s interdomain links fails ?

Figure 5.81 A stub connected to two providers

13. Consider the network shown in the figure below. In this network, each AS
contains a single BGP router. Assume that R1 advertises a single prefix. R1
receives a lot of packets from R9. Without any help from R2, R9 or R4, how could
R1 configure its BGP advertisement such that it receives the packets from R9 via
R3 ? What happens when a link fails ?

14. Consider the network show in the figure below.
1. Show which BGP messages are exchanged when router R1 advertises prefix

10.0.0.0/8.
2. How many and which routes are known by router R5 ? Which route does it

advertise to R6?
3. Assume now that the link between R1 and R2 fails. Show the messages

exchanged due to this event. Which BGP messages are sent to R6 ?

15. Consider the network shown in the figure below where R1 advertises a single
prefix. In this network, the link between R1 and R2 is considered as a backup link.
It should only be used only when the primary link (R1-R4) fails. This can be
implemented on R2 by setting a low local-pref to the routes received on link R2-R1

1. In this network, what are the paths used by all routers to reach R1 ?
2. Assume now that the link R1-R4 fails. Which BGP messages are exchanged

and what are now the paths used to reach R1 ?
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3. Link R1-R4 comes back. Which BGP messages are exchanged and what do
the paths used to reach R1 become ?

16. On February 22, 2008, the Pakistan Telecom Authority issued an order to Pakistan
ISPs to block access to three IP addresses belonging to youtube: 208.65.153.238,
208.65.153.253, 208.65.153.251. One operator noted that these addresses were
belonging to the same /24 prefix. Read http://www.ripe.net/news/studyyoutube-
hijacking.html to understand what happened really.

1. What should have done youtube (http://www.youtube.com) to avoid this
problem ?

Figure 5.82 A stub connected to two providers
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Figure 5.83 A simple internetwork
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Figure 5.84 A simple internetwork
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Figure 5.85 A simple internetwork with a backup link

2. What kind of solutions would you propose to improve the security of
interdomain routing ?
17. There are currently 13 IPv4 addresses that are associated to the root servers of

the Domain Name System. However, http://www.root-servers.org/ indicates that
there are more than 100 different physical servers that support. This is a large
anycast service. How would you configure BGP routers to provide such anycast
service ?

18. Consider the network shown in the figure below. In this network, R0 advertises
prefix p and all link metrics are set to 1
◦ Draw the iBGP and eBGP sessions
◦ Assume that session R0-R8 is down when R0 advertises p over R0-R7. What

are the BGP messages exchanged and the routes chosen by each router in
the network ?

◦ Session R0-R8 is established and R0 advertises prefix p over this session as
well

◦ Do the routes selected by each router change if the MED attribute is used on
the R7-R6 and R3-R10 sessions, but not on the R4-R9 and R6-R8 sessions ?

◦ Is it possible to configure the routers in the R1 -R6 network such that R4
reaches prefix p via R6-R8 while R2‘uses the ‘R3-R10 link ?
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Figure 5.86 A simple Internet

19. The BGP MED attribute is often set at the IGP cost to reach the BGP nexthop of
the advertised prefix. However, routers can also be configured to always use the
same MED values for all routes advertised over a given session. How would you
use it in the figure above so that link R10-R3 is the primary link while R7-R6 is a
backup link ? Is there an advantage or drawback of using the MED attribute for
this application compared to local-pref ?

20. In the figure above, assume that the managers of R8 and R9 would like to use the
R8-R6 link as a backup link, but the managers of R4 and R6 do no agree to use the
BGP MED attribute nor to use a different local-pref for the routes learned from.

5.5.2 Practice
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. For the following IPv4 subnets, indicate the smallest and the largest IPv4 address
inside the subnet :
◦ 8.0.0.0/8
◦ 172.12.0.0/16
◦ 200.123.42.128/25
◦ 12.1.2.0/13

2. For the following IPv6 subnets, indicate the smallest and the largest IPv6 address
inside the subnet :
◦ FE80::/64
◦ 2001:db8::/48
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◦ 2001:6a8:3080::/48

3. Researchers and network operators collect and expose lots of BGP data. For this,
they establish eBGP sessions between data collection routers and production
routers located in operational networks. Several data collection routers are
available, the most popular ones are :
◦ http://www.routeviews.org
◦ http://www.ripe.net/ris

For this exercise, you will use one of the routeviews BGP routers. You can access one
of these routers by using telnet (http://en.wikipedia.org/wiki/Telnet). Once logged on
the router, you can use the router’s command line interface to analyse its BGP routing
table.

telnet route-views.routeviews.org

Trying 128.223.51.103...

Connected to route-views.routeviews.org.

Escape character is ’^]’.

C

*********************************************************************

Oregon Exchange BGP Route Viewer

route-views.oregon-ix.net / route-views.routeviews.org

route views data is archived on http://archive.routeviews.org

This hardware is part of a grant from Cisco Systems. Please contact

help@routeviews.org if you have questions or comments about this

service, its use, or if you might be able to contribute your view.

This router has views of the full routing tables from several ASes.

The list of ASes is documented under "Current Participants" on

http://www.routeviews.org/.

**************

route-views.routeviews.org is now using AAA for logins. Login with

username "rviews". See http://routeviews.org/aaa.html

*********************************************************************

User Access Verification

Username: rviews

route-views.oregon-ix.net>

This router has eBGP sessions with routers from several ISPs. See here (http://www.ro
uteviews.org/peers/route-views.oregon-ix.net.txt) for an up-to-date list of all eBGP
sessions maintained by this router.

Among all the commands supported by this router, the show ip bgp command is very
useful. This command takes an IPv4 prefix as parameter and allows you to retrieve all
the routes that this routers has received in its Adj-RIB-In for the specified prefix.

1. Use show ip bgp 130.104.0.0/16 to find the best path used by this router to reach
UCLouvain
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2. Knowing that 130.104.0.0/16 is announced by belnet (AS2611), what are, according
to this BGP routing tables, the ASes that peer with belnet

3. Do the same analysis for one of the IPv4 prefixes assigned to Skynet (AS5432) :
62.4.128.0/17. The output of the show ip bgp 62.4.128.0/17 reveals something
strange as it seems that one of the paths towards this prefix passes twice via
AS5432. Can you explain this ?

2905 702 1239 5432 5432

196.7.106.245 from 196.7.106.245 (196.7.106.245)

Origin IGP, metric 0, localpref 100, valid, external

4. netkit (http://www.netkit.org) allows to easily perform experiments by using an
emulated environment is is composed of virtual machines running User Model
Linux. netkit allows to setup a small network in a lab and configure it as if you had
access to several PCs interconnected by using cables and network equipments.

A netkit (http://www.netkit.org) lab is defined as a few configuration files and scripts :

lab.conf is a textfile that defines the virtual machines and the network topology. A
simple lab.conf file is shown below.

LAB_DESCRIPTION="a string describing the lab"

LAB_VERSION=1.0

LAB_AUTHOR="the author of the lab"

LAB_EMAIL="email address of the author"

h1[0]="lan"

h2[0]="lan"

This configuration file requests the creation of two virtual machines, named h1
and h2. Each of these hosts has one network

A host.startup file for each host (h1.startup and h2.startup in the example above). This
file is a shell script that is executed at the end of the boot of the virtual host. This is
typically in this script that the network interfaces are configured and the daemons are
launched. A directory for each host (h1 and h2 in the example above). This directory is
used to store configuration files that must be copied on the virtual machine’s
filesystems when they are first created.

netkit (http://www.netkit.org) contains several scripts that can be used to run a lab.
lstart allows to launch a lab and lhalt allows to halt the machines at the end of a lab. If
you need to exchange files between the virtual machines and the Linux host on which
netkit (http://www.netkit.org) runs, note that the virtual hosts mount the directory that
contains the running lab in /hostlab and your home directory in /hosthome.

For this exercise, you will use a netkit (http://www.netkit.org) lab containing 4 hosts
and two routers. The configuration files are available exercises/labs/
lab-2routers.tar.gz. The network topology of this lab is shown in the figure below.
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Figure 5.87 The two routers lab

The lab.conf file for this lab is shown below.

h1[0]="lan1"

h2[0]="lan1"

h3[0]="lan2"

router1[0]="lan1"

router1[1]="lan2"

router2[0]="lan2"

router2[1]="lan3"

h4[0]="lan3"

In this network, we will use subnet 172.12.1.0/24 for lan1, 172.12.2.0/24 for lan2 and
172.12.3.0/24 for lan3.

On Linux, the IP addresses assigned on an interface can be configured by using
ifconfig(8). When ifconfig(8) is used without parameters, it lists all the existing interfaces
of the host with their configuration. A sample ifconfig(8) output is shown below.

host:~# ifconfig

eth0  Link encap:Ethernet HWaddr FE:3A:59:CD:59:AD

Inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0

inet6 addr: fe80::fc3a:59ff:fecd:59ad/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:3 errors:0 dropped:0 overruns:0 frame:0

TX packets:3 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:216 (216.0 b) TX bytes:258 (258.0 b)

Interrupt:5

lo    Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0
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TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

This host has two interfaces : the loopback interface (lo with IPv4 address 127.0.0.1
and IPv6 address ::1) and the eth0 interface. The 192.168.1.1/24 address and a link
local IPv6 address (fe80::fc3a:59ff:fecd:59ad/64) have been assigned to interface eth0.
The broadcast address is used in some particular cases, this is outside the scope of
this exercise. ifconfig(8) also provides statistics such as the number of packets sent
and received over this interface. Another important information that is provided by
ifconfig(8) is the hardware address (HWaddr) used by the datalink layer of the
interface. On the example above, the eth0 interface uses the 48 bits
FE:3A:59:CD:59:AD hardware address.

You can configure the IPv4 address assigned to an interface by specifying the address
and the netmask.

ifconfig eth0 192.168.1.2 netmask 255.255.255.128 up

You can also specify the prefix length

.. code-block:: text

ifconfig eth0 192.168.1.2/25 up
In both cases, ifconfig eth0 allows you to verify that the interface has been correctly
configured.

eth0  Link encap:Ethernet HWaddr FE:3A:59:CD:59:AD

inet addr:192.168.1.2 Bcast:192.168.1.127 Mask:255.255.255.128

inet6 addr: fe80::fc3a:59ff:fecd:59ad/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:3 errors:0 dropped:0 overruns:0 frame:0

TX packets:3 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:216 (216.0 b) TX bytes:258 (258.0 b)

Interrupt:5

Another important command on Linux is route(8) that allows to look at the contents of
the routing table stored in the Linux kernel and change it. For example, route -n
returns the contents of the IPv4 routing table. See route(8) for a detailed description
on how you can configure routes by using this tool.

1. Use ifconfig(8) to configure the following IPv4 addresses :

• 172.16.1.11/24 on interface eth0 on h1
• 172.16.1.12/24 on interface eth0 on h2
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2. Use route -n to look at the contents of the routing table on the two hosts.
3. Verify by using ping(8) that h1 can reach address 172.16.2.1.
4. Use ifconfig(8) to configure IPv4 address 172.16.1.1/24 on the eth0 interface of

router1 and 172.16.2.1/24 on the eth1 interface on this router. Verify by using
ping(8) that h1 can reach 172.16.1.12

5. Since hosts h1 and h2 are attached to a local area network that contains a single
router, this router can act as a default router. Add a default route on h1 and h2 so
that they can use router1 as their default router to reach any remote IPv4
address.

6. What do you need to configure on router2, h3 and h4 so that all hosts and
routers can reach all hosts and routers in the emulated network ? Add the ifconfig
and route commands in the .startup files of all the hosts so that the network is
correctly configured when it is started by using lstart.

5. Use the network configured above to test how IP packets are fragmented. The
ifconfig command allows you to specify the Maximum Transmission Unit (MTU),
i.e. the largest size of the frames that are allowed on a given interface. The default
MTU on the eth? interfaces is 1500 bytes.

1. Force an MTU of 500 bytes on the three interfaces attached to lan2.
2. Use ping -s 1000 to send a 1000 bytes ping packet from h3 to one of the

routers attached to lan2 and capture the packets on the other router by
using tcpdump(8) . In which order does the emulated host sends the IP
fragments ?

3. Use ping -s 2000 to send a 2000 bytes ping packet from h1 to h4 and capture
the packets on lan2 and lan3 by using tcpdump(8) . In which order does the
emulated host sends the IP fragments ?

4. From your measurements, how does an emulated host generate the
identifiers of the IP packets that it sends ?

5. Reset the MTU on the eth1 interface of router r1 at 1500 bytes, but leave the
MTU on the eth0 interface of router r2 at 500 bytes. Check whether host h1
can ping host h4. Use tcpdump(8) to analyse what is happening.

6. The Routing Information Protocol (RIP) is a distance vector protocol that is
often used in small IP networks. There are various implementations of RIP.
For this exercise, you will use quagga (http://www.quagga.net/), an open-
source implementation of several IP routing protocols that runs on Linux and
other Unix compatible operating systems. quagga(8) is in fact a set of
daemons that interact together and with the Linux kernel. For this exercise,
you will use two of these daemons : zebra(8) and ripd(8) . zebra(8) is the
master daemon that handles the interactions between the Linux kernel
routing table and the routing protocols. ripd(8) is the implementation of the
RIP protocol. It interacts with the Linux routing tables through the zebra(8)

daemon.

To use a Linux real or virtual machine as a router, you need to first configure the IP
addresses of the interfaces of the machine. Once this configuration has been verified,
you can configure the zebra(8) and ripd(8) daemons. The configuration files for
these daemons reside in /etc/zebra . The first configuration file is /etc/zebra/
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daemons. It lists the daemons that are launched when zebra is started by /etc/init.d/
zebra. To enable ripd(8) and zebra(8) , this file will be configured as follows.

# This file tells the zebra package # which daemons to start.

# Entries are in the format: <daemon>=(yes|no|priority)

# where ’yes’ is equivalent to infinitely low priority, and

# lower numbers mean higher priority. Read

# /usr/doc/zebra/README.Debian for details.

# Daemons are: bgpd zebra ospfd ospf6d ripd ripngd

zebra=yes

bgpd=no

ospfd=yes

ospf6d=no

ripd=no

ripngd=no

The second configuration file is the /etc/zebra/zebra.conf file. It defines the global
configuration rules that apply to zebra(8). For this exercise, we use the default
configuration file shown below.

! -*-zebra -*

!

! zebra configuration file

!

hostname zebra

password zebra

enable password zebra

!

! Static default route sample.

!

!ip route 0.0.0.0/0 203.181.89.241

!

log file /var/log/zebra/zebra.log

In the zebra configuration file, lines beginning with ! are comments. This configuration
defines the hostname as zebra and two passwords. The default password (password
zebra) is the one that must be given when connecting to the zebra(8) management
console over a TCP connection. This management console can be use like a shell on a
Unix host to specify commands to the zebra(8) daemons. The second one (enable
password zebra) specifies the password to be provided before giving commands that
change the configuration of the daemon. It is also possible to specify static routes in
this configuration file, but we do not use this facility in this exercise. The last
parameter that is specified is the log file where zebra(8) writes debugging information.
Additional information about quagga are available from here (http://www.quagga.net/
docs/docs-info.php).
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The most interesting configuration file for this exercise is the /etc/zebra/ripd.conf file.
It contains all the parameters that are specific to the operation of the RIP protocol. A
sample ripd(8) configuration file is shown below.

!

hostname ripd

password zebra

enable password zebra

!

router rip

network 100.1.0.0/16

redistribute connected

!

log file /var/log/zebra/ripd.log

This configuration files shown the two different ways to configure ripd(8). The
statement router rip indicates the beginning of the configuration for the RIP routing
protocol. The indented lines that follow are part of the configuration of this protocol.
The first line, network 100.1.0.0/16 is used to enable RIP on the interface whose IP
subnet matches 100.1.0.0/16. The second line, redistribute connected indicates that all
the subnetworks that are directly connected on the router should be advertised.
When this configuration line is used, ripd(8) interacts with the Linux kernel routing
table and advertises all the subnetworks that are directly connected on the router. If a
new interface is enabled and configured on the router, its subnetwork prefix will be
automatically advertised. Similarly, the subnetwork prefix will be automatically
removed if the subnetwork interface is shutdown.

To experiment with RIP, you will use the emulated routers shown in the figure below.
You can download the entire lab from here (http://exercises/labs/lab-5routers-rip.tar.g
z).

Figure 5.88 The five routers lab

The lab.conf describing the topology and the interfaces used on all hosts is shown
below/

283

http://exercises/labs/lab-5routers-rip.tar.gz
http://exercises/labs/lab-5routers-rip.tar.gz
http://exercises/labs/lab-5routers-rip.tar.gz


r1[0]="A"

r1[1]="B"

r1[2]="F"

r1[3]="V"

r2[0]="A"

r2[1]="C"

r2[2]="W"

r3[0]="B"

r3[1]="C"

r3[2]="D"

r3[3]="X"

r4[0]="D"

r4[1]="E"

r4[2]="Y"

r5[0]="E"

r5[1]="F"

r5[2]="Z"

There are two types of subnetworks in this topology. The subnetworks from the
172.16.0.0/16 prefix are used on the links between routers while the subnetworks
from the 192.168.0.0/16 prefix are used on the local area networks that are attached
to a single router.

A router can be configured in two different ways : by specifying configuration files and
by typing the commands directly on the router by using telnet(1) . The first four
routers have been configured in the provided configuration files. Look at r1.startup
and the configurations files in r1/tmp/zebra in the lab’s directory for router r1. The
r?.startup files contain the ifconfig(8) commands that are used to configure the
interfaces of each virtual router. The configuration files located in r?/tmp/zebra are
also copied automatically on the virtual router when it boots.

1. Launch the lab by using lstart and verify that router r1 can reach 192.168.1.1,
192.168.2.2, 192.168.3.3 and 192.168.4.4. You can also traceroute(8) to
determine what is the route followed by your packets.

2. The ripd(8) daemon can also be configured by typing commands over a TCP
connection. ripd(8) listens on port 2602. On router r1, use telnet 127.0.0.1 2602
to connect to the ripd(8) daemon. The default password is zebra. Once logged
on the ripd(8) daemon, you reach the > prompt where you can query the status
of the router. By typing ? at the prompt, you will find the list of supported
commands. The show command is particularly useful, type show ? to obtain the
list of its sub options. For example, show ip rip will return the routing table that is
maintained by the ripd(8) daemon.

3. Disable interface eth3 on router r1 by typing ifconfig eth3 down on this router.
Verify the impact of this command on the routing tables of the other routers in
the network. Re-enable this interface by typing ifconfig eth3 up.

4. Do the same with the eth1 interface on router r3.
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5. Edit the /etc/zebra/ripd.conf configuration file on router r5 so that this router
becomes part of the network. Verify that 192.168.5.5 is reachable by all routers
inside the network.

7. The Open Shortest Path First (OSPF) protocol is a link-state protocol that is often
used in enterprise IP networks. OSPF is implemented in the ospfd(8) daemon
that is part of quagga. We use the same topology as in the previous exercise. The
netkit lab may be downloaded from exercises/labs/lab-5routers-ospf.tar.gz.

8. The ospfd(8) daemon supports a more complex configuration that the ripd(8)

daemon. A sample configuration is shown below.

!

hostname ospfd

password zebra

enable password zebra

!

interface eth0

ip ospf cost 1

interface eth1

ip ospf cost 1

interface eth2

ip ospf cost 1

interface eth3

ip ospf cost 1

!

router ospf

router-id 192.168.1.1

network 172.16.1.0/24 area 0.0.0.0

network 172.16.2.0/24 area 0.0.0.0

network 172.16.3.0/24 area 0.0.0.0

network 192.168.1.0/24 area 0.0.0.0

passive-interface eth3

!

log file /var/log/zebra/ospfd.log

In this configuration file, the ip ospf cost 1 specify a metric of 1 for each interface. The
ospfd(8) configuration is composed of three parts. First, each router must have one

identifier that is unique inside the network. Usually, this identifier is one of the IP
addresses assigned to the router. Second, each subnetwork on the router is
associated with an area. In this example, we only use the backbone area (i.e. 0.0.0.0).
The last command specifies that the OSPF Hello messages should not be sent over
interface eth3 although its subnetwork will be advertised by the router. Such a
command is often used on interfaces that are attached to endhosts to ensure that no
problem will occur if a student configures a software OSPF router on his laptop
attached to this interface.
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The netkit (http://www.netkit.org/%20lab) contains already the configuration for
routers r1 -r4.

The ospfd(8) daemon listens on TCP port 2604. You can follow the evolution of the
OSPF protocol by using the show ip ospf ? commands.

1. Launch the lab by using lstart and verify that the 192.168.1.1, 192.168.2.2,
192.168.3.3 and 192.168.4.4 addresses are reachable from any router inside the
network.

2. Configure router r5 by changing the /etc/zebra/ospfd.conf file and restart the
daemon. Verify that the 192.168.5.5 address is reachable from any router inside
the network.

3. How can you update the network configuration so that the packets sent by router
r1 to router r5 use the direct link between the two routers while the packets sent
by r5 are forwarded via r4 ?

4. Disable interface eth3 on router r1 and see how quickly the network converges ?
You can follow the evolution of the routing table on a router by typing netstat -
rnc. Re-enable interface eth3 on router r1.

5. Change the MTU of eth0 on router r1 but leave it unchanged on interface eth0 of
router r2. What is the impact of this change ? Can you explain why ?

6. Disable interface eth1 on router r3 and see how quickly the network converges ?
Re-enable this interface.

7. Halt router r2 by using vcrash r2. How quickly does the network react to this
failure ?
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Chapter 6 The datalink layer and the
Local Area Networks

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The datalink layer is the lowest layer of the reference model that we discuss in detail.
As mentioned previously, there are two types of datalink layers. The first datalink
layers that appeared are the ones that are used on pointto-point links between
devices that are directly connected by a physical link. We will briefly discuss one of
these datalink layers in this chapter. The second type of datalink layers are the ones
used in Local Area Networks (LANs). The main difference between the point-to-point
and the LAN datalink layers is that the latter need to regulate the access to the Local
Area Network which is usually a shared medium.

This chapter is organised as follows. We first discuss the principles of the datalink
layer as well as the services that it uses from the physical layer. We then describe in
more detail several Medium Access Control algorithms that are used in Local Area
Networks to regulate the access to the shared medium. Finally we discuss in detail
important datalink layer technologies with an emphasis on Ethernet and WiFi
networks.

6.1 Principles
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The datalink layer uses the service provided by the physical layer. Although there are
many different implementations of the physical layer from a technological
perspective, they all provide a service that enables the datalink layer to send and
receive bits between directly connected devices. The datalink layer receives packets
from the network layer. Two datalink layer entities exchange frames. As explained in
the previous chapter, most datalink layer technologies impose limitations on the size
of the frames. Some technologies only impose a maximum frame size, others enforce
both minimum and maximum frames sizes and finally some technologies only
support a single frame size. In the latter case, the datalink layer will usually include an
adaptation sublayer to allow the network layer to send and receive variable-length
packets. This adaptation layer may include fragmentation and reassembly
mechanisms.
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Figure 6.1 The datalink layer and the reference model

The physical layer service facilitates the sending and receiving of bits. Furthermore, it
is usually far from perfect as explained in the introduction :

• the Physical layer may change, e.g. due to electromagnetic interferences, the
value of a bit being transmitted

• the Physical layer may deliver more bits to the receiver than the bits sent by the
sender

• the Physical layer may deliver fewer bits to the receiver than the bits sent by the
sender

The datalink layer must allow endsystems to exchange frames containing packets
despite all of these limitations. On point-to-point links and Local Area Networks, the
first problem to be solved is how to encode a frame as a sequence of bits, so that the
receiver can easily recover the received frame despite the limitations of the physical
layer.

If the physical layer were perfect, the problem would be very simple. The datalink
layer would simply need to define how to encode each frame as a sequence of
consecutive bits. The receiver would then easily be able to extract the frames from the
received bits. Unfortunately, the imperfections of the physical layer make this framing
problem slightly more complex. Several solutions have been proposed and are used in
practice in different datalink layer technologies.

6.1.1 Framing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This is the framing problem. It can be defined as : “How does a sender encode frames so
that the receiver can efficiently extract them from the stream of bits that it receives from
the physical layer”.

A first solution to solve the framing problem is to require the physical layer to remain
idle for some time after the transmission of each frame. These idle periods can be
detected by the receiver and serve as a marker to delineate frame boundaries.
Unfortunately, this solution is not sufficient for two reasons. First, some physical
layers cannot remain idle and always need to transmit bits. Second, inserting an idle
period between frames decreases the maximum bandwidth that can be achieved by
the datalink layer.

Some physical layers provide an alternative to this idle period. All physical layers are
able to send and receive physical symbols that represent values 0 and 1. However, for
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various reasons that are outside the scope of this chapter, several physical layers are
able to exchange other physical symbols as well. For example, the Manchester
encoding used in several physical layers can send four different symbols. The
Manchester encoding is a differential encoding scheme in which time is divided into
fixed-length periods. Each period is divided in two halves and two different voltage
levels can be applied. To send a symbol, the sender must set one of these two voltage
levels during each half period. To send a 1 (resp. 0), the sender must set a high (resp.
low) voltage during the first half of the period and a low (resp. high) voltage during the
second half. This encoding ensures that there will be a transition at the middle of each
period and allows the receiver to synchronise its clock to the sender’s clock. Apart
from the encodings for 0 and 1, the Manchester encoding also supports two additional
symbols : InvH and InvB where the same voltage level is used for the two half periods.
By definition, these two symbols cannot appear inside a frame which is only
composed of 0 and 1. Some technologies use these special symbols as markers for the
beginning or end of frames.

Figure 6.2 Manchester encoding

Unfortunately, multi-symbol encodings cannot be used by all physical layers and a
generic solution which can be used with any physical layer that is able to transmit and
receive only 0 and 1 is required. This generic solution is called stuffing and two
variants exist : bit stuffing and character stuffing. To enable a receiver to easily
delineate the frame boundaries, these two techniques reserve special bit strings as
frame boundary markers and encode the frames so that these special bit strings do
not appear inside the frames.
Bit stuffing reserves the 01111110 bit string as the frame boundary marker and
ensures that there will never be six consecutive 1 symbols transmitted by the physical
layer inside a frame. With bit stuffing, a frame is sent as follows. First, the sender
transmits the marker, i.e. 01111110. Then, it sends all the bits of the frame and inserts
an additional bit set to 0 after each sequence of five consecutive 1 bits. This ensures
that the sent frame never contains a sequence of six consecutive bits set to 1. As a
consequence, the marker pattern cannot appear inside the frame sent. The marker is
also sent to mark the end of the frame. The receiver performs the opposite to decode
a received frame. It first detects the beginning of the frame thanks to the 01111110
marker. Then, it processes the received bits and counts the number of consecutive
bits set to 1. Ifa 0 follows five consecutive bits set to 1, this bit is removed since it was
inserted by the sender. If a 1 follows five consecutive bits sets to 1, it indicates a
marker if it is followed by a bit set to 0. The table below illustrates the application of
bit stuffing to some frames.
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Original frame Transmitted frame

0001001001001001001000011
0110111111111111111110010

01111110

01111110000100100100100100100001101111110
01111110011011111011111011111011001001111110
0111111001111101001111110

For example, consider the transmission of 0110111111111111111110010. The sender
will first send the 01111110 marker followed by 011011111. After these five
consecutive bits set to 1, it inserts a bit set to 0 followed by 11111. A new 0 is inserted,
followed by 11111. A new 0 is inserted followed by the end of the frame 110010 and
the 01111110 marker.

Bit stuffing increases the number of bits required to transmit each frame. The worst
case for bit stuffing is of course a long sequence of bits set to 1 inside the frame. If
transmission errors occur, stuffed bits or markers can be in error. In these cases, the
frame affected by the error and possibly the next frame will not be correctly decoded
by the receiver, but it will be able to resynchronise itself at the next valid marker.

Bit stuffing can be easily implemented in hardware. However, implementing it in
software is difficult given the higher overhead of bit manipulations in software.
Software implementations prefer to process characters than bits, software-based
datalink layers usually use character stuffing. This technique operates on frames that
contain an integer number of 8-bit characters. Some characters are used as markers
to delineate the frame boundaries. Many character stuffing techniques use the DLE,
STX and ETX characters of the ASCII character set. DLE STX (resp. DLE ETX) is used to
mark the beginning (end) of a frame. When transmitting a frame, the sender adds a
DLE character after each transmitted DLE character. This ensures that none of the
markers can appear inside the transmitted frame. The receiver detects the frame
boundaries and removes the second DLE when it receives two consecutive DLE
characters. For example, to transmit frame 1 2 3 DLE STX 4, a sender will first send
DLE STX as a marker, followed by 1 2 3 DLE. Then, the sender transmits an additional
DLE character followed by STX 4 and the DLE ETX marker.

Original frame Transmitted frame

1 2 3 4

1 2 3 DLE STX 4

DLE STX DLE ETX

DLE STX 1 2 3 4 DLE ETX

DLE STX 1 2 3 DLE DLE STX 4 DLE ETX

DLE STX DLE DLE STX DLE DLE ETX DLE ETX

Character stuffing , like bit stuffing, increases the length of the transmitted frames. For
character stuffing, the worst frame is a frame containing many DLE characters. When
transmission errors occur, the receiver may incorrectly decode one or two frames (e.g.
if the errors occur in the markers). However, it will be able to resynchronise itself with
the next correctly received markers.
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6.1.2 Error detection
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Besides framing, datalink layers also include mechanisms to detect and sometimes
even recover from transmission error. To allow a receiver to detect transmission
errors, a sender must add some redundant information as an error detection code to
the frame sent. This error detection code is computed by the sender on the frame that
it transmits. When the receiver receives a frame with an error detection code, it
recomputes it and verifies whether the received error detection code matches the
computer error detection code. If they match, the frame is considered to be valid.
Many error detection schemes exist and entire books have been written on the
subject. A detailed discussion of these techniques is outside the scope of this book,
and we will only discuss some examples to illustrate the key principles.

To understand error detection codes, let us consider two devices that exchange bit
strings containing N bits. To allow the receiver to detect a transmission error, the
sender converts each string of N bits into a string of N+r bits. Usually, the r redundant
bits are added at the beginning or the end of the transmitted bit string, but some
techniques interleave redundant bits with the original bits. An error detection code can
be defined as a function that computes the r redundant bits corresponding to each
string of N bits. The simplest error detection code is the parity bit. There are two types
of parity schemes : even and odd parity. With the even (resp. odd) parity scheme, the
redundant bit is chosen so that an even (resp. odd) number of bits are set to 1 in the
transmitted bit string of N+r bits. The receiver can easily recompute the parity of each
received bit string and discard the strings with an invalid parity. The parity scheme is
often used when 7-bit characters are exchanged. In this case, the eighth bit is often a
parity bit. The table below shows the parity bits that are computed for bit strings
containing three bits.
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3 bits string Odd parity Even parity

000 1 0

001 0 1

010 0 1

100 0 1

111 0 1

110 1 0

101 1 0

011 1 0

The parity bit allows a receiver to detect transmission errors that have affected a
single bit among the transmitted N+r bits. If there are two or more bits in error, the
receiver may not necessarily be able to detect the transmission error. More powerful
error detection schemes have been defined. The Cyclical Redundancy Checks (CRC)
are widely used in datalink layer protocols. An N-bits CRC can detect all transmission
errors affecting a burst of less than N bits in the transmitted frame and all
transmission errors that affect an odd number of bits. Additional details about CRCs
may be found in [Williams1993].

It is also possible to design a code that allows the receiver to correct transmission
errors. The simplest error correction code is the triple modular redundancy (TMR). To
transmit a bit set to 1 (resp. 0), the sender transmits 111 (resp. 000). When there are
no transmission errors, the receiver can decode 111 as 1. If transmission errors have
affected a single bit, the receiver performs majority voting as shown in the table
below. This scheme allows the receiver to correct all transmission errors that affect a
single bit.
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Received bits Decoded bit

000 0

001 0

010 0

100 0

111 1

110 1

101 1

011 1

Other more powerful error correction codes have been proposed and are used in
some applications. The Hamming (http://en.wikipedia.org/wiki/Hamming_code) Code
(http://en.wikipedia.org/wiki/Hamming_code) is a clever combination of parity bits that
provides error detection and correction capabilities.

In practice, datalink layer protocols combine bit stuffing or character stuffing with a
length indication in the frame header and a checksum or CRC. The checksum/CRC is
computed by the sender and placed in the frame before applying bit/character
stuffing.

6.2 Medium Access Control
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Point-to-point datalink layers need to select one of the framing techniques described
above and optionally add retransmission algorithms such as those explained for the
transport layer to provide a reliable service. Datalink layers for Local Area Networks
face two additional problems. A LAN is composed of several hosts that are attached to
the same shared physical medium. From a physical layer perspective, a LAN can be
organised in four different ways :

• a bus-shaped network where all hosts are attached to the same physical cable
• a ring-shaped where all hosts are attached to an upstream and a downstream

node so that the entire network forms a ring
• a star-shaped network where all hosts are attached to the same device
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• a wireless network where all hosts can send and receive frames using radio
signals

These four basic physical organisations of Local Area Networks are shown graphically
in the figure below. We will first focus on one physical organisation at a time.

Figure 6.3 Bus, ring and star-shaped Local Area Network

The common problem among all of these network organisations is how to efficiently
share the access to the Local Area Network. If two devices send a frame at the same
time, the two electrical, optical or radio signals that correspond to these frames will
appear at the same time on the transmission medium and a receiver will not be able
to decode either frame. Such simultaneous transmissions are called collisions.A
collision may involve frames transmitted by two or more devices attached to the Local
Area Network. Collisions are the main cause of errors in wired Local Area Networks.

All Local Area Network technologies rely on a Medium Access Control algorithm to
regulate the transmissions to either minimise or avoid collisions. There are two broad
families of Medium Access Control algorithms :

1. Deterministic or pessimistic MAC algorithms. These algorithms assume that
collisions are a very severe problem and that they must be completely avoided.
These algorithms ensure that at any time, at most one device is allowed to send a
frame on the LAN. This is usually achieved by using a distributed protocol which
elects one device that is allowed to transmit at each time. A deterministic MAC
algorithm ensures that no collision will happen, but there is some overhead in
regulating the transmission of all the devices attached to the LAN.

2. Stochastic or optimistic MAC algorithms. These algorithms assume that collisions
are part of the normal operation of a Local Area Network. They aim to minimise
the number of collisions, but they do not try to avoid all collisions. Stochastic
algorithms are usually easier to implement than deterministic ones.

We first discuss a simple deterministic MAC algorithm and then we describe several
important optimistic algorithms, before coming back to a distributed and
deterministic MAC algorithm.

6.2.1 Static allocation methods
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A first solution to share the available resources among all the devices attached to one
Local Area Network is to define, a priori, the distribution of the transmission resources
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among the different devices. If N devices need to share the transmission capacities of
a LAN operating at b Mbps, each device could be allocated a bandwidth of b/N Mbps.

Limited resources need to be shared in other environments than Local Area Networks.
Since the first radio transmissions by Marconi (http://en.wikipedia.org/wiki/Guglielm
o_Marconi) more than one century ago, many applications that exchange information
through radio signals have been developed. Each radio signal is an electromagnetic
wave whose power is centered around a given frequency. The radio spectrum
corresponds to frequencies ranging between roughly 3 KHz and 300 GHz. Frequency
allocation plans negotiated among governments reserve most frequency ranges for
specific applications such as broadcast radio, broadcast television, mobile
communications, aeronautical radio navigation, amateur radio, satellite, etc. Each
frequency range is then subdivided into channels and each channel can be reserved
for a given application, e.g. a radio broadcaster in a given region.

Frequency Division Multiplexing (FDM) is a static allocation scheme in which a frequency
is allocated to each device attached to the shared medium. As each device uses a
different transmission frequency, collisions cannot occur. In optical networks, a
variant of FDM called Wavelength Division Multiplexing (WDM) can be used. An optical
fiber can transport light at different wavelengths without interference. With WDM, a
different wavelength is allocated to each of the devices that share the same optical
fiber.

Time Division Multiplexing (TDM) is a static bandwidth allocation method that was
initially defined for the telephone network. In the fixed telephone network, a voice
conversation is usually transmitted as a 64 Kbps signal. Thus, a telephone
conservation generates 8 KBytes per second or one byte every 125 microsecond.
Telephone conversations often need to be multiplexed together on a single line. For
example, in Europe, thirty 64 Kbps voice signals are multiplexed over a single 2 Mbps
(E1) line. This is done by using Time Division Multiplexing (TDM). TDM divides the
transmission opportunities into slots. In the telephone network, a slot corresponds to
125 microseconds. A position inside each slot is reserved for each voice signal. The
figure below illustrates TDM on a link that is used to carry four voice conversations.
The vertical lines represent the slot boundaries and the letters the different voice
conversations. One byte from each voice conversation is sent during each 125
microsecond slot. The byte corresponding to a given conversation is always sent at the
same position in each slot.

Figure 6.4 Time-division multiplexing

TDM as shown above can be completely static, i.e. the same conversations always
share the link, or dynamic. In the latter case, the two endpoints of the link must
exchange messages specifying which conversation uses which byte inside each slot.
Thanks to these signalling messages, it is possible to dynamically add and remove
voice conversations from a given link.
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TDM and FDM are widely used in telephone networks to support fixed bandwidth
conversations. Using them in Local Area Networks that support computers would
probably be inefficient. Computers usually do not send information at a fixed rate.
Instead, they often have an on-off behaviour. During the on period, the computer tries
to send at the highest possible rate, e.g. to transfer a file. During the off period, which
is often much longer than the on period, the computer does not transmit any packet.
Using a static allocation scheme for computers attached to a LAN would lead to huge
inefficiencies, as they would only be able to transmit at of the total bandwidth during
their on period, despite the fact that the other computers are in their off period and
thus do not need to transmit any information. The dynamic MAC algorithms discussed
in the remainder of this chapter aim solve this problem.

6.2.2 ALOHA
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the 1960s, computers were mainly mainframes with a few dozen terminals attached
to them. These terminals were usually in the same building as the mainframe and
were directly connected to it. In some cases, the terminals were installed in remote
locations and connected through a modem attached to a dial-up line. The university of
Hawaii chose a different organisation. Instead of using telephone lines to connect the
distant terminals, they developed the first packet radio technology [Abramson1970].
Until then, computer networks were built on top of either the telephone network or
physical cables. ALOHA Net showed that it was possible to use radio signals to
interconnect computers.

The first version of ALOHANet, described in [Abramson1970], operated as follows:
First, the terminals and the mainframe exchanged fixed-length frames composed of
704 bits. Each frame contained 80 8-bit characters, some control bits and parity
information to detect transmission errors. Two channels in the 400 MHz range were
reserved for the operation of ALOHA Net. The first channel was used by the
mainframe to send frames to all terminals. The second channel was shared among all
terminals to send frames to the mainframe. As all terminals share the same
transmission channel, there is a risk of collision. To deal with this problem as well as
transmission errors, the mainframe verified the parity bits of the received frame and
sent an acknowledgement on its channel for each correctly received frame. The
terminals on the other hand had to retransmit the unacknowledged frames. As for
TCP, retransmitting these frames immediately upon expiration of a fixed timeout is
not a good approach as several terminals may retransmit their frames at the same
time leading to a network collapse. A better approach, but still far from perfect, is for
each terminal to wait a random amount of time after the expiration of its
retransmission timeout. This avoids synchronisation among multiple retransmitting
terminals.

The pseudo-code below shows the operation of an ALOHA Net terminal. We use this
python syntax for all Medium Access Control algorithms described in this chapter. The
algorithm is applied to each new frame that needs to be transmitted. It attempts to
transmit a frame at most max times (while loop). Each transmission attempt is
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performed as follows: First, the frame is sent. Each frame is protected by a timeout.
Then, the terminal waits for either a valid acknowledgement frame or the expiration of
its timeout. If the terminal receives an acknowledgement, the frame has been
delivered correctly and the algorithm terminates. Otherwise, the terminal waits for a
random time and attempts to retransmit the frame.

# ALOHA

N=1

while N<= max ;

send (frame)

wait(ack_on_return_channel or timeout

if (ack_on_return_channel);

break  # transmission was sucessful 　

else:

# timeout

wait(random_time)

N=N+1

else:

# Too many transmission attempts

[Abramson1970] analysed the performance of ALOHANet under particular
assumptions and found that ALO-HANet worked well when the channel was lightly
loaded. In this case, the frames are rarely retransmitted and the channel traffic, i.e.
the total number of (correct and retransmitted) frames transmitted per unit of time is
close to the channel utilization, i.e. the number of correctly transmitted frames per
unit of time. Unfortunately, the analysis also reveals that the channel utilization
reaches its maximum at

Figure 6.5

times the channel bandwidth. At higher utilization, ALOHANet becomes unstable and
the network collapses due to collided retransmissions.

Note: Amateur packet radio
Packet radio technologies have evolved in various directions since the first
experiments performed at the University of Hawaii. The Amateur packet radio
service developed by amateur radio operators is one of the descendants
ALOHANet. Many amateur radio operators are very interested in new
technologies and they often spend countless hours developing new antennas
or transceivers. When the first personal computers appeared, several amateur
radio operators designed radio modems and their own datalink layer protocols
[KPD1985] [BNT1997]. This network grew and it was possible to connect to
servers in several European countries by only using packet radio relays. Some
amateur radio operators also developed TCP/IP protocol stacks that were used
over the packet radio service. Some parts of the amateur packet radio network
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(http://www.ampr.org/) are connected to the global Internet and use the
44.0.0.0/8 prefix.

Many improvements to ALOHANet have been proposed since the publication of
[Abramson1970], and this technique, or some of its variants, are still found in wireless
networks today. The slotted technique proposed in [Roberts1975] is important
because it shows that a simple modification can significantly improve channel
utilization. Instead of allowing all terminals to transmit at any time, [Roberts1975]
proposed to divide time into slots and allow terminals to transmit only at the
beginning of each slot. Each slot corresponds to the time required to transmit one
fixed size frame. In practice, these slots can be imposed by a single clock that is
received by all terminals. In ALOHANet, it could have been located on the central
mainframe. The analysis in [Roberts1975] reveals that this simple modification
improves the channel utilization by a factor of two.

6.2.3 Carrier Sense Multiple Access
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

ALOHA and slotted ALOHA can easily be implemented, but unfortunately, they can
only be used in networks that are very lightly loaded. Designing a network for a very
low utilisation is possible, but it clearly increases the cost of the network. To overcome
the problems of ALOHA, many Medium Access Control mechanisms have been
proposed which improve channel utilization. Carrier Sense Multiple Access (CSMA) is a
significant improvement compared to ALOHA. CSMA requires all nodes to listen to the
transmission channel to verify that it is free before transmitting a frame [KT1975].
When a node senses the channel to be busy, it defers its transmission until the
channel becomes free again. The pseudo-code below provides a more detailed
description of the operation of CSMA.

# persistent CSMA

N=1

while N<= max :

wait(channel_becomes_free)

send(frame)

wait(ack or timeout)

if ack:

break # transmission was successful

else :

# timeout

N=N+1

# end of while loop

# Too many transmission attempts
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The above pseudo-code is often called persistent CSMA [KT1975] as the terminal will
continuously listen to the channel and transmit its frame as soon as the channel
becomes free. Another important variant of CSMA is the non-persistent CSMA
[KT1975]. The main difference between persistent and non-persistent CSMA described
in the pseudo-code below is that a non-persistent CSMA node does not continuously
listen to the channel to determine when it becomes free. When a non-persistent CSMA
terminal senses the transmission channel to be busy, it waits for a random time
before sensing the channel again. This improves channel utilization compared to
persistent CSMA. With persistent CSMA, when two terminals sense the channel to be
busy, they will both transmit (and thus cause a collision) as soon as the channel
becomes free. With non-persistent CSMA, this synchronisation does not occur, as the
terminals wait a random time after having sensed the transmission channel. However,
the higher channel utilization achieved by non-persistent CSMA comes at the expense
of a slightly higher waiting time in the terminals when the network is lightly loaded.

# Non persistent CSMA

N=1

while N<= max :

listen(channel)

if free(channel):

send(frame)

wait(ack or timeout)

if received(ack) :

break # transmission was successful

else :

# timeout

N=N+1

else:

wait(random_time)

# end of while loop

# Too many transmission attempts

[KT1975] analyzes in detail the performance of several CSMA variants. Under some
assumptions about the transmission channel and the traffic, the analysis compares
ALOHA, slotted ALOHA, persistent and non-persistent CSMA. Under these
assumptions, ALOHA achieves a channel utilization of only 18.4% of the channel
capacity. Slotted ALOHA is able to use 36.6% of this capacity. Persistent CSMA
improves the utilization by reaching 52.9% of the capacity while non-persistent CSMA
achieves 81.5% of the channel capacity.
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6.2.4 Carrier Sense Multiple Access with Collision Detection
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

CSMA improves channel utilization compared to ALOHA. However, the performance
can still be improved, especially in wired networks. Consider the situation of two
terminals that are connected to the same cable. This cable could, for example, be a
coaxial cable as in the early days of Ethernet [Metcalfe1976]. It could also be built with
twisted pairs. Before extending CSMA, it is useful to understand more intuitively, how
frames are transmitted in such a network and how collisions can occur. The figure
below illustrates the physical transmission of a frame on such a cable. To transmit its
frame, host A must send an electrical signal on the shared medium. The first step is
thus to begin the transmission of the electrical signal. This is point (1) in the figure
below. This electrical signal will travel along the cable. Although electrical signals travel
fast, we know that information cannot travel faster than the speed of light (i.e. 300.000
kilometers/second). On a coaxial cable, an electrical signal is slightly slower than the
speed of light and 200.000 kilometers per second is a reasonable estimation. This
implies that if the cable has a length of one kilometer, the electrical signal will need 5
microseconds to travel from one end of the cable to the other. The ends of coaxial
cables are equipped with termination points that ensure that the electrical signal is
not reflected back to its source. This is illustrated at point (3) in the figure, where the
electrical signal has reached the left endpoint and host B. At this point, B starts to
receive the frame being transmitted by A. Notice that there is a delay between the
transmission of a bit on host A and its reception by host B. If there were other hosts
attached to the cable, they would receive the first bit of the frame at slightly different
times. As we will see later, this timing difference is a key problem for MAC algorithms.
At point (4), the electrical signal has reached both ends of the cable and occupies it
completely. Host A continues to transmit the electrical signal until the end of the
frame. As shown at point (5), when the sending host stops its transmission, the
electrical signal corresponding to the end of the frame leaves the coaxial cable. The
channel becomes empty again once the entire electrical signal has been removed
from the cable.
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Figure 6.6 Frame transmission on a shared bus

Now that we have looked at how a frame is actually transmitted as an electrical signal
on a shared bus, it is interesting to look in more detail at what happens when two
hosts transmit a frame at almost the same time. This is illustrated in the figure below,
where hosts A and B start their transmission at the same time (point (1)). At this time,
if host C senses the channel, it will consider it to be free. This will not last a long time
and at point (2) the electrical signals from both host A and host B reach host C. The
combined electrical signal (shown graphically as the superposition of the two curves in
the figure) cannot be decoded by host C. Host C detects a collision, as it receives a
signal that it cannot decode. Since host C cannot decode the frames, it cannot
determine which hosts are sending the colliding frames. Note that host A (and host B)
will detect the collision after host C (point (3) in the figure below).

As shown above, hosts detect collisions when they receive an electrical signal that they
cannot decode. In a wired network, a host is able to detect such a collision both while
it is listening (e.g. like host C in the figure above) and also while it is sending its own
frame. When a host transmits a frame, it can compare the electrical signal that it
transmits with the electrical signal that it senses on the wire. At points (1) and (2) in
the figure above, host A senses only its own signal. At point (3), it senses an electrical
signal that differs from its own signal and can thus detects the collision. At this point,
its frame is corrupted and it can stop its transmission. The ability to detect collisions
while transmitting is the starting point for the Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) Medium Access Control algorithm, which is used in
Ethernet networks [Metcalfe1976] [802.3] . When an Ethernet host detects a collision
while it is transmitting, it immediately stops its transmission. Compared with pure
CSMA, CSMA/CD is an important improvement since when collisions occur, they only
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last until colliding hosts have detected it and stopped their transmission. In practice,
when a host detects a collision, it sends a special jamming signal on the cable to
ensure that all hosts have detected the collision.

Figure 6.7 Frame collision on a shared bus

To better understand these collisions, it is useful to analyse what would be the worst
collision on a shared bus network. Let us consider a wire with two hosts attached at
both ends, as shown in the figure below. Host A starts to transmit its frame and its
electrical signal is propagated on the cable. Its propagation time depends on the
physical length of the cable and the speed of the electrical signal. Let us use τ to
represent this propagation delay in seconds. Slightly less than τ seconds after the
beginning of the transmission of A’s frame, B decides to start transmitting its own
frame. After E seconds, B senses A’s frame, detects the collision and stops
transmitting. The beginning of B’s frame travels on the cable until it reaches host A.
Host A can thus detect the collision at time τ − E + τ ≈ 2 × τ. An important point to note
is that a collision can only occur during the first 2 × τ seconds of its transmission. If a
collision did not occur during this period, it cannot occur afterwards since the
transmission channel is busy after τ seconds and CSMA/CD hosts sense the
transmission channel before transmitting their frame.
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Figure 6.8 The worst collision on a shared bus

Furthermore, on the wired networks where CSMA/CD is used, collisions are almost the
only cause of transmission errors that affect frames. Transmission errors that only
affect a few bits inside a frame seldom occur in these wired networks. For this reason,
the designers of CSMA/CD chose to completely remove the acknowledgement frames
in the datalink layer. When a host transmits a frame, it verifies whether its
transmission has been affected by a collision. If not, given the negligible Bit Error Ratio
of the underlying network, it assumes that the frame was received correctly by its
destination. Otherwise the frame is retransmitted after some delay. Removing
acknowledgements is an interesting optimisation as it reduces the number of frames
that are exchanged on the network and the number of frames that need to be
processed by the hosts. However, to use this optimisation, we must ensure that all
hosts will be able to detect all the collisions that affect their frames. The problem is
important for short frames. Let us consider two hosts, A and B, that are sending a
small frame to host C as illustrated in the figure below. If the frames sent by A and B
are very short, the situation illustrated below may occur. Hosts A and B send their
frame and stop transmitting (point (1)). When the two short frames arrive at the
location of host C, they collide and host C cannot decode them (point (2)). The two
frames are absorbed by the ends of the wire. Neither host A nor host B have detected
the collision. They both consider their frame to have been received correctly by its
destination.
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Figure 6.9 The short-frame collision problem

To solve this problem, networks using CSMA/CD require hosts to transmit for at least 2
× τ seconds. Since the network transmission speed is fixed for a given network
technology, this implies that a technology that uses CSMA/CD enforces a minimum
frame size. In the most popular CSMA/CD technology, Ethernet, 2 × τ is called the slot
time 1.

The last innovation introduced by CSMA/CD is the computation of the retransmission
timeout. As for ALOHA, this timeout cannot be fixed, otherwise hosts could become
synchronised and always retransmit at the same time. Setting such a timeout is always
a compromise between the network access delay and the amount of collisions. A short
timeout would lead to a low network access delay but with a higher risk of collisions.
On the other hand, a long timeout would cause a long network access delay but a
lower risk of collisions. The binary exponential back-off algorithm was introduced in
CSMA/CD networks to solve this problem.

To understand binary exponential back-off, let us consider a collision caused by
exactly two hosts. Once it has detected the collision, a host can either retransmit its
frame immediately or defer its transmission for some time. If each colliding host flips
a coin to decide whether to retransmit immediately or to defer its retransmission, four
cases are possible :

1. Both hosts retransmit immediately and a new collision occurs
2. The first host retransmits immediately and the second defers its retransmission
3. The second host retransmits immediately and the first defers its retransmission
4. Both hosts defer their retransmission and a new collision occurs

1. This name should not be confused with the duration of a transmission slot in slotted ALOHA. In CSMA/CD networks, the slot time
is the time during which a collision can occur at the beginning of the transmission of a frame. In slotted ALOHA, the duration of
a slot is the transmission time of an entire fixed-size frame.
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In the second and third cases, both hosts have flipped different coins. The delay
chosen by the host that defers its retransmission should be long enough to ensure
that its retransmission will not collide with the immediate retransmission of the other
host. However the delay should not be longer than the time necessary to avoid the
collision, because if both hosts decide to defer their transmission, the network will be
idle during this delay. The slot time is the optimal delay since it is the shortest delay
that ensures that the first host will be able to retransmit its frame completely without
any collision.

If two hosts are competing, the algorithm above will avoid a second collision 50% of
the time. However, if the network is heavily loaded, several hosts may be competing at
the same time. In this case, the hosts should be able to automatically adapt their
retransmission delay. The binary exponential back-off performs this adaptation based
on the number of collisions that have affected a frame. After the first collision, the
host flips a coin and waits 0 or 1 slot time. After the second collision, it generates a
random number and waits 0, 1, 2 or 3 slot times, etc. The duration of the waiting time
is doubled after each collision. The complete pseudo-code for the CSMA/CD algorithm
is shown in the figure below.

# CSMA/CD pseudo-code

N=1

while N<= max :

wait(channel_becomes_free)

send(frame)

wait_until (end_of_frame) or (collision)

if collision detected:

stop transmitting

send(jamming)

k = min (10, N)

r = random(0, 2k -1) * slotTime

wait(r*slotTime)

N=N+1

else :

wait(inter-frame_delay)

break

# end of while loop

# Too many transmission attempts

The inter-frame delay used in this pseudo-code is a short delay corresponding to the
time required by a network adapter to switch from transmit to receive mode. It is also
used to prevent a host from sending a continuous stream of frames without leaving
any transmission opportunities for other hosts on the network. This contributes to the
fairness of CSMA/CD. Despite this delay, there are still conditions where CSMA/CD is
not completely fair [RY1994]. Consider for example a network with two hosts : a server
sending long frames and a client sending acknowledgments. Measurements reported
in [RY1994] have shown that there are situations where the client could suffer from

305



repeated collisions that lead it to wait for long periods of time due to the exponential
back-off algorithm.

6.2.5 Carrier Sense Multiple Access with Collision Avoidance
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Medium Access
Control algorithm was designed for the popular WiFi wireless network technology
[802.11]. CSMA/CA also senses the transmission channel before transmitting a frame.
Furthermore, CSMA/CA tries to avoid collisions by carefully tuning the timers used by
CSMA/CA devices.

CSMA/CA uses acknowledgements like CSMA. Each frame contains a sequence
number and a CRC. The CRC is used to detect transmission errors while the sequence
number is used to avoid frame duplication. When a device receives a correct frame, it
returns a special acknowledgement frame to the sender. CSMA/CA introduces a small
delay, named Short Inter Frame Spacing (SIFS), between the reception of a frame and
the transmission of the acknowledgement frame. This delay corresponds to the time
that is required to switch the radio of a device between the reception and
transmission modes.

Compared to CSMA, CSMA/CA defines more precisely when a device is allowed to send
a frame. First, CSMA/CA defines two delays : DIFS and EIFS. To send a frame, a device
must first wait until the channel has been idle for at least the Distributed Coordination
Function Inter Frame Space (DIFS) if the previous frame was received correctly. However,
if the previously received frame was corrupted, this indicates that there are collisions
and the device must sense the channel idle for at least the Extended Inter Frame
Space (EIFS), with SIFS < DIFS < EIFS. The exact values for SIFS, DIFS and EIFS depend on
the underlying physical layer.

The figure below shows the basic operation of CSMA/CA devices. Before transmitting,
host A verifies that the channel is empty for a long enough period. Then, its sends its
data frame. After checking the validity of the received frame, the recipient sends an
acknowledgement frame after a short SIFS delay. Host C, which does not participate in
the frame exchange, senses the channel to be busy at the beginning of the data
frame. Host C can use this information to determine how long the channel will be busy
for. Note that as SIFS < DIFS < EIFS, even a device that would start to sense the channel
immediately after the last bit of the data frame could not decide to transmit its own
frame during the transmission of the acknowledgement frame.
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Figure 6.10 Operation of a CSMA/CA device

The main difficulty with CSMA/CA is when two or more devices transmit at the same
time and cause collisions. This is illustrated in the figure below, assuming a fixed
timeout after the transmission of a data frame. With CSMA/CA, the timeout after the
transmission of a data frame is very small, since it corresponds to the SIFS plus the
time required to transmit the acknowledgement frame.

Figure 6.11 Collisions with CSMA/CA

To deal with this problem, CSMA/CA relies on a backoff timer. This backoff timer is a
random delay that is chosen by each device in a range that depends on the number of
retransmissions for the current frame. The range grows exponentially with the
retransmissions as in CSMA/CD. The minimum range for the backoff timer is [0, 7 ∗
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slotT ime] where the slotTime is a parameter that depends on the underlying physical
layer. Compared to CSMA/CD’s exponential backoff, there are two important
differences to notice. First, the initial range for the backoff timer is seven times larger.
This is because it is impossible in CSMA/CA to detect collisions as they happen. With
CSMA/CA, a collision may affect the entire frame while with CSMA/CD it can only affect
the beginning of the frame. Second, a CSMA/CA device must regularly sense the
transmission channel during its back off timer. If the channel becomes busy (i.e.
because another device is transmitting), then the back off timer must be frozen until
the channel becomes free again. Once the channel becomes free, the back off timer is
restarted. This is in contrast with CSMA/CD where the back off is recomputed after
each collision. This is illustrated in the figure below. Host A chooses a smaller backoff
than host C. When C senses the channel to be busy, it freezes its backoff timer and
only restarts it once the channel is free again.

Figure 6.12 Detailed example with CSMA/CA

The pseudo-code below summarises the operation of a CSMA/CA device. The values of
the SIFS, DIFS, EIFS and slotTime depend on the underlying physical layer technology.

# CSMA/CA simplified pseudo-code

N=1

while N<= max :

waitUntil(free(channel))

if correct(last_frame) :

wait(channel_free_during_t >=DIFS)

else:

wait(channel_free_during_t >=EIFS)

back-off_time = int(random[0,min(255,7*(2^(N-1)))])*slotTime

wait(channel free during backoff_time)
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# backoff timer is frozen while channel is sensed to be busy

send(frame)

wait(ack or timeout)

if received(ack)

# frame received correctly

break

else:

# retransmission required

N=N+1

Another problem faced by wireless networks is often called the hidden station
problem. In a wireless network, radio signals are not always propagated same way in
all directions. For example, two devices separated by a wall may not be able to receive
each other’s signal while they could both be receiving the signal produced by a third
host. This is illustrated in the figure below, but it can happen in other environments.
For example, two devices that are on different sides of a hill may not be able to
receive each other’s signal while they are both able to receive the signal sent by a
station at the top of the hill. Furthermore, the radio propagation conditions may
change with time. For example, a truck may temporarily block the communication
between two nearby devices.

:

Figure 6.13 The hidden station problem

To avoid collisions in these situations, CSMA/CA allows devices to reserve the
transmission channel for some time. This is done by using two control frames :
Request To Send (RTS) and Clear To Send (CTS). Both are very short frames to
minimize the risk of collisions. To reserve the transmission channel, a device sends a
RTS frame to the intended recipient of the data frame. The RTS frame contains the
duration of the requested reservation. The recipient replies, after a SIFS delay, with a
CTS frame which also contains the duration of the reservation. As the duration of the
reservation has been sent in both RTS and CTS, all hosts that could collide with either
the sender or the reception of the data frame are informed of the reservation. They
can compute the total duration of the transmission and defer their access to the
transmission channel until then. This is illustrated in the figure below where host A
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reserves the transmission channel to send a data frame to host B. Host C notices the
reservation and defers its transmission.

Figure 6.14 Reservations with CSMA/CA

The utilization of the reservations with CSMA/CA is an optimisation that is useful when
collisions are frequent. If there are few collisions, the time required to transmit the
RTS and CTS frames can become significant and in particular when short frames are
exchanged. Some devices only turn on RTS/CTS after transmission errors.

6.2.6 Deterministic Medium Access Control algorithms
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

During the 1970s and 1980s, there were huge debates in the networking community
about the best suited Medium Access Control algorithms for Local Area Networks. The
optimistic algorithms that we have described until now were relatively easy to
implement when they were designed. From a performance perspective, mathematical
models and simulations showed the ability of these optimistic techniques to sustain
load. However, none of the optimistic techniques are able to guarantee that a frame
will be delivered within a given delay bound and some applications require predictable
transmission delays. The deterministic MAC algorithms were considered by a fraction
of the networking community as the best solution to fulfill the needs of Local Area
Networks.

Both the proponents of the deterministic and the opportunistic techniques lobbied to
develop standards for Local Area networks that would incorporate their solution.
Instead of trying to find an impossible compromise between these diverging views,
the IEEE 802 committee that was chartered to develop Local Area Network standards
chose to work in parallel on three different LAN technologies and created three
working groups. The IEEE

802.3 working group became responsible for CSMA/CD. The proponents of
deterministic MAC algorithms agreed on the basic principle of exchanging special
frames called tokens between devices to regulate the access to the transmission
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medium. However, they did not agree on the most suitable physical layout for the
network. IBM argued in favor of Ring-shaped networks while the manufacturing
industry, led by General Motors, argued in favor of a bus-shaped network. This led to
the creation of the IEEE 802.4 working group to standardise Token Bus networks and
the IEEE 802.5 working group to standardise Token Ring networks. Although these
techniques are not widely used anymore today, the principles behind a token-based
protocol are still important.

The IEEE 802.5 Token Ring technology is defined in [802.5]. We use Token Ring as an
example to explain the principles of the token-based MAC algorithms in ring-shaped
networks. Other ring-shaped networks include the almost defunct FDDI [Ross1989] or
the more recent Resilient Pack Ring [DYGU2004] . A good survey of the token ring
networks may be found in [Bux1989] .

A Token Ring network is composed of a set of stations that are attached to a
unidirectional ring. The basic principle of the Token Ring MAC algorithm is that two
types of frames travel on the ring : tokens and data frames. When the Token Ring
starts, one of the stations sends the token. The token is a small frame that represents
the authorization to transmit data frames on the ring. To transmit a data frame on the
ring, a station must first capture the token by removing it from the ring. As only one
station can capture the token at a time, the station that owns the token can safely
transmit a data frame on the ring without risking collisions. After having transmitted
its frame, the station must remove it from the ring and resend the token so that other
stations can transmit their own frames.

:

Figure 6.15 A Token Ring network

While the basic principles of the Token Ring are simple, there are several subtle
implementation details that add complexity to Token Ring networks. To understand
these details let us analyse the operation of a Token Ring interface on a station. A
Token Ring interface serves three different purposes. Like other LAN interfaces, it
must be able to send and receive frames. In addition, a Token Ring interface is part of
the ring, and as such, it must be able to forward the electrical signal that passes on the
ring even when its station is powered off.
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When powered-on, Token Ring interfaces operate in two different modes : listen and
transmit. When operating in listen mode, a Token Ring interface receives an electrical
signal from its upstream neighbour on the ring, introduces a delay equal to the
transmission time of one bit on the ring and regenerates the signal before sending it
to its downstream neighbour on the ring.

The first problem faced by a Token Ring network is that as the token represents the
authorization to transmit, it must continuously travel on the ring when no data frame
is being transmitted. Let us assume that a token has been produced and sent on the
ring by one station. In Token Ring networks, the token is a 24 bits frame whose
structure is shown below.

Figure 6.16 802.5 token format

The token is composed of three fields. First, the Starting Delimiter is the marker that
indicates the beginning of a frame. The first Token Ring networks used Manchester
coding and the Starting Delimiter contained both symbols representing 0 and symbols
that do not represent bits. The last field is the Ending Delimiter which marks the end
of the token. The Access Control field is present in all frames, and contains several flags.
The most important is the Token bit that is set in token frames and reset in other
frames.

Let us consider the five station network depicted in figure A Token Ring network above
and assume that station S1 sends a token. If we neglect the propagation delay on the
inter-station links, as each station introduces a one bit delay, the first bit of the frame
would return to S1 while it sends the fifth bit of the token. If station S1 is powered off
at that time, only the first five bits of the token will travel on the ring. To avoid this
problem, there is a special station called the Monitor on each Token Ring. To ensure
that the token can travel forever on the ring, this Monitor inserts a delay that is equal
to at least 24 bit transmission times. If station S3 was the Monitor in figure A Token
Ring network, S1 would have been able to transmit the entire token before receiving
the first bit of the token from its upstream neighbour.

Now that we have explained how the token can be forwarded on the ring, let us
analyse how a station can capture a token to transmit a data frame. For this, we need
some information about the format of the data frames. An 802.5 data frame begins
with the Starting Delimiter followed by the Access Control field whose Token bit is
reset, a Frame Control field that allows for the definition of several types of frames,
destination and source address, a payload, a CRC, the Ending Delimiter and a Frame
Status field. The format of the Token Ring data frames is illustrated below.
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Figure 6.17 802.5 data frame format

To capture a token, a station must operate in Listen mode. In this mode, the station
receives bits from its upstream neighbour. If the bits correspond to a data frame, they
must be forwarded to the downstream neighbour. If they correspond to a token, the
station can capture it and transmit its data frame. Both the data frame and the token
are encoded as a bit string beginning with the Starting Delimiter followed by the
Access Control field. When the station receives the first bit of a Starting Delimiter, it
cannot know whether this is a data frame or a token and must forward the entire
delimiter to its downstream neighbour. It is only when it receives the fourth bit of the
Access Control field (i.e. the Token bit) that the station knows whether the frame is a
data frame or a token. If the Token bit is reset, it indicates a data frame and the
remaining bits of the data frame must be forwarded to the downstream station.
Otherwise (Token bit is set), this is a token and the station can capture it by resetting
the bit that is currently in its buffer. Thanks to this modification, the beginning of the
token is now the beginning of a data frame and the station can switch to Transmit
mode and send its data frame starting at the fifth bit of the Access Control field. Thus,
the one-bit delay introduced by each Token Ring station plays a key role in enabling
the stations to efficiently capture the token.

After having transmitted its data frame, the station must remain in Transmit mode
until it has received the last bit of its own data frame. This ensures that the bits sent
by a station do not remain in the network forever. A data frame sent by a station in a
Token Ring network passes in front of all stations attached to the network. Each
station can detect the data frame and analyse the destination address to possibly
capture the frame.

The Frame Status field that appears after the Ending Delimiter is used to provide
acknowledgements without requiring special frames. The Frame Status contains two
flags : A and C. Both flags are reset when a station sends a data frame. These flags can
be modified by their recipients. When a station senses its address as the destination
address of a frame, it can capture the frame, check its CRC and place it in its own
buffers. The destination of a frame must set the A bit (resp. C bit) of the Frame Status
field once it has seen (resp. copied) a data frame. By inspecting the Frame Status of
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the returning frame, the sender can verify whether its frame has been received
correctly by its destination.

The text above describes the basic operation of a Token Ring network when all
stations work correctly. Unfortunately, a real Token Ring network must be able to
handle various types of anomalies and this increases the complexity of Token Ring
stations. We briefly list the problems and outline their solutions below. A detailed
description of the operation of Token Ring stations may be found in [802.5]. The first
problem is when all the stations attached to the network start. One of them must
bootstrap the network by sending the first token. For this, all stations implement a
distributed election mechanism that is used to select the Monitor. Any station can
become a Monitor. The Monitor manages the Token Ring network and ensures that it
operates correctly. Its first role is to introduce a delay of 24 bit transmission times to
ensure that the token can travel smoothly on the ring. Second, the Monitor sends the
first token on the ring. It must also verify that the token passes regularly. According to
the Token Ring standard [802.5], a station cannot retain the token to transmit data
frames for a duration longer than the Token Holding Time (THT) (slightly less than 10
milliseconds). On a network containing N stations, the Monitor must receive the token
at least every N × THT seconds. If the Monitor does not receive a token during such a
period, it cuts the ring for some time and then reinitialises the ring and sends a token.

Several other anomalies may occur in a Token Ring network. For example, a station
could capture a token and be powered off before having resent the token. Another
station could have captured the token, sent its data frame and be powered off before
receiving all of its data frame. In this case, the bit string corresponding to the end of a
frame would remain in the ring without being removed by its sender. Several
techniques are defined in to allow the Monitor to handle all these problems. If
unfortunately, the Monitor fails, another station will be elected to become the new
Monitor.

6.3 Datalink layer technologies
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this section, we review the key characteristics of several datalink layer technologies.
We discuss in more detail the technologies that are widely used today. A detailed
survey of all datalink layer technologies would be outside the scope of this book.

6.3.1 The Point-to-Point Protocol
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many point-to-point datalink layers 2 have been developed, starting in the 1960s
[McFadyen1976]. In this section, we focus on the protocols that are often used to
transport IP packets between hosts or routers that are directly connected by a point-
to-point link. This link can be a dedicated physical cable, a leased line through the

2. LAPB and HDLC were widely used datalink layer protocols.
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telephone network or a dial-up connection with modems on the two communicating
hosts.

The first solution to transport IP packets over a serial line was proposed in RFC 1055 (h
ttp://tools.ietf.org/html/rfc1055.html) and is known as Serial Line IP (SLIP). SLIP is a
simple character stuffing technique applied to IP packets. SLIP defines two special
characters : END (decimal 192) and ESC (decimal 219). END appears at the beginning
and at the end of each transmitted IP packet and the sender adds ESC before each
END character inside each transmitted IP packet. SLIP only supports the transmission
of IP packets and it assumes that the two communicating hosts/routers have been
manually configured with each other’s IP address. SLIP was mainly used over links
offering bandwidth of often less than 20 Kbps. On such a low bandwidth link, sending
20 bytes of IP header followed by 20 bytes of TCP header for each TCP segment takes
a lot of time. This initiated the development of a family of compression techniques to
efficiently compress the TCP/IP headers. The first header compression technique
proposed in RFC 1144 (http://tools.ietf.org/html/rfc1144.html) was designed to exploit
the redundancy between several consecutive segments that belong to the same TCP
connection. In all these segments, the IP addresses and port numbers are always the
same. Furthermore, fields such as the sequence and acknowledgement numbers do
not change in a random way. RFC 1144 (http://tools.ietf.org/html/rfc1144.html)defined
simple techniques to reduce the redundancy found in successive segments. The
development of header compression techniques continued and there are still
improvements being developed now RFC 5795 (http://tools.ietf.org/html/rfc5795.htm
l).

While SLIP was implemented and used in some environments, it had several
limitations discussed in RFC 1055 (http://tools.ietf.org/html/rfc1055.html). The Point-
to-Point Protocol (PPP) was designed shortly after and is specified in RFC 1548 (http://t
ools.ietf.org/html/rfc1548.html). PPP aims to support IP and other network layer
protocols over various types of serial lines. PPP is in fact a family of three protocols
that are used together :

1. The Point-to-Point Protocol defines the framing technique to transport network
layer packets.

2. The Link Control Protocol that is used to negotiate options and authenticate the
session by using username and password or other types of credentials

3. The Network Control Protocol that is specific for each network layer protocol. It is
used to negotiate options that are specific for each protocol. For example, IPv4’s
NCP RFC 1548 (http://tools.ietf.org/html/rfc1548.html) can negotiate the IPv4
address to be used, the IPv4 address of the DNS resolver. IPv6’s NCP is defined in
RFC 5072 (http://tools.ietf.org/html/rfc5072.html).

The PPP framing RFC 1662 (http://tools.ietf.org/html/rfc1055.html).html was inspired
by the datalink layer protocols standardised by ITU-T and ISO. A typical PPP frame is
composed of the fields shown in the figure below. A PPP frame starts with a one byte
flag containing 01111110. PPP can use bit stuffing or character stuffing depending on
the environment where the protocol is used. The address and control fields are
present for backward compatibility reasons. The 16 bit Protocol field contains the
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identifier 3 of the network layer protocol that is carried in the PPP frame. 0x002d is
used for an IPv4 packet compressed with RFC 1144 (http://tools.ietf.org/html/rfc114
4.html) while 0x002f is used for an uncompressed IPv4 packet. 0xc021 is used by the
Link Control Protocol, 0xc023 is used by the Password Authentication Protocol (PAP).
0x0057 is used for IPv6 packets. PPP supports variable length packets, but LCP can
negotiate a maximum packet length. The PPP frame ends with a Frame Check
Sequence. The default is a 16 bits CRC, but some implementations can negotiate a 32
bits CRC. The frame ends with the 01111110 flag.

Figure 6.18 PPP frame format

PPP played a key role in allowing Internet Service Providers to provide dial-up access
over modems in the late 1990s and early 2000s. ISPs operated modem banks
connected to the telephone network. For these ISPs, a key issue was to authenticate
each user connected through the telephone network. This authentication was
performed by using the Extensible Authentication Protocol (EAP) defined in RFC 3748
(http://tools.ietf.org/html/rfc3748.html.). EAP is a simple, but extensible protocol that
was initially used by access routers to authenticate the users connected through
dialup lines. Several authentication methods, starting from the simple username/
password pairs to more complex schemes have been defined and implemented.
When ISPs started to upgrade their physical infrastructure to provide Internet access
over Asymmetric Digital Subscriber Lines (ADSL), they tried to reuse their existing
authentication (and billing) systems. To meet these requirements, the IETF developed
specifications to allow PPP frames to be transported over other networks than the
point-to-point links for which PPP was designed. Nowadays, most ADSL deployments
use PPP over either ATM RFC 2364 or Ethernet RFC 2516 (http://tools.ietf.org/html/rfc2
516.html.)

6.3.2 Ethernet
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Ethernet was designed in the 1970s at the Palo Alto Research Center [Metcalfe1976].
The first prototype 4 used a coaxial cable as the shared medium and 3 Mbps of

3. The IANA maintains the registry of all assigned PPP protocol fields at : http://www.iana.org/assignments/ppp-numbers
4. Additional information about the history of the Ethernet technology may be found at

http://ethernethistory.typepad.com/
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bandwidth. Ethernet was improved during the late 1970s and in the 1980s, Digital
Equipment, Intel and Xerox published the first official Ethernet specification [DIX]. This
specification defines several important parameters for Ethernet networks. The first
decision was to standardise the commercial Ethernet at 10 Mbps. The second decision
was the duration of the slot time. In Ethernet, a long slot time enables networks to
span a long distance but forces the host to use a larger minimum frame size. The
compromise was a slot time of 51.2 microseconds, which corresponds to a minimum
frame size of 64 bytes.

The third decision was the frame format. The experimental 3 Mbps Ethernet network
built at Xerox used short frames containing 8 bit source and destination addresses
fields, a 16 bit type indication, up to 554 bytes of payload and a 16 bit CRC. Using 8 bit
addresses was suitable for an experimental network, but it was clearly too small for
commercial deployments. Although the initial Ethernet specification [DIX] only allowed
up to 1024 hosts on an Ethernet network, it also recommended three important
changes compared to the networking technologies that were available at that time.
The first change was to require each host attached to an Ethernet network to have a
globally unique datalink layer address. Until then, datalink layer addresses were
manually configured on each host. [DP1981] went against that state of the art and
noted “Suitable installation-specific administrative procedures are also needed for
assigning numbers to hosts on a network. If a host is moved from one network to
another it may be necessary to change its host number if its former number is in use
on the new network. This is easier said than done, as each network must have an
administrator who must record the continuously changing state of the system (often
on a piece of paper tacked to the wall !). It is anticipated that in future office
environments, hosts locations will change as often as telephones are changed in
present-day offices.” The second change introduced by Ethernet was to encode each
address as a 48 bits field [DP1981]. 48 bit addresses were huge compared to the
networking technologies available in the 1980s, but the huge address space had
several advantages [DP1981] including the ability to allocate large blocks of addresses
to manufacturers. Eventually, other LAN technologies opted for 48 bits addresses as
well. The third change introduced by Ethernet was the definition of broadcast and
multicast addresses. The need for multicast Ethernet was foreseen in [DP1981] and
thanks to the size of the addressing space it was possible to reserve a large block of
multicast addresses for each manufacturer.

The datalink layer addresses used in Ethernet networks are often called MAC
addresses. They are structured as shown in the figure below. The first bit of the
address indicates whether the address identifies a network adapter or a multicast
group. The upper 24 bits are used to encode an Organisation Unique Identifier (OUI).
This OUI identifies a block of addresses that has been allocated by the secretariat 5

who is responsible for the uniqueness of Ethernet addresses to a manufacturer. Once
a manufacturer has received an OUI, it can build and sell products with one of the 16
million addresses in this block.

5. Initially, the OUIs were allocated by Xerox [DP1981]. However, once Ethernet became an IEEE and later an ISO standard,
the allocation of the OUIs moved to IEEE. The list of all OUI allocations may be found at http://standards.ieee.org/
regauth/oui/index.shtml
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Figure 6.19 48 bits Ethernet address format

The original 10 Mbps Ethernet specification [DIX] defined a simple frame format
where each frame is composed of five fields. The Ethernet frame starts with a
preamble (not shown in the figure below) that is used by the physical layer of the
receiver to synchronise its clock with the sender’s clock. The first field of the frame is
the destination address. As this address is placed at the beginning of the frame, an
Ethernet interface can quickly verify whether it is the frame recipient and if not, cancel
the processing of the arriving frame. The second field is the source address. While the
destination address can be either a unicast or a multicast/broadcast address, the
source address must always be a unicast address. The third field is a 16 bits integer
that indicates which type of network layer packet is carried inside the frame. This field
is often called the EtherType. Frequently used EtherType values 6 include 0x0800 for
IPv4, 0x86DD for IPv6 7 and 0x806 for the Address Resolution Protocol (ARP).

The fourth part of the Ethernet frame is the payload. The minimum length of the
payload is 46 bytes to ensure a minimum frame size, including the header of 512 bits.
The Ethernet payload cannot be longer than 1500 bytes. This size was found
reasonable when the first Ethernet specification was written. At that time, Xerox had
been using its experimental 3 Mbps Ethernet that offered 554 bytes of payload and
RFC 1122 required a minimum MTU of 572 bytes for IPv4. 1500 bytes was large
enough to support these needs without forcing the network adapters to contain
overly large memories. Furthermore, simulations and measurement studies
performed in Ethernet networks revealed that CSMA/CD was able to achieve a very
high utilization. This is illustrated in the figure below based on [SH1980], which shows
the channel utilization achieved in Ethernet networks containing different numbers of
hosts that are sending frames of different sizes.

6. The official list of all assigned Ethernet type values is available from http://standards.ieee.org/regauth/ethertype/eth.txt
7. The attentive reader may question the need for different EtherTypes for IPv4 and IPv6 while the IP header already

contains a version field that can be used to distinguish between IPv4 and IPv6 packets. Theoretically, IPv4 and IPv6 could
have used the same EtherType. Unfortunately, developers of the early IPv6 implementations found that some devices
did not check the version field of the IPv4 packets that they received and parsed frames whose EtherType was set to
0x0800 as IPv4 packets. Sending IPv6 packets to such devices would have caused disruptions. To avoid this problem, the
IETF decided to apply for a distinct EtherType value for IPv6.
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Figure 6.20 Figure 6.19: Impact of the frame length on the maximum channel utilisation [SH1980]

The last field of the Ethernet frame is a 32 bit Cyclical Redundancy Check (CRC). This
CRC is able to catch a much larger number of transmission errors than the Internet
checksum used by IP, UDP and TCP [SGP98]. The format of the Ethernet frame is
shown below.

Note: Where should the CRC be located in a frame ?

The transport and datalink layers usually chose different strategies to place their CRCs
or checksums. Transport layer protocols usually place their CRCs or checksums in the
segment header. Datalink layer protocols sometimes place their CRC in the frame
header, but often in a trailer at the end of the frame. This choice reflects
implementation assumptions, but also influences performance RFC 893. When the
CRC is placed in the trailer, as in Ethernet, the datalink layer can compute it while
transmitting the frame and insert it at the end of the transmission. All Ethernet
interfaces use this optimisation today. When the checksum is placed in the header, as
in a TCP segment, it is impossible for the network interface to compute it while
transmitting the segment. Some network interfaces provide hardware assistance to
compute the TCP checksum, but this is more complex than if the TCP checksum were
placed in the trailer 8.

8. These network interfaces compute the TCP checksum while a segment is transferred from the host memory to the
network interface [SH2004].
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Figure 6.21 Ethernet DIX frame format

The Ethernet frame format shown above is specified in [DIX]. This is the format used
to send both IPv4 RFC 894 (http://tools.ietf.org/html/rfc894.html) and IPv6 packets RFC
2464 (http://tools.ietf.org/html/rfc2464.html). After the publication of [DIX], the
Institute of Electrical and Electronic Engineers (IEEE) began to standardise several
Local Area Network technologies. IEEE worked on several LAN technologies, starting
with Ethernet, Token Ring and Token Bus. These three technologies were completely
different, but they all agreed to use the 48 bits MAC addresses specified initially for
Ethernet [802]_ . While developing its Ethernet standard [802.3], the IEEE 802.3
working group was confronted with a problem. Ethernet mandated a minimum
payload size of 46 bytes, while some companies were looking for a LAN technology
that could transparently transport short frames containing only a few bytes of
payload. Such a frame can be sent by an Ethernet host by padding it to ensure that
the payload is at least 46 bytes long. However since the Ethernet header [DIX] does
not contain a length field, it is impossible for the receiver to determine how many
useful bytes were placed inside the payload field. To solve this problem, the IEEE
decided to replace the Type field of the Ethernet [DIX] header with a length field 9. This
Length field contains the number of useful bytes in the frame payload. The payload
must still contain at least 46 bytes, but padding bytes are added by the sender and
removed by the receiver. In order to add the Length field without significantly
changing the frame format, IEEE had to remove the Type field. Without this field, it is
impossible for a receiving host to identify the type of network layer packet inside a
received frame. To solve this new problem, IEEE developed a completely new sublayer
called the Logical Link Control [802.2]. Several protocols were defined in this sublayer.
One of them provided a slightly different version of the Type field of the original
Ethernet frame format. Another contained acknowledgements and retransmissions to
provide a reliable service... In practice, [802.2] is never used to support IP in Ethernet
networks. The figure below shows the official [802.3] frame format.

9. Fortunately, IEEE was able to define the [802.3] frame format while maintaining backward compatibility with the
Ethernet [DIX] frame format. The trick was to only assign values above 1500 as EtherType values. When a host receives a
frame, it can determine whether the frame’s format by checking its EtherType/Length field. A value lower smaller than
1501 is clearly a length indicator and thus an [802.3] frame. A value larger than 1501 can only be type and thus a [DIX]
frame.
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Figure 6.22 Ethernet 802.3 frame format

Note: What is the Ethernet service ?
An Ethernet network provides an unreliable connectionless service. It
supports three different transmission modes [unicast, multicast and
broadcast. While the Ethernet service is unreliable in theory, a good Ethernet
network should, in practice, provide a service that :]

• delivers frames to their destination with a very high probability of
successful delivery

• does not reorder the transmitted frames

The first property is a consequence of the utilisation of CSMA/CD. The second
property is a consequence of the physical organisation of the Ethernet network
as a shared bus. These two properties are important and all evolutions of the
Ethernet technology have preserved them.

Several physical layers have been defined for Ethernet networks. The first physical
layer, usually called 10Base5, provided 10 Mbps over a thick coaxial cable. The
characteristics of the cable and the transceivers that were used then enabled the
utilisation of 500 meter long segments. A 10Base5 network can also include repeaters
between segments.

The second physical layer was 10Base2. This physical layer used a thin coaxial cable
that was easier to install than the 10Base5 cable, but could not be longer than 185
meters. A 10BaseF physical layer was also defined to transport Ethernet over point-to-
point optical links. The major change to the physical layer was the support of twisted
pairs in the 10BaseT specification. Twisted pair cables are traditionally used to support
the telephone service in office buildings. Most office buildings today are equipped
with structured cabling. Several twisted pair cables are installed between any room
and a central telecom closet per building or per floor in large buildings. These telecom
closets act as concentration points for the telephone service but also for LANs.

The introduction of the twisted pairs led to two major changes to Ethernet. The first
change concerns the physical topology of the network. 10Base2 and 10Base5
networks are shared buses, the coaxial cable typically passes through each room that
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contains a connected computer. A 10BaseT network is a star-shaped network. All the
devices connected to the network are attached to a twisted pair cable that ends in the
telecom closet. From a maintenance perspective, this is a major improvement. The
cable is a weak point in 10Base2 and 10Base5 networks. Any physical damage on the
cable broke the entire network and when such a failure occurred, the network
administrator had to manually check the entire cable to detect where it was damaged.
With 10BaseT, when one twisted pair is damaged, only the device connected to this
twisted pair is affected and this does not affect the other devices. The second major
change introduced by 10BaseT was that is was impossible to build a 10BaseT network
by simply connecting all the twisted pairs together. All the twisted pairs must be
connected to a relay that operates in the physical layer. This relay is called an Ethernet
hub. A hub is thus a physical layer relay that receives an electrical signal on one of its
interfaces, regenerates the signal and transmits it over all its other interfaces. Some
hubs are also able to convert the electrical signal from one physical layer to another
(e.g. 10BaseT to 10Base2 conversion).

Figure 6.23 Ethernet hubs in the reference model

Computers can directly be attached to Ethernet hubs. Ethernet hubs themselves can
be attached to other Ethernet hubs to build a larger network. However, some
important guidelines must be followed when building a complex network with hubs.
First, the network topology must be a tree. As hubs are relays in the physical layer,
adding a link between Hub2 and Hub3 in the network below would create an electrical
shortcut that would completely disrupt the network. This implies that there cannot be
any redundancy in a hub-based network. A failure of a hub or of a link between two
hubs would partition the network into two isolated networks. Second, as hubs are
relays in the physical layer, collisions can happen and must be handled by CSMA/CD
as in a 10Base5 network. This implies that the maximum delay between any pair of
devices in the network cannot be longer than the 51.2

microseconds slot time. If the delay is longer, collisions between short frames may not
be correctly detected. This constraint limits the geographical spread of 10BaseT
networks containing hubs.
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Figure 6.24 A hierarchical Ethernet network composed of hubs

In the late 1980s, 10 Mbps became too slow for some applications and network
manufacturers developed several LAN technologies that offered higher bandwidth,
such as the 100 Mbps FDDI LAN that used optical fibers. As the development of
10Base5, 10Base2 and 10BaseT had shown that Ethernet could be adapted to
different physical layers, several manufacturers started to work on 100 Mbps Ethernet
and convinced IEEE to standardise this new technology that was initially called Fast
Ethernet. Fast Ethernet was designed under two constraints. First, Fast Ethernet had to
support twisted pairs. Although it was easier from a physical layer perspective to
support higher bandwidth on coaxial cables than on twisted pairs, coaxial cables were
a nightmare from deployment and maintenance perspectives. Second, Fast Ethernet
had to be perfectly compatible with the existing 10 Mbps Ethernets to allow Fast
Ethernet technology to be used initially as a backbone technology to interconnect 10
Mbps Ethernet networks. This forced Fast Ethernet to use exactly the same frame
format as 10 Mbps Ethernet. This implied that the minimum Fast Ethernet frame size
remained at 512 bits. To preserve CSMA/CD with this minimum frame size and 100
Mbps instead of 10 Mbps, the duration of the slot time was decreased to 5.12
microseconds.

The evolution of Ethernet did not stop. In 1998, the IEEE published a first standard to
provide Gigabit Ethernet over optical fibers. Several other types of physical layers
were added afterwards. The 10 Gigabit Ethernet standard appeared in 2002. Work is
ongoing to develop standards for 40 Gigabit and 100 Gigabit Ethernet and some are
thinking about Terabit Ethernet. The table below lists the main Ethernet standards. A
more detailed list may be found at http://en.wikipedia.org/wiki/
Ethernet_physical_layer
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Standard Comments

10Base5

10Base2

10BaseT

10Base-F

100Base-
Tx

100Base-
FX

1000Base-
CX

1000Base-
SX

10 Gbps

40-100
Gbps

Thick coaxial cable, 500m

Thin coaxial cable, 185m

Two pairs of category 3+ UTP

10 Mb/s over optical fiber

Category 5 UTP or STP, 100 m maximum

Two multimode optical fiber, 2 km maximum

Two pairs shielded twisted pair, 25m maximum

Two multimode or single mode optical fibers
with lasers

Optical fiber but also Category 6 UTP

Being developed, standard expected in 2010

Ethernet Switches

Increasing the physical layer bandwidth as in Fast Ethernet was only one of the
solutions to improve the performance of Ethernet LANs. A second solution was to
replace the hubs with more intelligent devices. As Ethernet hubs operate in the
physical layer, they can only regenerate the electrical signal to extend the geographical
reach of the network. From a performance perspective, it would be more interesting
to have devices that operate in the datalink layer and can analyse the destination
address of each frame and forward the frames selectively on the link that leads to the
destination. Such devices are usually called Ethernet switches 10. An Ethernet switch is
a relay that operates in the datalink layer as is illustrated in the figure below.

10. The first Ethernet relays that operated in the datalink layers were called bridges. In practice, the main difference
between switches and bridges is that bridges were usually implemented in software while switches are hardware-based
devices. Throughout this text, we always use switch when referring to a relay in the datalink layer, but you might still see
the word bridge.
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Figure 6.25 Ethernet switches and the reference model

An Ethernet switch understands the format of the Ethernet frames and can selectively
forward frames over each interface. For this, each Ethernet switch maintains a MAC
address table. This table contains, for each MAC address known by the switch, the
identifier of the switch’s port over which a frame sent towards this address must be
forwarded to reach its destination. This is illustrated below with the MAC address
table of the bottom switch. When the switch receives a frame destined to address B, it
forwards the frame on its South port. If it receives a frame destined to address D, it
forwards it only on its North port.

Figure 6.26 Operation of Ethernet switches

One of the selling points of Ethernet networks is that, thanks to the utilisation of 48
bits MAC addresses, an Ethernet LAN is plug and play at the datalink layer. When two
hosts are attached to the same Ethernet segment or hub, they can immediately
exchange Ethernet frames without requiring any configuration. It is important to
retain this plug and play capability for Ethernet switches as well. This implies that
Ethernet switches must be able to build their MAC address table automatically without
requiring any manual configuration. This automatic configuration is performed by the
the MAC address learning algorithm that runs on each Ethernet switch. This algorithm
extracts the source address of the received frames and remembers the port over
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which a frame from each source Ethernet address has been received. This information
is inserted into the MAC address table that the switch uses to forward frames. This
allows the switch to automatically learn the ports that it can use to reach each
destination address, provided that this host has previously sent at least one frame.
This is not a problem since most upper layer protocols use acknowledgements at
some layer and thus even an Ethernet printer sends Ethernet frames as well.

The pseudo-code below details how an Ethernet switch forwards Ethernet frames. It
first updates its MAC address table with the source address of the frame. The MAC
address table used by some switches also contains a timestamp that is updated each
time a frame is received from each known source address. This timestamp is used to
remove from the MAC address table entries that have not been active during the last n
minutes. This limits the growth of the MAC address table, but also allows hosts to
move from one port to another. The switch uses its MAC address table to forward the
received unicast frame. If there is an entry for the frame’s destination address in the
MAC address table, the frame is forwarded selectively on the port listed in this entry.
Otherwise, the switch does not know how to reach the destination address and it
must forward the frame on all its ports except the port from which the frame has
been received. This ensures that the frame will reach its destination, at the expense of
some unnecessary transmissions. These unnecessary transmissions will only last until
the destination has sent its first frame. Multicast and Broadcast frames are also
forwarded in a similar way.

# Arrival of frame F on port P

# Table : MAC address table dictionary : addr->port

# Ports : list of all ports on the switch

src=F.SourceAddress

dst=F.DestinationAddress

Table[src]=P #src heard on port P

if isUnicast(dst) :

if dst in Table:

ForwardFrame(F,Table[dst])

else:

for o in Ports :

if o!= P : ForwardFrame(F,o)

else:

# multicast or broadcast destination

for o in Ports :

if o!= P : ForwardFrame(F,o)

Note: Security issues with Ethernet hubs and switches
From a security perspective, Ethernet hubs have the same drawbacks as the
older coaxial cable. A host attached to a hub will be able to capture all the
frames exchanged between any pair of hosts attached to the same hub.
Ethernet switches are much better from this perspective thanks to the
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selective forwarding, a host will usually only receive the frames destined to
itself as well as the multicast, broadcast and unknown frames. However, this
does not imply that switches are completely secure. There are, unfortunately,
attacks against Ethernet switches. From a security perspective, the MAC
address table is one of the fragile elements of an Ethernet switch. This table
has a fixed size. Some low-end switches can store a few tens or a few hundreds
of addresses while higher-end switches can store tens of thousands of
addresses or more. From a security point of view, a limited resource can be the
target of Denial of Service attacks. Unfortunately, such attacks are also
possible on Ethernet switches. A malicious host could overflow the MAC
address table of the switch by generating thousands of frames with random
source addresses. Once the MAC address table is full, the switch needs to
broadcast all the frames that it receives. At this point, an attacker will receive
unicast frames that are not destined to its address. The ARP attack discussed in
the previous chapter could also occur with Ethernet switches [Vyncke2007].
Recent switches implement several types of defences against these attacks,
but they need to be carefully configured by the network administrator. See
[Vyncke2007] for a detailed discussion on security issues with Ethernet
switches.

The MAC address learning algorithm combined with the forwarding algorithm work well
in a tree-shaped network such as the one shown above. However, to deal with link
and switch failures, network administrators often add redundant links to ensure that
their network remains connected even after a failure. Let us consider what happens in
the Ethernet network shown in the figure below.

When all switches boot, their MAC address table is empty. Assume that host A sends a
frame towards host C. Upon reception of this frame, switch1 updates its MAC address
table to remember that address A is reachable via its West port. As there is no entry
for address C in switch1’s MAC address table, the frame is forwarded to both switch2
and switch3. When switch2 receives the frame, its updates its MAC address table for
address A and forwards the frame to host C as well as to switch3. switch3 has thus
received two copies of the same frame. As switch3 does not know how to reach the
destination address, it forwards the frame received from switch1 to switch2 and the
frame received from switch2 to switch1... The single frame sent by host A will be
continuously duplicated by the switches until their MAC address table contains an
entry for address C. Quickly, all the available link bandwidth will be used to forward all
the copies of this frame. As Ethernet does not contain any TTL or HopLimit, this loop
will never stop.
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Figure 6.27 Ethernet switches in a loop

The MAC address learning algorithm allows switches to be plug-and-play.
Unfortunately, the loops that arise when the network topology is not a tree are a
severe problem. Forcing the switches to only be used in tree-shaped networks as hubs
would be a severe limitation. To solve this problem, the inventors of Ethernet switches
have developed the Spanning Tree Protocol. This protocol allows switches to
automatically disable ports on Ethernet switches to ensure that the network does not
contain any cycle that could cause frames to loop forever.

The Spanning Tree Protocol (802.1d)

The Spanning Tree Protocol (STP), proposed in [Perlman1985], is a distributed protocol
that is used by switches to reduce the network topology to a spanning tree, so that
there are no cycles in the topology. For example, consider the network shown in the
figure below. In this figure, each bold line corresponds to an Ethernet to which two
Ethernet switches are attached. This network contains several cycles that must be
broken to allow Ethernet switches that are using the MAC address learning algorithm
to exchange frames.

In this network, the STP will compute the following spanning tree. Switch1 will be the
root of the tree. All the interfaces of Switch1, Switch2 and Switch7 are part of the
spanning tree. Only the interface connected to LANB will be active on Switch9. LANH
will only be served by Switch7 and the port of Switch44 on LANG will be disabled. A
frame originating on LANB and destined for LANA will be forwarded by Switch7 on
LANC, then by Switch1 on LANE, then by Switch44 on LANF and eventually by Switch2
on LANA.

Switches running the Spanning Tree Protocol exchange BPDUs. These BPDUs are always
sent as frames with destination MAC address as the ALL_BRIDGES reserved multicast
MAC address. Each switch has a unique 64 bit identifier. To ensure uniqueness, the
lower 48 bits of the identifier are set to the unique MAC address allocated to the
switch by its manufacturer. The high order 16 bits of the switch identifier can be
configured by the network administrator to influence the topology of the spanning
tree. The default value for these high order bits is 32768.
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Figure 6.28 Spanning tree computed in a switched Ethernet network

The switches exchange BPDUs to build the spanning tree. Intuitively, the spanning tree
is built by first selecting the switch with the smallest identifier as the root of the tree.
The branches of the spanning tree are then composed of the shortest paths that allow
all of the switches that compose the network to be reached. The BPDUs exchanged by
the switches contain the following information :

• the identifier of the root switch (R)
• the cost of the shortest path between the switch that sent the BPDU and the root

switch (c)
• the identifier of the switch that sent the BPDU (T)
• the number of the switch port over which the BPDU was sent (p)

We will use the notation <R,c,T,p> to represent a BPDU whose root identifier is R, cost
is c and that was sent on the port p of switch T. The construction of the spanning tree
depends on an ordering relationship among the BPDUs. This ordering relationship
could be implemented by the python function below.

# returns True if bpdu b1 is better than bpdu b2

def better( b1, b2) :

return ( (b1.R < b2.R) or

( (b1.R==b2.R) and (b1.c<b2.c) ) or

( (b1.R==b2.R) and (b1.c==b2.c) and (b1.T<b2.T) ) or

( (b1.R==b2.R) and (b1.c==b2.c) and (b1.T==b2.T) and

(b1.p<b2.p) ) )

In addition to the identifier discussed above, the network administrator can also
configure a cost to be associated to each switch port. Usually, the cost of a port
depends on its bandwidth and the [802.1d] standard recommends the values below.

329



Of course, the network administrator may choose other values. We will use the
notation cost[p] to indicate the cost associated to port p in this section.

Bandwidth Cost

10 Mbps 2000000

100 Mbps 200000

1 Gbps 20000

10 Gbps 2000

100 Gbps 200

The Spanning Tree Protocol uses its own terminology that we illustrate in the figure
above. A switch port can be in three different states : Root, Designated and Blocked. All
the ports of the root switch are in the Designated state. The state of the ports on the
other switches is determined based on the BPDU received on each port.
The Spanning Tree Protocol uses the ordering relationship to build the spanning tree.
Each switch listens to BPDUs on its ports. When BPDU=<R,c,T,p> is received on port q,
the switch computes the port’s priority vector: V[q]=<R,c+cost[q],T,p,q> , where cost[q] is
the cost associated to the port over which the BPDU was received. The switch stores in
a table the last priority vector received on each port. The switch then compares its
own identifier with the smallest root identifier stored in this table. If its own identifier is
smaller, then the switch is the root of the spanning tree and is, by definition, at a
distance 0 of the root. The BPDU of the switch is then <R,0,R,p>, where R is the switch
identifier and p will be set to the port number over which the BPDU is sent. Otherwise,
the switch chooses the best priority vector from its table, bv=<R,c,T,p>. The port over
which this best priority vector was learned is the switch port that is closest to the root
switch. This port becomes the Root port of the switch. There is only one Root port per
switch. The switch can then compute its BPDU as BPDU=<R,c,S,p> , where R is the root
identifier, c the cost of the best priority vector, S the identifier of the switch and p will
be replaced by the number of the port over which the BPDU will be sent. The switch
can then determine the state of all its ports by comparing its own BPDU with the
priority vector received on each port. If the switch’s BPDU is better than the priority
vector of this port, the port becomes a Designated port. Otherwise, the port becomes a
Blocked port.

The state of each port is important when considering the transmission of BPDUs. The
root switch regularly sends its own BPDU over all of its (Designated) ports. This BPDU is
received on the Root port of all the switches that are directly connected to the root
switch. Each of these switches computes its own BPDU and sends this BPDU over all its
Designated ports. These BPDUs are then received on the Root port of downstream
switches, which then compute their own BPDU, etc. When the network topology is
stable, switches send their own BPDU on all their Designated ports, once they receive a
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BPDU on their Root port. No BPDU is senton a Blocked port. Switches listen for BPDUs
on their Blocked and Designated ports, but no BPDU should be received over these
ports when the topology is stable. The utilisation of the ports for both BPDUs and data
frames is summarised in the table below.

Port state
Receives
BPDUs

Sends
BPDU

Handles data
frames

Blocked

Root

Designated

yes

yes

yes

no

no

yes

no

yes

yes

To illustrate the operation of the Spanning Tree Protocol, let us consider the simple
network topology in the figure below.

Figure 6.29 A simple Spanning tree computed in a switched Ethernet network

Assume that Switch4 is the first to boot. It sends its own BPDU=<4,0,4,?> on its two
ports. When Switch1 boots, it sends BPDU=<1,0,1,1>. This BPDU is received by Switch4,
which updates its table and computes a new BPDU=<1,3,4,?>. Port 1 of Switch4
becomes the Root port while its second port is still in the Designated state.

Assume now that Switch9 boots and immediately receives Switch1 ‘s BPDU on port 1.
Switch9 computes its own BPDU=<1,1,9,?> and port 1 becomes the Root port of this
switch. This BPDU is sent on port 2 of Switch9 and reaches Switch4. Switch4 compares
the priority vector built from this BPDU (i.e. <1,2,9,2>) and notices that it is better than
Switch4 ‘s BPDU=<1,3,4,2>. Thus, port 2 becomes a Blocked port on Switch4.
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During the computation of the spanning tree, switches discard all received data
frames, as at that time the network topology is not guaranteed to be loop-free. Once
that topology has been stable for some time, the switches again start to use the MAC
learning algorithm to forward data frames. Only the Root and Designated ports are
used to forward data frames. Switches discard all the data frames received on their
Blocked ports and never forward frames on these ports.

Switches, ports and links can fail in a switched Ethernet network. When a failure
occurs, the switches must be able to recompute the spanning tree to recover from the
failure. The Spanning Tree Protocol relies on regular transmissions of the BPDUs to
detect these failures. A BPDU contains two additional fields : the Age of the BPDU and
the Maximum Age. The Age contains the amount of time that has passed since the
root switch initially originated the BPDU. The root switch sends its BPDU with an Age of
zero and each switch that computes its own BPDU increments its Age by one. The Age
of the BPDUs stored on a switch’s table is also incremented every second. A BPDU
expires when its Age reaches the Maximum Age. When the network is stable, this does
not happen as BPDU s are regularly sent by the root switch and downstream switches.
However, if the root fails or the network becomes partitioned, BPDU will expire and
switches will recompute their own BPDU and restart the Spanning Tree Protocol. Once
a topology change has been detected, the forwarding of the data frames stops as the
topology is not guaranteed to be loop-free. Additional details about the reaction to
failures may be found in

Virtual LANs

Another important advantage of Ethernet switches is the ability to create Virtual Local
Area Networks (VLANs). A virtual LAN can be defined as a set of ports attached to one
or more Ethernet switches. A switch can support several VLANs and it runs one MAC
learning algorithm for each Virtual LAN. When a switch receives a frame with an
unknown or a multicast destination, it forwards it over all the ports that belong to the
same Virtual LAN but not over the ports that belong to other Virtual LANs. Similarly,
when a switch learns a source address on a port, it associates it to the Virtual LAN of
this port and uses this information only when forwarding frames on this Virtual LAN.

The figure below illustrates a switched Ethernet network with three Virtual LANs. VLAN2
and VLAN3 only require a local configuration of switch S1. Host C can exchange frames
with host D, but not with hosts that are outside of its VLAN. VLAN1 is more complex as
there are ports of this VLAN on several switches. To support such VLANs, local
configuration is not sufficient anymore. When a switch receives a frame from another
switch, it must be able to determine the VLAN in which the frame originated to use the
correct MAC table to forward the frame. This is done by assigning an identifier to each
Virtual LAN and placing this identifier inside the headers of the frames that are
exchanged between switches.
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Figure 6.30 Virtual Local Area Networks in a switched Ethernet network

IEEE defined in the standard a special header to encode the VLAN identifiers. This 32
bit header includes a 20 bit VLAN field that contains the VLAN identifier of each frame.
The format of the header is described below.

The header is inserted immediately after the source MAC address in the Ethernet
frame (i.e. before the EtherType field). The maximum frame size is increased by 4
bytes. It is encoded in 32 bits and contains four fields. The Tag Protocol Identifier is set
to 0x8100 to allow the receiver to detect the presence of this additional header. The
Priority Code Point (PCP) is a three bit field that is used to support different
transmission priorities for the frame. Value 0 is the lowest priority and value 7 the
highest. Frames with a higher priority can expect to be forwarded earlier than frames
having a lower priority. The C bit is used for compatibility between Ethernet and Token
Ring networks. The last 12 bits of the 802.1q header contain the VLAN identifier. Value
0 indicates that the frame does not belong to any VLAN while value 0xFFF is reserved.
This implies that 4094 different VLAN identifiers can be used in an Ethernet network.

Figure 6.31 Format of the 802.1q header

6.3.3 802.11 wireless networks
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The radio spectrum is a limited resource that must be shared by everyone. During
most of the twentieth century, governments and international organisations have
regulated most of the radio spectrum. This regulation controls the utilisation of the
radio spectrum, in order to ensure that there are no interferences between different
users. A company that wants to use a frequency range in a given region must apply for
a license from the regulator. Most regulators charge a fee for the utilisation of the
radio spectrum and some governments have encouraged competition among
companies bidding for the same frequency to increase the license fees.

In the 1970s, after the first experiments with ALOHANet, interest in wireless networks
grew. Many experiments were done on and outside the ARPANet. One of these
experiments was the first mobile phone (http://news.bbc.co.uk/2/hi/programmes/clic
k_online/8639590.stm), which was developed and tested in 1973. This experimental
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mobile phone was the starting point for the first generation analog mobile phones.
Given the growing demand for mobile phones, it was clear that the analog mobile
phone technology was not sufficient to support a large number of users. To support
more users and new services, researchers in several countries worked on the
development of digital mobile telephones. In 1987, several European countries
decided to develop the standards for a common cellular telephone system across
Europe : the Global System for Mobile Communications (GSM). Since then, the
standards have evolved and more than three billion users are connected to GSM
networks today.

While most of the frequency ranges of the radio spectrum are reserved for specific
applications and require a special licence, there are a few exceptions. These
exceptions are known as the Industrial, Scientific and Medical (http://en.wikipedia.org/
wiki/ISM_band) (ISM) radio bands. These bands can be used for industrial, scientific
and medical applications without requiring a licence from the regulator. For example,
some radio-controlled models use the 27 MHz ISM band and some cordless
telephones operate in the 915 MHz ISM. In 1985, the 2.400-2.500 GHz band was added
to the list of ISM bands. This frequency range corresponds to the frequencies that are
emitted by microwave ovens. Sharing this band with licensed applications would have
likely caused interferences, given the large number of microwave ovens that are used.
Despite the risk of interferences with microwave ovens, the opening of the
2.400-2.500 GHz allowed the networking industry to develop several wireless network
techniques to allow computers to exchange data without using cables. In this section,
we discuss in more detail the most popular one, i.e. the WiFi [802.11] family of
wireless networks. Other wireless networking techniques such as BlueTooth (http://e
n.wikipedia.org/wiki/Bluetooth)or HiperLAN (http://en.wikipedia.org/wiki/HiperLAN)
use the same frequency range.

Today, WiFi is a very popular wireless networking technology. There are more than
several hundreds of millions of WiFi devices. The development of this technology
started in the late 1980s with the WaveLAN proprietary wireless network. WaveLAN
operated at 2 Mbps and used different frequency bands in different regions of the
world. In the early 1990s, the IEEE (http://www.ieee.org/index.html) created the 802.11
working group (http://www.ieee802.org/11/) to standardise a family of wireless
network technologies. This working group was very prolific and produced several
wireless networking standards that use different frequency ranges and different
physical layers. The table below provides a summary of the main 802.11 standards.
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Standard Frequency
Typical
throughput

Max
bandwidth

Range
(m)
indoor/
outdoor

802.11

802.11a

802.11b

802.11g

802.11n

2.4 GHz

5 GHz

2.4 GHz

2.4 GHz

2.4/5 GHz

0.9 Mbps

23 Mbps

4.3 Mbps

19 Mbps

74 Mbps

2 Mbps

54 Mbps

11 Mbps

54 Mbps

150 Mbps

20/100

35/120

38/140

38/140

70/250

When developing its family of standards, the IEEE 802.11 working group (http://www.ie
ee802.org/11/) took a similar approach as the 802.3 working group (http://www.ieee80
2.org/3/) that developed various types of physical layers for Ethernet networks. 802.11
networks use the CSMA/CA Medium Access Control technique described earlier and
they all assume the same architecture and use the same frame format.

The architecture of WiFi networks is slightly different from the Local Area Networks
that we have discussed until now. There are, in practice, two main types of WiFi
networks : independent or adhoc networks and infrastructure networks 11. An
independent or adhoc network is composed of a set of devices that communicate with
each other. These devices play the same role and the adhoc network is usually not
connected to the global Internet. Adhoc networks are used when for example a few
laptops need to exchange information or to connect a computer with a WiFi printer.

11. The 802.11 working group defined the basic service set (BSS) as a group of devices that communicate with each other.
We continue to use network when referring to a set of devices that communicate.
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Figure 6.32 An 802.11 independent or adhoc network

Most WiFi networks are infrastructure networks. An infrastructure network contains
one or more access points that are attached to a fixed Local Area Network (usually an
Ethernet network) that is connected to other networks such as the Internet. The figure
below shows such a network with two access points and four WiFi devices. Each WiFi
device is associated to one access point and uses this access point as a relay to
exchange frames with the devices that are associated to another access point or
reachable through the LAN.

An 802.11 access point is a relay that operates in the datalink layer like switches. The
figure below represents the layers of the reference model that are involved when a
WiFi host communicates with a host attached to an Ethernet network through an
access point.

802.11 devices exchange variable length frames, which have a slightly different
structure than the simple frame format used in Ethernet LANs. We review the key
parts of the 802.11 frames. Additional details may be found in [802.11] and [Gast2002]
. An 802.11 frame contains a fixed length header, a variable length payload that may
contain up 2324 bytes of user data and a 32 bits CRC. Although the payload can
contain up to 2324 bytes, most 802.11 deployments use a maximum payload size of
1500 bytes as they are used in infrastructure networks attached to Ethernet LANs. An
802.11 data frame is shown below.
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Figure 6.33 An 802.11 infrastructure network

Figure 6.34 An 802.11 access point

Figure 6.35 802.11 data frame format

The first part of the 802.11 header is the 16 bit Frame Control field. This field contains
flags that indicate the type of frame (data frame, RTS/CTS, acknowledgement,
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management frames, etc), whether the frame is sent to or from a fixed LAN, etc
[802.11]. The Duration is a 16 bit field that is used to reserve the transmission
channel. In data frames, the Duration field is usually set to the time required to
transmit one acknowledgement frame after a SIFS delay. Note that the Duration field
must be set to zero in multicast and broadcast frames. As these frames are not
acknowledged, there is no need to reserve the transmission channel after their
transmission. The Sequence control field contains a 12 bits sequence number that is
incremented for each data frame.

The astute reader may have noticed that the 802.11 data frames contain three 48-bits
address fields 12. This is surprising compared to other protocols in the network and
datalink layers whose headers only contain a source and a destination address. The
need for a third address in the 802.11 header comes from the infrastructure
networks. In such a network, frames are usually exchanged between routers and
servers attached to the LAN and WiFi devices attached to one of the access points. The
role of the three address fields is specified by bit flags in the Frame Control field.

When a frame is sent from a WiFi device to a server attached to the same LAN as the
access point, the first address of the frame is set to the MAC address of the access
point, the second address is set to the MAC address of the source WiFi device and the
third address is the address of the final destination on the LAN. When the server
replies, it sends an Ethernet frame whose source address is its MAC address and the
destination address is the MAC address of the WiFi device. This frame is captured by
the access point that converts the Ethernet header into an 802.11 frame header. The
802.11 frame sent by the access point contains three addresses : the first address is
the MAC address of the destination WiFi device, the second address is the MAC
address of the access point and the third address the MAC address of the server that
sent the frame.

802.11 control frames are simpler than data frames. They contain a Frame Control,a
Duration field and one or two addresses. The acknowledgement frames are very
small. They only contain the address of the destination of the acknowledgement.
There is no source address and no Sequence Control field in the acknowledgement
frames. This is because the acknowledgement frame can easily be associated to the
previous frame that it acknowledges. Indeed, each unicast data frame contains a
Duration field that is used to reserve the transmission channel to ensure that no
collision will affect the acknowledgement frame. The Sequence Control field is mainly
used by the receiver to remove duplicate frames. Duplicate frames are detected as
follows. Each data frame contains a 12 bits Sequence Control field and the Frame
Control field contains the Retry bit flag that is set when a frame is transmitted. Each
802.11 receiver stores the most recent sequence number received from each source
address in frames whose Retry bit is reset. Upon reception of a frame with the Retry
bit set, the receiver verifies its sequence number to determine whether it is a
duplicated frame or not.

802.11 RTS/CTS frames are used to reserve the transmission channel, in order to
transmit one data frame and its acknowledgement. The RTS frames contain a Duration
and the transmitter and receiver addresses. The Duration field of the RTS frame

12. In fact, the [802.11] frame format contains a fourth optional address field. This fourth address is only used when an
802.11 wireless network is used to interconnect bridges attached to two classical LAN networks.
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indicates the duration of the entire reservation (i.e. the time required to transmit the
CTS, the data frame, the acknowledgements and the required SIFS delays). The CTS
frame has the same format as the acknowledgement frame.

Figure 6.36 IEEE 802.11 ACK and CTS frames

Figure 6.37 IEEE 802.11 RTS frame format

Note: The 802.11 service
Despite the utilization of acknowledgements, the 802.11 layer only provides an
unreliable connectionless service like Ethernet networks that do not use
acknowledgements. The 802.11 acknowledgements are used to minimize the
probability of frame duplication. They do not guarantee that all frames will be
correctly received by their recipients. Like Ethernet, 802.11 networks provide a
high probability of successful delivery of the frames, not a guarantee.
Furthermore, it should be noted that 802.11 networks do not use
acknowledgements for multicast and broadcast frames. This implies that in
practice such frames are more likely to suffer from transmission errors than
unicast frames.

In addition to the data and control frames that we have briefly described above,
802.11 networks use several types of management frames. These management
frames are used for various purposes. We briefly describe some of these frames
below. A detailed discussion may be found in [802.11] and [Gast2002]. A first type of
management frames are the beacon frames. These frames are broadcasted regularly
by access points. Each beacon frame contains information about the capabilities of
the access point (e.g. the supported 802.11 transmission rates) and a Service Set
Identity (SSID). The SSID is a null-terminated ASCII string that can contain up to 32
characters. An access point may support several SSIDs and announce them in beacon
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frames. An access point may also choose to remain silent and not advertise beacon
frames. In this case, WiFi stations may send Probe request frames to force the available
access points to return a Probe response frame.

Note: IP over 802.11
Two types of encapsulation schemes were defined to support IP in Ethernet
networks : the original encapsulation scheme, built above the Ethernet DIX
format is defined in RFC 894 (http://tools.ietf.org/html/rfc894.html)and a
second encapsulation RFC 1042 (http://tools.ietf.org/html/rfc1042.html)
scheme, built above the LLC/SNAP protocol [802.2]. In 802.11 networks, the
situation is simpler and only the RFC 1042 (http://tools.ietf.org/html/rfc894.ht
ml)encapsulation is used. In practice, this encapsulation adds 6 bytes to the
802.11 header. The first four bytes correspond to the LLC/SNAP header. They
are followed by the two bytes Ethernet Type field (0x800 for IP and 0x806 for
ARP). The figure below shows an IP packet encapsulated in an 802.11 frame.

The second important utilisation of the management frames is to allow a WiFi station
to be associated with an access point. When a WiFi station starts, it listens to beacon
frames to find the available SSIDs. To be allowed to send and receive frames via an
access point, a WiFi station must be associated to this access point. If the access point
does not use any security mechanism to secure the wireless transmission, the WiFi
station simply sends an Association request frame to its preferred access point (usually
the access point that it receives with the strongest radio signal). This frame contains
some parameters chosen by the WiFi station and the SSID that it requests to join. The
access point replies with an Association response frame if it accepts the WiFI station.

Figure 6.38 IP over IEEE 802.11

6.4 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this chapter, we first explained the principles of the datalink layer. There are two
types of datalink layers : those used over point-to-point links and those used over
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Local Area Networks. On point-to-point links, the datalink layer must at least provide a
framing technique, but some datalink layer protocols also include reliability
mechanisms such as those used in the transport layer. We have described the Point-
to-Point Protocol that is often used over point-to-point links in the Internet.

Local Area Networks pose a different problem since several devices share the same
transmission channel. In this case, a Medium Access Control algorithm is necessary to
regulate the access to the transmission channel because whenever two devices
transmit at the same time a collision occurs and none of these frames can be decoded
by their recipients. There are two families of MAC algorithms. The statistical or
optimistic MAC algorithms reduce the probability of collisions but do not completely
prevent them. With such algorithms, when a collision occurs, the collided frames must
be retransmitted. We have described the operation of the ALOHA, CSMA, CSMA/CD
and CSMA/CA MAC algorithms. Deterministic or pessimistic MAC algorithms avoid all
collisions. We have described the Token Ring MAC where stations exchange a token to
regulate the access to the transmission channel.

Finally, we have described in more detail two successful Local Area Network
technologies : Ethernet and WiFi. Ethernet is now the de facto LAN technology. We
have analysed the evolution of Ethernet including the operation of hubs and switches.
We have also described the Spanning Tree Protocol that must be used when switches
are interconnected. For the last few years, WiFi became the de facto wireless
technology at home and inside enterprises. We have explained the operation of WiFi
networks and described the main 802.11 frames.

6.5 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. Consider the switched network shown in the figure below. What is the spanning
tree that will be computed by 802.1d in this network assuming that all links have
a unit cost ? Indicate the state of each port.

2. Consider the switched network shown in the figure above. In this network,
assume that the LAN between switches 3 and 12 fails. How should the switches
update their port/address tables after the link failure ?

3. Many enterprise networks are organized with a set of backbone devices
interconnected by using a full mesh of links as shown in the figure below. In this
network, what are the benefits and drawbacks of using Ethernet switches and IP
routers running OSPF ?
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Figure 6.39 A small network composed of Ethernet switches

Figure 6.40 A typical enterprise backbone network

4. Most commercial Ethernet switches are able to run the Spanning tree protocol
independently on each VLAN. What are the benefits of using per-VLAN spanning
trees ?
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Chapter 7 Glossary
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

AIMD Additive Increase, Multiplicative Decrease. A rate adaption algorithm used
notably by TCP where a host additively increases its transmission rate when the
network is not congested and multiplicatively decreases when congested is detected.

anycast a transmission mode where an information is sent from one source to one
receiver that belongs to a specified group

API Application Programming Interface

ARP The Address Resolution Protocol is a protocol used by IPv4 devices to obtain the
datalink layer address that corresponds to an IPv4 address on the local area network.
ARP is defined in RFC 826

ARPANET The Advanced Research Project Agency (ARPA) Network is a network that
was built by network scientists in USA with funding from the ARPA of the US Ministry
of Defense. ARPANET is considered as the grandfather of today’s Internet.

ascii The American Standard Code for Information Interchange (ASCII) is a character-
encoding scheme that defines a binary representation for characters. The ASCII table
contains both printable characters and control characters. ASCII characters were
encoded in 7 bits and only contained the characters required to write text in English.
Other character sets such as Unicode have been developed later to support all written
languages.

ASN.1 The Abstract Syntax Notation One (ASN.1) was designed by ISO and ITU-T. It is a
standard and flexible notation that can be used to describe data structures for
representing, encoding, transmitting, and decoding data between applications. It was
designed to be used in the Presentation layer of the OSI reference model but is now
used in other protocols such as SNMP.

ATM Asynchronous Transfer Mode

BGP The Border Gateway Protocol is the interdomain routing protocol used in the
global Internet.

BNF A Backus-Naur Form (BNF) is a formal way to describe a language by using
syntactic and lexical rules. BNFs are frequently used to define programming
languages, but also to define the messages exchanged between networked
applications. RFC 5234 explains how a BNF must be written to specify an Internet
protocol.

broadcast a transmission mode where is same information is sent to all nodes in the
network

CIDR Classless Inter Domain Routing is the current address allocation architecture for
IPv4. It was defined in RFC 1518 and RFC 4632.
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dial-up line A synonym for a regular telephone line, i.e. a line that can be used to dial
any telephone number.

DNS The Domain Name System is a distributed database that allows to map names on
IP addresses.

DNS The Domain Name System is defined in RFC 1035

DNS The Domain Name System is a distributed database that can be queried by hosts
to map names onto IP addresses

eBGP An eBGP session is a BGP session between two directly connected routers that
belong to two different Autonomous Systems. Also called an external BGP session.

EGP Exterior Gateway Protocol. Synonym of interdomain routing protocol

EIGRP The Enhanced Interior Gateway Routing Protocol (EIGRP) is a proprietary
intradomain routing protocol that is often used in enterprise networks. EIGRP uses the
DUAL algorithm described in [Garcia1993].

frame a frame is the unit of information transfer in the datalink layer

Frame-Relay A wide area networking technology using virtual circuits that is deployed
by telecom operators.

ftp The File Transfer Protocol defined in RFC 959 has been the de facto protocol to
exchange files over the Internet before the widespread adoption of HTTP RFC 2616

FTP The File Transfer Protocol is defined in RFC 959

hosts.txt A file that initially contained the list of all Internet hosts with their IPv4
address. As the network grew, this file was replaced by the DNS, but each host still
maintains a small hosts.txt file that can be used when DNS is not available.

HTML The HyperText Markup Language specifies the structure and the syntax of the
documents that are exchanged on the world wide web. HTML is maintained by the
HTML working group of the W3C

HTTP The HyperText Transport Protocol is defined in RFC 2616

hub A relay operating in the physical layer.

IANA The Internet Assigned Numbers Authority (IANA) is responsible for the
coordination of the DNS Root, IP addressing, and other Internet protocol resources

iBGP An iBGP session is a BGP between two routers belonging to the same
Autonomous System. Also called an internal BGP session.

ICANN The Internet Corporation for Assigned Names and Numbers (ICANN)
coordinates the allocation of domain names, IP addresses and AS numbers as well
protocol parameters. It also coordinates the operation and the evolution of the DNS
root name servers.

IETF The Internet Engineering Task Force is a non-profit organisation that develops the
standards for the protocols used in the Internet. The IETF mainly covers the transport
and network layers. Several application layer protocols are also standardised within
the IETF. The work in the IETF is organised in working groups. Most of the work is
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performed by exchanging emails and there are three IETF meetings every year.
Participation is open to anyone. See http://www.ietf.org

IGP Interior Gateway Protocol. Synonym of intradomain routing protocol

IGRP The Interior Gateway Routing Protocol (IGRP) is a proprietary intradomain
routing protocol that uses distance vector. IGRP supports multiple metrics for each
route but has been replaced by EIGRP

IMAP The Internet Message Access Protocol is defined in RFC 3501

IMAP The Internet Message Access Protocol (IMAP), defined in RFC 3501, is an
application-level protocol that allows a client to access and manipulate the emails
stored on a server. With IMAP, the email messages remain on the server and are not
downloaded on the client.

Internet a public internet, i.e. a network composed of different networks that are
running IPv4 or IPv6

internet an internet is an internetwork, i.e. a network composed of different
networks. The Internet is a very popular internetwork, but other internets have been
used in the path.

inverse query For DNS servers and resolvers, an inverse query is a query for the
domain name that corresponds to a given IP address.

IP Internet Protocol is the generic term for the network layer protocol in the TCP/IP
protocol suite. IPv4 is widely used today and IPv6 is expected to replace IPv4

IPv4 is the version 4 of the Internet Protocol, the connectionless network layer
protocol used in most of the Internet today. IPv4 addresses are encoded as a 32 bits
field.

IPv6 is the version 6 of the Internet Protocol, the connectionless network layer
protocol which is intended to replace IPv4 . IPv6 addresses are encoded as a 128 bits
field.

IS-IS Intermediate System-Intermediate System. A link-state intradomain routing
that was initially defined for the ISO CLNP protocol but was extended to support IPv4
and IPv6. IS-IS is often used in ISP networks. It is defined in [ISO10589]

ISN The Initial Sequence Number of a TCP connection is the sequence number chosen
by the client ( resp. server) that is placed in the SYN (resp. SYN+ACK) segment during
the establishment of the TCP connection.

ISO The International Standardization Organisation is an agency of the United Nations
that is based in Geneva and develop standards on various topics. Within ISO, country
representatives vote to approve or reject standards. Most of the work on the
development of ISO standards is done in expert working groups. Additional
information about ISO may be obtained from http://www.iso.int

ISO The International Standardization Organisation

ISO-3166 An ISO standard that defines codes to represent countries and their
subdivisions. See http://www.iso.org/iso/country_codes.htm
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ISP An Internet Service Provider, i.e. a network that provides Internet access to its
clients.

ITU The International Telecommunication Union is a United Nation’s agency whose
purpose is to develop standards for the telecommunication industry. It was initially
created to standardise the basic telephone system but expanded later towards data
networks. The work within ITU is mainly done by network specialists from the
telecommunication industry (operators and vendors). See http://www.itu.int for more
information

IXP Internet eXchange Point. A location where routers belonging to different domains
are attached to the same Local Area Network to establish peering sessions and
exchange packets. See http://www.euro-ix.net/ or http://en.wikipedia.org/wiki/
List_of_Internet_exchange_points_by_size for a partial list of IXPs.

LAN Local Area Network

leased line A telephone line that is permanently available between two endpoints.

MAN Metropolitan Area Network

MIME The Multipurpose Internet Mail Extensions (MIME) defined in RFC 2045 are a set
of extensions to the format of email messages that allow to use non-ASCII characters
inside mail messages. A MIME message can be composed of several different parts
each having a different format.

MIME document A MIME document is a document, encoded by using the MIME
format.

minicomputer A minicomputer is a multi-user system that was typically used in the
1960s/1970s to serve departments. See the corresponding wikipedia article for
additional information : http://en.wikipedia.org/wiki/Minicomputer

modem A modem (modulator-demodulator) is a device that encodes (resp. decodes)
digital information by modulating (resp. demodulating) an analog signal. Modems are
frequently used to transmit digital information over telephone lines and radio links.
See http://en.wikipedia.org/wiki/Modem for a survey of various types of modems

MSS A TCP option used by a TCP entity in SYN segments to indicate the Maximum
Segment Size that it is able to receive.

multicast a transmission mode where an information is sent efficiently to all the
receivers that belong to a given group

nameserver A server that implements the DNS protocol and can answer queries for
names inside its own domain.

NAT A Network Address Translator is a middlebox that translates IP packets.

NBMA A Non Broadcast Mode Multiple Access Network is a subnetwork that supports
multiple hosts/routers but does not provide an efficient way of sending broadcast
frames to all devices attached to the subnetwork. ATM subnetworks are an example of
NBMA networks.
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network-byte order Internet protocol allow to transport sequences of bytes. These
sequences of bytes are sufficient to carry ASCII characters. The network-byte order
refers to the Big-Endian encoding for 16 and 32 bits integer. See
http://en.wikipedia.org/wiki/Endianness

NFS The Network File System is defined in RFC 1094

NTP The Network Time Protocol is defined in RFC 1305

OSI Open Systems Interconnection. A set of networking standards developed by ISO
including the 7 layers OSI

reference model. OSPF Open Shortest Path First. A link-state intradomain routing
protocol that is often used in enterprise and

ISP networks. OSPF is defined in and RFC 2328 and RFC 5340

packet a packet is the unit of information transfer in the network layer

PBL Problem-based learning is a teaching approach that relies on problems.

POP The Post Office Protocol is defined in RFC 1939

POP The Post Office Protocol (POP), defined RFC 1939, is an application-level protocol
that allows a client to download email messages stored on a server.

resolver A server that implements the DNS protocol and can resolve queries. A
resolver usually serves a set of clients (e.g. all hosts in campus or all clients of a given
ISP). It sends DNS queries to nameservers everywhere on behalf of its clients and
stores the received answers in its cache. A resolver must know the IP addresses of the
root nameservers.

RIP Routing Information Protocol. An intradomain routing protocol based on distance
vectors that is sometimes used in enterprise networks. RIP is defined in RFC 2453.

RIR Regional Internet Registry. An organisation that manages IP addresses and AS
numbers on behalf of IANA.

root nameserver A name server that is responsible for the root of the domain names
hierarchy. There are

currently a dozen root nameservers and each DNS resolver See http://www.root-
servers.org/ for more information about the operation of these root servers.

round-trip-time The round-trip-time (RTT) is the delay between the transmission of a
segment and the reception of the corresponding acknowledgement in a transport
protocol.

router A relay operating in the network layer.

RPC Several types of remote procedure calls have been defined. The RPC mechanism
defined in RFC 5531 is used by applications such as NFS

SDU (Service Data Unit) a Service Data Unit is the unit information transferred
between applications

segment a segment is the unit of information transfer in the transport layer
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SMTP The Simple Mail Transfer Protocol is defined in RFC 821

SNMP The Simple Network Management Protocol is a management protocol defined
for TCP/IP networks.

socket A low-level API originally defined on Berkeley Unix to allow programmers to
develop clients and servers.

spoofed packet A packet is said to be spoofed when the sender of the packet has
used as source address a different address than its own.

SSH The Secure Shell (SSH) Transport Layer Protocol is defined in RFC 4253

standard query For DNS servers and resolvers, a standard query is a query for a A or
a AAAA record. Such a query typically returns an IP address.

switch A relay operating in the datalink layer.

SYN cookie The SYN cookies is a technique used to compute the initial sequence
number (ISN)

TCB The Transmission Control Block is the set of variables that are maintained for
each established TCP connection by a TCP implementation.

TCP The Transmission Control Protocol is a protocol of the transport layer in the TCP/
IP protocol suite that provides a reliable bytestream connection-oriented service on
top of IP

TCP/IP refers to the TCP and IP protocols telnet The telnet protocol is defined in RFC
854 TLD A Top-level domain name. There are two types of TLDs. The ccTLD are the
TLD that correspond to a two

letters ISO-3166 country code. The gTLD are the generic TLDs that are not assigned to
a country.

TLS Transport Layer Security, defined in RFC 5246 is a cryptographic protocol that is
used to provide communication security for Internet applications. This protocol is
used on top of the transport service but a detailed description is outside the scope of
this book.

UDP User Datagram Protocol is a protocol of the transport layer in the TCP/IP protocol
suite that provides an unreliable connectionless service that includes a mechanism to
detect corruption

unicast a transmission mode where an information is sent from one source to one
recipient

vnc A networked application that allows to remotely access a computer’s Graphical
User Interface. See http://en.wikipedia.org/wiki/Virtual_Network_Computing

W3C The world wide web consortium was created to standardise the protocols and
mechanisms used in the global www. It is thus focused on a subset of the application
layer. See http://www.w3c.org

WAN Wide Area Network
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X.25 A wide area networking technology using virtual circuits that was deployed by
telecom operators.

X11 The XWindow system and the associated protocols are defined in [SG1990]

XML The eXtensible Markup Language (XML) is a flexible text format derived from
SGML. It was originally designed for the electronic publishing industry but is now used
by a wide variety of applications that need to exchange structured data. The XML
specifications are maintained by several working groups of the W3C
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