
Programming Fundamentals -A
Modular Structured Approach

using C++

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

© Kenneth Leroy Busbee

This work is licensed under a Creative Commons-ShareAlike 4.0 International License

Original source: Multimedia Educational Resource for Learning and Online Teaching
http://www.merlot.org/merlot/viewMaterial.htm?id=515164

http://creativecommons.org/licenses/by-sa/4.0/
http://www.merlot.org/merlot/viewMaterial.htm?id=515164

Contents

Preface ...1
Orientation and Syllabus ...2
Chapter 1 Introduction to Programming ..4
1.1 Systems Development Life Cycle ...4

1.1.1 Discussion ..4
1.1.2 Definitions ...5

1.2 Bloodshed Dev-C++ 5 Compiler/IDE ..6
1.2.1 Introduction ..6
1.2.2 Bloodshed Dev-C++ 5 compiler/IDE ...6
1.2.3 Preparation before Installation ..7

1.2.3.1 Creating the Needed Folders and Sub-Folders7
1.2.3.2 Getting the Software ...8

Tip ..8

1.2.3.3 Getting a C++ Source Code File ...8

1.2.4 Installation Instructions for Bloodshed Dev-C++ 5 compiler/IDE8
1.2.4.1 Computer Installation Instructions ...9
1.2.4.2 Flash Drive Installation Instructions ...9

1.3 Modularization and C++ Program Layout ..10
1.3.1 Concept of Modularization ..10
1.3.2 Introduction of Functions within C++ ..11

1.3.2.1 Program Control Function ...13
1.3.2.2 Specifc Task Function ...13

1.3.3 C++ Program Layout ..14
1.3.4 Definitions ...15

1.4 Practice 1: Introduction to Programming ...16
1.4.1 Learning Objectives ..16
1.4.2 Memory Building Activities ..16
1.4.3 Exercises ..16
1.4.4 Miscellaneous Items ..17
1.4.5 Lab Assignment ..17

1.4.5.1 Creating a Folder or Sub-Folder for Chapter 01 Files17
1.4.5.2 Download the Lab File(s) ..17
1.4.5.3 Detailed Lab Instructions ...17

1.4.6 Problems ...18
1.4.6.1 Problem 01a -Instructions ..18

1.4.7 Solutions to Exercises in Chapter 1 ..19

Chapter 2 Program Planning & Design ..20
2.1 Program Design ...20

2.1.1 Topic Introduction ..20
2.1.2 Understanding the Program ...20
2.1.3 Using Design Tools to Create a Model ...20
2.1.4 Develop Test Data ..21
2.1.5 Definitions ...21

2.2 Pseudocode ..22
2.2.1 Overview ..22
2.2.2 Definitions ...23

2.3 Test Data ...23
2.3.1 Overview ..23
2.3.2 Creating Test Data and Model Checking ...24
2.3.3 Testing the Coded Program -Code Checking ..24
2.3.4 Definitions ...25

2.4 Practice 2: Program Planning & Design ..25
2.4.1 Learning Objectives ..25
2.4.2 Memory Building Activities ..25
2.4.3 Exercises ..26
2.4.4 Miscellaneous Items ..26
2.4.5 Lab Assignment ..26

2.4.5.1 Creating a Folder or Sub-Folder for Chapter 02 Files26
2.4.5.2 Download the Lab File(s) ..26
2.4.5.3 Detailed Lab Instructions ...27

2.4.6 Problems ...28
2.4.6.1 Problem 02a -Instructions ..28
2.4.6.2 Problem 02b -Instructions ...28

2.4.7 Solutions to Exercises in Chapter 2 ..28

Chapter 3 Data & Operators ...29
3.1 Data Types in C++ ..29

3.1.1 General Discussion..29
3.1.2 Definitions ...31

3.2 Identifier Names ..31
3.2.1 Overview ..31
3.2.2 Technical to Language ...31
3.2.3 Good Programming Techniques ..32
3.2.4 Industry Rules ...32
3.2.5 Definitions ...32

3.3 Constants &Variables ..33
3.3.1 Understanding Constants ...33
3.3.2 Defining Constants & Variables ..34
3.3.3 Definitions ...34

3.4 Data Manipulation ...35
3.4.1 Introduction ..35
3.4.2 Definitions ...35
3.4.3 An Expression Example with Evaluation ..36
3.4.4 Precedence of Operators Chart ..36

3.5 Assignment Operator ..37
3.5.1 Discussion ...37
3.5.2 Definitions ...38

3.6 Arithmetic Operators ..38
3.6.1 General Discussion..38

3.7 Data Type Conversions ...39

3.7.1 Overview ..39
3.7.2 Implicit Type Conversion ...39
3.7.3 Promotion ...40
3.7.4 Demotion ...40
3.7.5 Explicit Type Conversion ..40
3.7.6 Demonstration Program in C++ ...41

3.7.6.1 Creating a Folder or Sub-Folder for Source Code Files41
3.7.6.2 Download the Demo Program ..41

3.7.7 Definitions ...41

3.8 Practice 3: Data & Operators ..42
3.8.1 Learning Objectives ..42
3.8.2 Memory Building Activities ..42
3.8.3 Exercises ..42
3.8.4 Miscellaneous Items ..43
3.8.5 Lab Assignment ..43

3.8.5.1 Creating a Folder or Sub-Folder for Chapter 03 Files43
3.8.5.2 Download the Lab File(s) ..43
3.8.5.3 Detailed Lab Instructions ...43

3.8.6 Problems ...45
3.8.6.1 Problem 03a -Instructions ..45

3.8.7 Solutions to Exercises in Chapter 3 ..45

Chapter 4 Often Used Data Types ..46
4.1 Integer Data Type ..46

4.1.1 General Discussion ...46
4.1.2 Definitions ...47

4.2 Floating-Point Data Type ..47
4.2.1 General Discussion ...47
4.2.2 Definitions ...49

4.3 String Data Type ..49
4.3.1 General Discussion..49
4.3.2 Definitions ...50

4.4 Arithmetic Assignment Operators ...50
4.4.1 Overview of Arithmetic Assignment..50
4.4.2 Demonstration Program in C++ ...51

4.4.2.1 Creating a Folder or Sub-Folder for Source Code Files51
4.4.2.2 Download the Demo Program ..51

4.5 Lvalue & Rvalue ..52
4.5.1 Discussion ...52
4.5.2 Definitions ...53

4.6 Integer Division and Modulus ..53
4.6.1 Overview of Integer Division and Modulus ..53
4.6.2 Demonstration Program in C++ ...55

4.6.2.1 Creating a Folder or Sub-Folder for Source Code Files55
4.6.2.2 Download the Demo Program ..55

4.7 Practice 4: Often Used Data Types ..56

4.7.1 Learning Objectives ..56
4.7.2 Memory Building Activities ..56
4.7.3 Exercises ..56
4.7.4 Miscellaneous Items ..56
4.7.5 Lab Assignment ..57

4.7.5.1 Creating a Folder or Sub-Folder for Chapter 04 Files57
4.7.5.2 Detailed Lab Instructions ...57

4.7.6 Problems ...58
4.7.6.1 Problem 04a - Instructions ...58

4.7.7 Solutions to Exercises in Chapter 4 ..58

Chapter 5 Integrated Development Environment ...59
5.1 Integrated Development Environment ...59

5.1.1 IDE Overview..59
5.1.2 Resolving Errors...61
5.1.3 Demonstration Program in C++ ...63

5.1.3.1 Creating a Folder or Sub-Folder for Source Code Files63
5.1.3.2 Download the Demo Program ..63

5.1.4 Definitions ...64

5.2 Standard Input and Output ..64
5.2.1 General Discussion..64
5.2.2 Standard I/O within C++ ..65
5.2.3 Definitions ...67

5.3 Compiler Directives ...67
5.3.1 General Discussion ...67
5.3.2 Definitions ...68

5.4 Practice 5: Integrated Development Environment ..69
5.4.1 Learning Objectives ..69
5.4.2 Memory Building Activities ..69
5.4.3 Exercises ..69
5.4.4 Miscellaneous Items ..69
5.4.5 Lab Assignment ..70

5.4.5.1 Creating a Folder or Sub-Folder for Chapter 05 Files70
5.4.5.2 Download the Lab File(s) ..70
5.4.5.3 Detailed Lab Instructions ...70

5.4.6 Problems ...71
5.4.6.1 Problem 05a -Instructions ..71
5.4.6.2 Problem 05b -Instructions ...71

5.4.7 Solutions to Exercises in Chapter 5 ..72

Chapter 6 Program Control Functions ...73
6.1 Pseudocode Examples for Functions ..73

6.1.1 Concept ..73
6.1.2 Examples ...74
6.1.3 Definitions ...74

6.2 Hierarchy or Structure Chart ..75
6.2.1 Overview...75
6.2.2 Definitions ...75

6.3 Program Control Functions ..76
6.3.1 Prerequisite Material ...76
6.3.2 Concept of Modularization ..76
6.3.3 Program Control Functions ...77
6.3.4 Demonstration Program in C++ ...77

6.3.4.1 Creating a Folder or Sub-Folder for Source Code Files77
6.3.4.2 Download the Demo Program ..78
6.3.4.3 Study the Materials Collectively to Understand Modularization78

6.3.5 Definitions ...78

6.4 Void Data Type ...79
6.4.1 General Discussion..79
6.4.2 Definitions ...79

6.5 Documentation and Making Source Code Readable ..79
6.5.1 General Discussion ...79

6.5.1.1 Documentation ..81
6.5.1.2 Vertical Alignment ...82
6.5.1.3 Appropriate use of Comments ..82
6.5.1.4 Banners for Functions ..83
6.5.1.5 Block Markers on Lines by Themselves ..83
6.5.1.6 Indent Block Markers ..83
6.5.1.7 Meaningful Identifier Names Consistently Typed83
6.5.1.8 Appropriate use of Typedef ...84

6.5.2 Definitions ...84

6.6 Practice 6: Program Control Functions ...85
6.6.1 Learning Objectives ..85
6.6.2 Memory Building Activities ..85
6.6.3 Exercises ..85
6.6.4 Miscellaneous Items ..85

6.6.4.1 Lab Assignment ...86
6.6.4.1.1 Creating a Folder or Sub-Folder for Chapter 06 Files86
6.6.4.1.2 Download the Lab File(s) ...86
6.6.4.1.3 Detailed Lab Instructions ..86

6.6.4.2 Problems ..87
6.6.4.2.1 Problem 06a -Instructions ..87
6.6.4.2.2 Problem 06b -Instructions ..89

6.6.4.3 Solutions to Exercises in Chapter 6 ...90

Chapter 7 Specific Task Functions ...91
7.1 Specific Task Functions ...91

7.1.1 Prerequisite Material ...91
7.1.2 General Concept ...91
7.1.3 Specifc Task Functions ...91
7.1.4 Definitions ...92

7.2 Global vs Local Data Storage ..92
7.2.1 General Discussion ...92
7.2.2 Definitions ...93

7.3 Using a Header File for User Defned Specifc Task Functions93

7.3.1 Concept: User Defned Specifc Task Functions ..93
7.3.2 Demonstration Using C++ ...96

7.3.2.1 Creating a Folder or Sub-Folder for the Four Files96
7.3.2.2 Download the Four Files ...96
7.3.2.3 Study the Files Collectively to Understand the Concepts96
7.3.2.4 Creating a Folder or Sub-Folder for your User Library97
7.3.2.5 Placing the Header File into the User Library ..97
7.3.2.6 Verify that the Header File Works Properly ...97

7.3.3 Definitions ...98

7.4 Practice 7: Specifc Task Functions ...98
7.4.1 Learning Objectives ..98
7.4.2 Memory Building Activities ..98
7.4.3 Exercises ..99
7.4.4 Miscellaneous Items ..99
7.4.5 Lab Assignment ...99

7.4.5.1 Creating a Folder or Sub-Folder for Chapter 07 Files99
7.4.5.2 Download the Lab File(s) ..99
7.4.5.3 Detailed Lab Instructions .. 100

7.4.6 Problems .. 100
7.4.6.1 Problem 07a -Instructions ... 100
7.4.6.2 Problem 07b -Instructions .. 100

7.4.7 Solutions to Exercises in Chapter 7 ... 101

Chapter 8 Standard Libraries ...102
8.1 Standard Libraries .. 102

8.1.1 Overview of Standard Libraries ... 102
8.1.2 Demonstration Program in C++ .. 103

8.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 103
8.1.2.2 Download the Demo Program ... 103

8.1.3 Definitions .. 104

8.2 Practice 8: Standard Libraries ... 104
8.2.1 Learning Objectives ... 104
8.2.2 Memory Building Activities ... 104
8.2.3 Exercises ... 105
8.2.4 Miscellaneous Items ... 105
8.2.5 Lab Assignment ... 105

8.2.5.1 Creating a Folder or Sub-Folder for Chapter 08 Files 105
8.2.5.2 Download the Lab File(s) ... 105
8.2.5.3 Detailed Lab Instructions .. 106

8.2.6 Problems .. 106
8.2.6.1 Problem 08a -Instructions ... 106

8.2.7 Solutions to Exercises in Chapter 8 ... 106

Chapter 9 Character Data, Sizeof, Typedef, Sequence ..108
9.1 Character Data Type ... 108

9.1.1 Overview of the Character Data Type ... 108
9.1.2 Demonstration Program in C++ .. 109

9.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 109

9.1.2.2 Download the Demo Program ... 109

9.1.3 Definitions .. 110

9.2 Sizeof Operator ... 110
9.2.1 Overview ... 110
9.2.2 Definitions .. 111

9.3 Typedef -An Alias .. 111
9.3.1 General Discussion .. 111
9.3.2 Definitions .. 112

9.4 Sequence Operator .. 112
9.4.1 General Discussion .. 112
9.4.2 Definitions .. 113

9.5 Practice 9: Character Dataf Sizeoff Typedeff Sequence ... 113
9.5.1 Learning Objectives ... 113
9.5.2 Memory Building Activities ... 114
9.5.3 Exercises ... 114
9.5.4 Miscellaneous Items ... 114

9.5.4.1 Lab Assignment .. 114
9.5.4.1.1 Creating a Folder or Sub-Folder for Chapter 09 Files 114
9.5.4.1.2 Download the Lab File(s) .. 115
9.5.4.1.3 Detailed Lab Instructions ... 115

9.5.4.2 Problems ... 116
9.5.4.2.1 Problem 09a -Instructions ... 116

9.5.4.3 Solutions to Exercises in Chapter 9 .. 116

Chapter 10 Introduction to Structured Programming ..118
10.1 Structured Programming .. 118

10.1.1 Introduction ... 118
10.1.1.1 Introduction to Selection Control Structures 119
10.1.1.2 Introduction to Iteration Control Structures 119

10.1.2 Definitions .. 120

10.2 Pseudocode Examples for Control Structures .. 120
10.2.1 Overview.. 120
10.2.2 Selection Control Structures .. 121
10.2.3 Iteration (Repetition) Control Structures .. 121

10.3 Flowcharting .. 122
10.3.1 Flowcharting Symbols ... 122

10.3.1.1 Terminal ... 122
10.3.1.2 Process ... 123
10.3.1.3 Input/Output.. 124
10.3.1.4 Connectors... 125
10.3.1.5 Decision.. 127
10.3.1.6 Module Call .. 127
10.3.1.7 Flow Lines... 129

10.3.2 Examples .. 129
10.3.3 Functions... 129

10.3.3.1 Sequence Control Structures... 131

10.3.3.2 Selection Control Structures Example 10.12: pseudocode: If then Els
e ... 133
10.3.3.3 Iteration (Repetition) Control Structures ... 134

10.3.4 Definitions .. 138

10.4 Practice 10: Introduction to Structured Programming .. 139
10.4.1 Learning Objectives .. 139

10.4.1.1 Memory Building Activities ... 139

10.4.2 Exercises ... 139
10.4.3 Miscellaneous Items ... 139
10.4.4 Lab Assignment ... 140

10.4.4.1 Creating a Folder or Sub-Folder for Chapter 10 Files 140
10.4.4.2 Download the Lab File(s) ... 140
10.4.4.3 Detailed Lab Instructions .. 140

10.4.5 Problems .. 140
10.4.5.1 Problem 10a - Instructions .. 140

10.4.6 Solutions to Exercises in Chapter 10 .. 141

Chapter 11 Two Way Selection ...142
11.1 If Then Else .. 142

11.1.1 Introduction to Two Way Selection ... 142
11.1.1.1 Traditional Two Way Selection ... 142
11.1.1.2 One Choice -Implied Two Way Selection ... 143

11.1.2 Two Way Selection within C++ ... 143
11.1.3 Definitions .. 144

11.2 Boolean Data Type ... 144
11.2.1 Discussion ... 144
11.2.2 Definitions .. 145

11.3 Relational Operators .. 146
11.3.1 Overview of the Relational Operators ... 146
11.3.2 Demonstration Program in C++ .. 147

11.3.2.1 Creating a Folder or Sub-Folder for Source Code Files 147
11.3.2.2 Download the Demo Program ... 147

11.4 Compound Statement ... 147
11.4.1 The Need for a Compound Statement ... 147
11.4.2 Other Uses of a Compound Statement .. 149
11.4.3 Definitions .. 149

11.5 Practice 11: Two Way Selection .. 149
11.5.1 Learning Objectives .. 149
11.5.2 Memory Building Activities ... 149
11.5.3 Exercises ... 150
11.5.4 Miscellaneous Items ... 150
11.5.5 Lab Assignment ... 150

11.5.5.1 Creating a Folder or Sub-Folder for Chapter 11 Files 150
11.5.5.2 Download the Lab File(s) ... 151
11.5.5.3 Detailed Lab Instructions .. 151

11.5.6 Problems .. 151

11.5.6.1 Problem 11a - Instructions .. 151
11.5.6.2 Problem 11b -Instructions .. 151

11.5.7 Solutions to Exercises in Chapter 11 ... 152

Chapter 12 Multiway Selection ..153
12.1 Nested If Then Else ... 153

12.1.1 Introduction to Mulitway Selection ... 153
12.1.1.1 Nested Control Structures .. 153
12.1.1.2 Multiway Selection ... 154

12.1.2 if then else Syntax within C++ .. 155
12.1.3 C++ Example .. 155
12.1.4 Definitions .. 156

12.2 Logical Operators ... 157
12.2.1 Overview of the Logical Operators .. 157
12.2.2 Truth Tables .. 158
12.2.3 Examples .. 159
12.2.4 Demonstration Program in C++ .. 160

12.2.4.1 Creating a Folder or Sub-Folder for Source Code Files 160
12.2.4.2 Download the Demo Program ... 160

12.2.5 Definitions .. 160

12.3 Case Control Structure .. 161
12.3.1 Traditional Case Control Structure ... 161

12.3.1.1 Multiway Selection using the Case Structure 161
12.3.1.2 C++ Code to Accomplish Multiway Selection 162

12.3.2 Limitations of the Case Control Structure... 163
12.3.3 Good Structured Programming Methods .. 164
12.3.4 Definitions .. 164

12.4 Branching Control Structures ... 165
12.4.1 Discussion .. 165

12.4.1.1 Definitions ... 165

12.4.2 Examples .. 166
12.4.2.1 break .. 166
12.4.2.2 continue .. 167

12.4.3 goto ... 167
12.4.3.1 return ... 168
12.4.3.2 exit ... 168

12.5 Practice 12: Multiway Selection .. 169
12.5.1 Learning Objectives .. 169
12.5.2 Memory Building Activities ... 169
12.5.3 Exercises ... 169
12.5.4 Miscellaneous Items ... 170
12.5.5 Lab Assignment ... 170

12.5.5.1 Creating a Folder or Sub-Folder for Chapter 12 Files 170
12.5.5.2 Download the Lab File(s) ... 170
12.5.5.3 Detailed Lab Instructions .. 170

12.5.6 Problems .. 171

12.5.6.1 Problem 12a -Instructions .. 171
12.5.6.2 Problem 12b -Instructions .. 171
12.5.6.3 Problem 12c -Instructions ... 172

12.5.7 Solutions to Exercises in Chapter 12 .. 172

Chapter 13 Test After Loops ...174
13.1 Do While Loop ... 174

13.1.1 Introduction to Test After Loops ... 174
13.1.1.1 Understanding Iteration in General -do while 174

13.1.2 The do while Structure within C++ .. 175
13.1.2.1 Syntax .. 175
13.1.2.2 An Example ... 175
13.1.2.3 Infinite Loops .. 176

13.1.3 Definitions .. 177

13.2 Flag Concept .. 178
13.2.1 Concept Discussion.. 178
13.2.2 Computer Implementation .. 178
13.2.3 Two Flags with the Same Meaning .. 179
13.2.4 Multiple Flags in One Byte .. 180
13.2.5 Definitions .. 180

13.3 Assignment vs Equality within C++ ... 180
13.3.1 General Discussion ... 180

13.4 Repeat Until Loop ... 181
13.4.1 Introduction to Test After Loops ... 181

13.4.1.1 Understanding Iteration in General -repeat until 182

13.4.2 The repeat until Structure within C++ .. 183
13.4.3 Definitions .. 183

13.5 Practice 13: Test After Loops ... 183
13.5.1 Learning Objectives .. 183
13.5.2 Memory Building Activities ... 183
13.5.3 Exercises ... 183
13.5.4 Miscellaneous Items ... 184

13.5.4.1 Lab Assignment .. 184
13.5.4.1.1 Creating a Folder or Sub-Folder for Chapter 13 Files 184
13.5.4.1.2 Download the Lab File(s) .. 184
13.5.4.1.3 Detailed Lab Instructions ... 184

13.5.4.2 Problems ... 185
13.5.4.2.1 Problem 13a -Instructions ... 185

13.5.4.3 Solutions to Exercises in Chapter 13 ... 185

Chapter 14 Test Before Loops ...186
14.1 Increment and Decrement Operators ... 186

14.1.1 General Discussion .. 186
14.1.2 C++ Code Examples .. 186

14.1.2.1 Basic Concept ... 186
14.1.2.2 Postfix Increment ... 187
14.1.2.3 Prefix Increment ... 187

14.1.2.4 Allowable Data Types .. 188
14.1.2.5 Exercises .. 188

14.1.3 Definitions .. 188

14.2 While Loop ... 189
14.2.1 Introduction to Test Before Loops .. 189

14.2.1.1 Understanding Iteration in General -while 189
14.2.1.2 Human Example of the while Loop .. 190

14.2.2 The while Structure within C++ .. 190
14.2.2.1 Syntax .. 190
14.2.2.2 An Example ... 191
14.2.2.3 Infinite Loops .. 191

14.2.3 Counting Loops ... 193
14.2.3.1 Infinite Loops .. 194
14.2.3.2 Variations on Counting .. 194

14.2.4 Definitions .. 195

14.3 Practice 14: Test Before Loops ... 195
14.3.1 Learning Objectives .. 195
14.3.2 Memory Building Activities ... 196
14.3.3 Exercises ... 196
14.3.4 Miscellaneous Items ... 196
14.3.5 Lab Assignment ... 196

14.3.5.1 Creating a Folder or Sub-Folder for Chapter 14 Files 196
14.3.5.2 Download the Lab File(s) ... 197
14.3.5.3 Detailed Lab Instructions .. 197

14.3.6 Problems .. 197
14.3.6.1 Problem 14a -Instructions .. 197

14.3.7 Solutions to Exercises in Chapter 14. ... 198

Chapter 15 Counting Loops ...199
15.1 For Loop ... 199

15.1.1 Introduction to Test Before Loops .. 199
15.1.1.1 Understanding Iteration in General - for .. 199

15.1.2 The for Structure within C++ .. 200
15.1.2.1 Syntax .. 200
15.1.2.2 An Example ... 200
15.1.2.3 Infinite Loops .. 201
15.1.2.4 Multiple Items in the Initialization and Update 201

15.1.3 Counting Loop Conversion -a while into a for .. 202
15.1.4 Miscellaneous Information about the for Structure 202
15.1.5 Definitions .. 203

15.2 Circular Nature of the Integer Data Type Family .. 203
15.2.1 General Discussion .. 203
15.2.2 Implications When Executing Loops ... 205
15.2.3 Demonstration Program in C++ .. 205

15.2.3.1 Creating a Folder or Sub-Folder for Source Code Files 205
15.2.3.2 Download the Demo Program ... 206

15.2.4 Definitions .. 206

15.3 Formatting Output ... 206
15.3.1 General Discussion ... 206
15.3.2 C++ Considerations using Standard Output (cout) 207

15.3.2.1 Text Wrapping and Vertical Spacing .. 207
15.3.2.2 Handling Floating-point Data Type .. 207
15.3.2.3 Setting the Width for Numbers .. 207

15.3.3 Demonstration Program in C++ .. 208
15.3.3.1 Creating a Folder or Sub-Folder for Source Code Files 208
15.3.3.2 Download the Demo Program ... 208

15.3.4 Definitions .. 208

15.4 Nested For Loops ... 209
15.4.1 General Discussion ... 209

15.4.1.1 Nested Control Structures .. 209

15.4.2 An Example -Nested for loops .. 209
15.4.3 Demonstration Program in C++ .. 212

15.4.3.1 Creating a Folder or Sub-Folder for Source Code Files 212
15.4.3.2 Download the Demo Program ... 212

15.4.4 Definitions .. 213

15.5 Practice 15: Counting Loops .. 213
15.5.1 Learning Objectives .. 213
15.5.2 Memory Building Activities ... 213
15.5.3 Exercises ... 213
15.5.4 Miscellaneous Items ... 214
15.5.5 Lab Assignment ... 214

15.5.5.1 Creating a Folder or Sub-Folder for Chapter 15 Files 214
15.5.5.2 Download the Lab File(s) ... 214
15.5.5.3 Detailed Lab Instructions .. 214

15.5.6 Problems .. 215
15.5.6.1 Problem 15a -Instructions .. 215

15.5.7 Solutions to Exercises in Chapter 15 .. 215

Chapter 16 String Class, Unary Positive and Negative ..216
16.1 String Class within C++ ... 216

16.1.1 General Discussion .. 216
16.1.2 Demonstration Program in C++ .. 217

16.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 217
16.1.2.2 Download the Demo Program ... 218

16.1.3 Definitions .. 218

16.2 Unary Positive and Negative Operators .. 218
16.2.1 General Discussion ... 218
16.2.2 C++ Code Examples .. 219

16.2.2.1 Negation -Unary Negative ... 219
16.2.2.2 Unary Positive -Worthless ... 219
16.2.2.3 Possible Confusion .. 220
16.2.2.4 Exercises .. 220

16.2.3 Definitions .. 220

16.3 Practice 16: String Classf Unary Positive and Negative ... 221
16.3.1 Learning Objectives .. 221
16.3.2 Memory Building Activities ... 221
16.3.3 Exercises ... 221
16.3.4 Miscellaneous Items ... 222
16.3.5 Lab Assignment ... 222

16.3.5.1 Creating a Folder or Sub-Folder for Chapter 16 Files 222
16.3.5.2 Download the Lab File(s) .. 222
16.3.5.3 Detailed Lab Instructions .. 222

16.3.6 Problems .. 223
16.3.6.1 Problem 16a -Instructions .. 223
16.3.6.2 Problem 16b -Instructions .. 223
16.3.6.3 Problem 16c -Instructions ... 223

16.3.7 Solutions to Exercises in Chapter 16 .. 223

Chapter 17 Conditional Operator and Recursion ...224
17.1 Conditional Operator ... 224

17.1.1 Overview ... 224
17.1.2 Definitions .. 225

17.2 Recursion vs Iteration .. 225
17.2.1 Repetitive Algorithms ... 225
17.2.2 Demonstration Program in C++ .. 226

17.2.2.1 Creating a Folder or Sub-Folder for Source Code Files 226
17.2.2.2 Download the Demo Program ... 226

17.2.3 Definitions .. 227

17.3 Practice 17: Conditional Operator and Recursion .. 227
17.3.1 Learning Objectives .. 227
17.3.2 Memory Building Activities ... 227
17.3.3 Exercises ... 227
17.3.4 Miscellaneous Items ... 228
17.3.5 Lab Assignment ... 228

17.3.5.1 Creating a Folder or Sub-Folder for Chapter 17 Files 228
17.3.5.2 Download the Lab File(s) ... 228
17.3.5.3 Detailed Lab Instructions .. 228

17.3.6 Problems .. 229
17.3.6.1 Problem 17a -Instructions .. 229
17.3.6.2 Problem 17b -Instructions .. 229

17.3.7 Solutions to Exercises in Chapter 17 .. 229

Chapter 18 Introduction to Arrays ...231
18.1 Array Data Type .. 231

18.1.1 Overview ... 231
18.1.2 Defning an Array in C++ .. 231
18.1.3 Definitions .. 232

18.2 Array Index Operator ... 233
18.2.1 Array Index Operator in C++ .. 233
18.2.2 Definitions .. 234

18.3 Displaying Array Members .. 234
18.3.1 Accessing Array Members in C++ .. 234
18.3.2 Using the Sizeof Operator with Arrays in C++ ... 236
18.3.3 Demonstration Program in C++ .. 236

18.3.3.1 Creating a Folder or Sub-Folder for Source Code Files 236
18.3.3.2 Download the Demo Program ... 237

18.3.4 Definitions .. 237

18.4 Practice 18: Introduction to Arrays .. 237
18.4.1 Learning Objectives .. 237
18.4.2 Memory Building Activities ... 237
18.4.3 Exercises ... 238
18.4.4 Miscellaneous Items ... 238
18.4.5 Lab Assignment ... 238

18.4.5.1 Creating a Folder or Sub-Folder for Chapter 18 Files 238
18.4.5.2 Download the Lab File(s) ... 238
18.4.5.3 Detailed Lab Instructions .. 239

18.4.6 Problems .. 239
18.4.6.1 Problem 18a -Instructions .. 239

18.4.7 Solutions to Exercises in Chapter 18 .. 239

Chapter 19 File I/O and Array Functions ...240
19.1 File Input and Output ... 240

19.1.1 Overview of File I/O in C++ ... 240
19.1.2 Demonstration Program in C++ .. 242

19.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 242
19.1.2.2 Download the Demo Program ... 243

19.1.3 Definitions .. 243

19.2 Arrays and Functions ... 244
19.2.1 Overview of Array Functions .. 244
19.2.2 Demonstration Program in C++ .. 244

19.2.2.1 Creating a Folder or Sub-Folder for Source Code Files 244
19.2.2.2 Download the Demo Program ... 244

19.2.3 Definitions .. 245

19.3 Loading an Array from a File ... 245
19.3.1 Conceptual Overview .. 245
19.3.2 Demonstration Program in C++ .. 245

19.3.2.1 Creating a Folder or Sub-Folder for Source Code Files 245
19.3.2.2 Download the Demo Program ... 246

19.3.3 Definitions .. 246

19.4 Math Statistics with Arrays .. 246
19.4.1 Overview ... 246
19.4.2 Demonstration Program in C++ .. 247

19.4.2.1 Creating a Folder or Sub-Folder for Source Code Files 247
19.4.2.2 Download the Demo Program ... 247

19.4.3 Definitions .. 247

19.5 Practice 19: File I/O and Array Functions ... 248

19.5.1 Learning Objectives .. 248
19.5.2 Memory Building Activities ... 248
19.5.3 Exercises ... 248
19.5.4 Miscellaneous Items ... 249
19.5.5 Lab Assignment ... 249

19.5.5.1 Creating a Folder or Sub-Folder for Chapter 19 Files 249
19.5.5.2 Download the Lab File(s) ... 249
19.5.5.3 Detailed Lab Instructions .. 249

19.5.6 Problems .. 250
19.5.6.1 Problem 19a -Instructions .. 250
19.5.6.2 Problem 19b -Instructions .. 250

19.5.7 Solutions to Exercises in Chapter 19 .. 250

Chapter 20 More Array Functions ..251
20.1 Finding a Specifc Member of an Arrayl .. 251

20.1.1 Overview ... 251
20.1.2 Demonstration Program in C++ .. 251

20.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 251
20.1.2.2 Download the Demo Program ... 252

20.1.3 Definitions .. 252

20.2 Sorting an Array .. 252
20.2.1 Overview.. 252
20.2.2 Demonstration Program in C++ .. 254

20.2.2.1 Creating a Folder or Sub-Folder for Source Code Files 254
20.2.2.2 Download the Demo Program ... 254

20.2.3 Definitions .. 254

20.3 Practice 20: More Array Functions ... 255
20.3.1 Learning Objectives .. 255
20.3.2 Memory Building Activities ... 255
20.3.3 Exercises ... 255
20.3.4 Miscellaneous Items ... 256
20.3.5 Lab Assignment ... 256

20.3.5.1 Creating a Folder or Sub-Folder for Chapter 20 Files 256
20.3.5.2 Download the Lab File(s) ... 256
20.3.5.3 Detailed Lab Instructions .. 256

20.3.6 Problems .. 257
20.3.6.1 Problem 20a -Instructions .. 257

20.3.7 Solutions to Exercises in Chapter 20 .. 257

Chapter 21 More on Typedef ..258
21.1 Versatile Code with Typedef ... 258

21.1.1 Overview ... 258
21.1.2 Demonstration Program in C++ .. 259

21.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 259
21.1.2.2 Download the Demo Program ... 259

21.1.3 Definitions .. 259

21.2 Practice 21: More on Typedef ... 260

21.2.1 Learning Objectives .. 260
21.2.2 Memory Building Activities ... 260
21.2.3 Exercises ... 260
21.2.4 Miscellaneous Items ... 260
21.2.5 Lab Assignment ... 261

21.2.5.1 Creating a Folder or Sub-Folder for Chapter 18 Files 261
21.2.5.2 Download the Lab File(s) ... 261
21.2.5.3 Detailed Lab Instructions .. 261

21.2.6 Problems .. 262
21.2.6.1 Problem 21a -Instructions .. 262

21.2.7 Solutions to Exercises in Chapter 21 .. 262

Chapter 22 Pointers ...263
22.1 Address Operator ... 263

22.1.1 Address Operator in C++ .. 263
22.1.2 Definitions .. 264

22.2 Parameter Passing by Reference .. 264
22.2.1 Overview ... 264
22.2.2 Demonstration Program in C++ .. 265

22.2.2.1 Creating a Folder or Sub-Folder for Source Code Files 265
22.2.2.2 Download the Demo Program ... 266

22.2.3 Definitions .. 266

22.3 Pointer Data Type ... 266
22.3.1 Pointer Data Type in C++ .. 266
22.3.2 Definitions .. 267

22.4 Indirection Operator .. 267
22.4.1 Indirection Operator in C++ ... 267
22.4.2 Demonstration Program in C++ .. 269

22.4.2.1 Creating a Folder or Sub-Folder for Source Code Files 269
22.4.2.2 Download the Demo Program ... 269

22.4.3 Definitions .. 269

22.5 Practice 22: Pointers .. 270
22.5.1 Learning Objectives .. 270
22.5.2 Memory Building Activities ... 270
22.5.3 Exercises ... 270
22.5.4 Miscellaneous Items ... 271
22.5.5 Lab Assignment ... 271

22.5.5.1 Creating a Folder or Sub-Folder for Chapter 22 Files 271
22.5.5.2 Download the Lab File(s) ... 271
22.5.5.3 Detailed Lab Instructions .. 271

22.5.6 Problems .. 272
22.5.6.1 Problem 22a -Instructions .. 272

22.5.7 Solutions to Exercises in Chapter 22 .. 272

Chapter 23 More Arrays & Compiler Directives ...273
23.1 Multidimensional Arrays ... 273

23.1.1 Overview ... 273

23.1.2 Demonstration Program in C++ .. 273
23.1.2.1 Creating a Folder or Sub-Folder for Source Code Files 273
23.1.2.2 Download the Demo Program ... 274

23.1.3 Definitions .. 274

23.2 Conditional Compilation .. 275
23.2.1 Overview ... 275
23.2.2 Demonstration Program in C++ .. 275

23.2.2.1 Creating a Folder or Sub-Folder for Source Code Files 275
23.2.2.2 Download the Demo Program ... 276

23.2.3 Definitions .. 276

23.3 Practice 23: More Arrays & Compiler Directives ... 276
23.3.1 Learning Objectives .. 276
23.3.2 Memory Building Activities ... 277
23.3.3 Exercises ... 277
23.3.4 Miscellaneous Items ... 277
23.3.5 Lab Assignment ... 277

23.3.5.1 Creating a Folder or Sub-Folder for Chapter 23 Files 277
23.3.5.2 Download the Lab File(s) ... 278
23.3.5.3 Detailed Lab Instructions .. 278

23.3.6 Problems .. 278
23.3.6.1 Problem 23a - Instructions .. 278

23.3.7 Solutions to Exercises in Chapter 23 .. 278

Chapter 24 OOP & HPC ..280
24.1 Object Oriented Programming ... 280

24.1.1 Discussion .. 280
24.1.2 Transition ... 281
24.1.3 Definitions .. 281

24.2 Understanding High Performance Computing ... 282
24.2.1 Preface -November 13, 2009 ... 282
24.2.2 Introduction to High Performance Computing ... 282

24.2.2.1 The Shift from a Single Processor to Parallel 282
24.2.2.2 The Birth of Computers -A "Parallel" to Central Processing Unit (CPU)
Story ... 283
24.2.2.3 The Need for Power ... 284
24.2.2.4 Measuring Computer Power .. 285
24.2.2.5 High Performance Computing Made Personal 286
24.2.2.6 Summary ... 286

24.2.3 Learner Appropriate Activities ... 287
24.2.3.1 Computer Literacy but No Programming Skills 287
24.2.3.2 Learning Programming Fundamentals ... 288
24.2.3.3 Upper Division Under-Graduate College Students 288

24.2.4 Educator Resources .. 290
24.2.5 Simple Definitions ... 290

24.3 Practice 2: OOP & HPC ... 290
24.3.1 Learning Objectives .. 290
24.3.2 Memory Building Activities ... 291

24.3.3 Exercises ... 291
24.3.4 Miscellaneous Items ... 291
24.3.5 Lab Assignment ... 292

24.3.5.1 Creating a Folder or Sub-Folder for Chapter 24 Files 292
24.3.5.2 Download the Lab File(s) ... 292
24.3.5.3 Detailed Lab Instructions .. 292

24.3.6 Problems .. 292
24.3.6.1 Problem 24a -Instructions .. 292
24.3.6.2 Problem 24b -Instructions .. 293

24.3.7 Solutions to Exercises in Chapter 2. .. 293

Chapter 25 Review Materials ..294
25.1 Review: Foundation Topics Group: 1-5 .. 294

25.1.1 Strategy Discussion ... 294
25.1.2 Memory Building Activities ... 294
25.1.3 Miscellaneous Items ... 295

25.2 Review: Modular Programming Group: 6-9 .. 295
25.2.1 Strategy Discussion ... 295
25.2.2 Memory Building Activities ... 295
25.2.3 Miscellaneous Items ... 296

25.3 Review: Structured Programming Group: 10-16 .. 296
25.3.1 Strategy Discussion ... 296
25.3.2 Memory Building Activities ... 296
25.3.3 Miscellaneous Items ... 297

25.4 Review: Intermediate Topics Group: 17-21 ... 297
25.4.1 Strategy Discussion ... 297
25.4.2 Memory Building Activities ... 298
25.4.3 Miscellaneous Items ... 298

25.5 Review: Advanced Topics Group: 22-24 ... 298
25.5.1 Strategy Discussion ... 298
25.5.2 Memory Building Activities ... 299
25.5.3 Miscellaneous Items ... 299

Chapter 26 Appendix ...300
26.1 Abbreviated Precedence Chart for C++ Operators ... 300
26.2 C++ Reserved Keywords ... 303
26.3 ASCII Character Set.. 306
26.4 Show Hide File Extensions.. 306

26.4.1 Windows XP ... 307
26.4.2 Windows Vista .. 308
26.4.3 Windows 7 .. 308

26.5 Academic or Scholastic Dishonesty .. 308
26.5.1 Introduction ... 308
26.5.2 Collusion ... 309
26.5.3 Type it Yourself .. 309
26.5.4 Control Access to Your Files ... 310
26.5.5 Ask for a Clarification of the Collaboration .. 310
26.5.6 Detecting Academic Dishonesty .. 311

26.5.7 Serious Consequences ... 311
26.5.8 Summary .. 311

26.6 Successful Learning Skills .. 312
26.6.1 Realize the Time Commitment .. 312
26.6.2 Understand Your Capacity to Concentrate .. 312
26.6.3 Plan Regular Study Times ... 313
26.6.4 Learning Requires Variety and Repetition ... 313
26.6.5 Interact with the Other Students .. 314
26.6.6 Don't Procrastinate and Don't Get Behind .. 314
26.6.7 Attend Class and Take Notes ... 314

26.7 Study Habits that Build the Brain ... 315
26.7.1 Introduction ... 315
26.7.2 Main Presentation ... 315
26.7.3 Specifc Topics .. 315

Preface
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

About this Textbook/Collection

Programming Fundamentals -A Modular Structured Approach using C++

Programming Fundamentals -A Modular Structured Approach using C++ is written by
Kenneth Leroy Busbee, a faculty member at Houston Community College in Houston,
Texas. The materials used in this textbook/collection were developed by the author
and others as independent modules for publication. Programming fundamentals are
often divided into three college courses: Modular/Structured, Object Oriented and
Data Structures. This textbook/collection covers the first of those three courses.

On January 10, 2013 Version 1.22 was created with the modules that make up the
collection "fxed" to the their current versions. This will allow Version 1.22 to remain
static with the modules as of that date.

The collection is going to be revised with a different organization of chapters along
with updated modules to handle C++, Java and C programming languages. The next
version of the collection will have signifcant changes.

Conceptual Approach

The learning modules of this textbook/collection were, for the most part, written
without consideration of a specific programming language. In many cases the C++
language is discussed as part of the explaination of the concept. Often the examples
used for C++ are exactly the same for the Java programming language. However, some
modules were written specifcally for the C++ programming language. This could not
be avoided as the C++ language is used in conjunction with this textbook/collection by
the author in teaching college courses.

Bloodshed Dev-C++ 5 Compiler/IDE

This open source compiler/IDE (Integrated Development Environment) was used to
develop the demonstration source code files provided within the modules of this
textbook/collection. The compiler/IDE is presented to the student in the second
module of Chapter 1, with instructions for downloading, installing and using the
compiler/IDE. A more complete explaination of the IDE along with demonstration
source code listings with errors is presented in first module of Chapter 5. All of the
source code files provided in this textbook/collection contain only ANSI standard C++
code and should work on any standard C++ compiler likeMicrosoftVisualStudio
(whichincludesC++),MicrosoftVisualC++ExpressorBorlandC++Builder.

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Orientation and Syllabus
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The syllabus for a course that is for credit will be provided by your specific course
professor. If you are using this textbook/collection for non-credit as self-study, we
have some suggestions:

1. Plan regular study periods
2. Review the three (3) Pre-Chapter Items modules
3. Review the last four (4) modules in the Appendix
4. Proceed with Chapter 1 going through all 24 chapters
5. Do all of the demo programs as you encounter them
6. Memorize all of the terms and definitions
7. Do all lab assignments
8. Prepare answers to all of the problems in the Practice modules
9. At the end of every section, do the Review module

These is no magic way to learn about computer programming other than to immerse
yourself into regular study and study includes more than casual reading. To help
you keep track of your study, we have included a check of list for the textbook/
collection.

2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Check Description # Modules

Pre-Chapter Items 4

Last four Appendix Items 4

Chapters 1 to 5 27

Review Materials for 1 to 5 1

Chapters 6 to 9 17

Review Materials for 6 to 9 1

Chapters 10 to 16 30

Review Materials for 10 to 16 1

Chapters 17 to 21 17

Review Materials for 17 to 21 1

Chapters 22 to 24 11

Review Materials for 22 to 24 1

First three Appendix Items 3

N/A Total Modules 118

Table 0.1 A check off list for the textbook

3

Chapter 1 Introduction to
Programming

1.1 Systems Development Life Cycle

1.1.1 Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Systems Development Life Cycle is the big picture of creating an information
system that handles a major task (referred to as an application). The applications
usually consist of many programs. An example would be the Department of Defense
supply system, the customer system used at your local bank, the repair parts
inventory system used by car dealerships. There are thousands of applications that
use an information system created just to help solve a business problem.

Another example of an information system would be the "101 Computer Games"
software you might buy at any of several retail stores. This is an entertainment
application, that is we are applying the computer to do a task (entertain you). The
software actually consists of many different programs (checkers, chess, tic tac toe,
etc.) that were most likely written by several different programmers.

Computer professionals that are in charge of creating applications often have the job
title of System Analyst. The major steps in creating an application include the
following and start at Planning step.

4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

:

Figure 1.1 Systems Development Life Cycle

During the Design phase the System Analyst will document the inputs, processing and
outputs of each program within the application. During the Implementation phase
programmers would be assigned to write the specific programs using a programming
language decided by the System Analyst. Once the system of programs is tested the
new application is installed for people to use. As time goes by, things change and a
specific part or program might need repair. During the Maintenance phase, it goes
through a mini planning, analysis, design and implementation. The programs that
need modifcation are identifed and programmers change or repair those programs.
After several years of use, the system usually becomes obsolete. At this point a major
revision of the application is done. Thus the cycle repeats itself.

1.1.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 1.1: system analyst

Computer professional in charge of creating applications.

Definition 1.2: applications

An information system or collection of programs that handles a major task.

Definition 1.3: life cycle

Systems Development Life Cycle: Planning -Analysis -Design -Implementation -
Maintenance

5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 1.4: implementation

The phase of a Systems Development Life Cycle where the programmers would be
assigned to write specific programs.

1.2 Bloodshed Dev-C++ 5 Compiler/IDE

1.2.1 Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Microsoft and Borland are the two reputable names within the programming world
for compilers. They sell compiler software for many programming languages. For the
C++ programming language, the Microsoft Visual Studio which includes C++ and
Borland C++ Builder are excellent compilers. Often with textbooks or free via the
internet; you can get Microsoft's Visual C++ Express or Borland's Personal Edition
version of a compiler. However, installing either of these compliers can be complex.
Microsoft's Visual Studio compiler often creates a variety of installation problems
(such as making sure the operating system and .net components are current) thus
making it difficult for students to install at home. These compliers require you to build
a project to encompass every program. Using a commercially sold compiler that
professional programmers would consider using for project development is fne for
professionals but often confusing to beginners. Eventually, if you are going to become
a professional programmer, you will need to become familiar with the commercially
sold compilers.

We suggest that beginning students consider one of the easier to install compiler
software packages for use in a programming fundamentals course. The best option
we have found is an open source compiler/IDE (Integrated Development Environment)
named: Bloodshed Dev-C++ 5 compiler/IDE.

Definition 1.5: open source

Group development of source code for software that is made available to the public at
no cost.

1.2.2 Bloodshed Dev-C++ 5 compiler/IDE
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Advantages: Can be installed on Windows 95/98/NT/2000/XP operating systems. I have
it installed on Windows Vista operating system, thus it can work with slower
processors and almost any Windows operating system. It only requires about 80 MB
of storage space (usually enough for the compiler with all of its files and storage room
for several of your programs). It is very easy to install and easy to use. Does not
require the use of a "project"; thus individual source code files can be easily compiled.

6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Disadvantages: Would not normally be used by professional programmers, but is
sufficient for a beginning computer programming course and is a full-featured
compiler/IDE.

Unique Advantage: Can be installed and run on a flash drive, thus giving the student
the ability to work on their lab assignments on any computer that has a USB port. This
can give the student portability, being able to do lab assignments at home, work,
library, open lab, classroom, friend's house, etc.

Definition 1.6: portability

The ability to transport software on a flash drive and thus use it on various machines.

1.2.3 Preparation before Installation

1.2.3.1 Creating the Needed Folders and Sub-Folders

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You need to get the software and a C++ source code program that has been tested
and is error free. You will need about 80MB of storage space. We suggest that you
create two folders on your hard drive or flash drive depending on which installation
you choose. If on a flash drive create them at the root level of the drive. If on your
home machine, you can use the folder area set up by the operating system for you as
a user. Name them:

• Cpp_Software_Download
• Cpp_Source_Code_Files

Within the Cpp Source Code Files folder, create a sub-folder named:

• Compiler_Test

To help you keep files organized, you will want to create other sub-folders for storing
source code files. We suggest you create at least two other sub-folder to be used with
the modules. Within the Cpp Source Code Files, create sub-folders named:

• Demo_Programs
• Monitor_Header

Definition 1.7: folder

A named area for storage of documents or other files on a disk drive or flash drive.

Definition 1.8: source code

Any collection of statements or declarations written in some human-readable
computer programming language.

7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1.2.3.2 Getting the Software

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The full version of the software is named: Dev-C++ 5.0 beta 9.2 (4.9.9.2) (9.0 MB) with
Mingw/GCC 3.4.2. You can either download it from Bloodshed or download the
version as of 12/8/2008 that is stored on the Connexions web site. Store it in the Cpp
Software Download folder you created. The software is approximately 9.1 MB and will
take several minutes to download if you are using a dial-up modem connection.

Tip
The software has not signifcantly changed since 2007 and the
Connexions version will be sufficient for most users. The Bloodshed
link requires some additional navigation to get to the software
download. Thus, because it is signifcantly easier, we recommend that
you download the software from the Connections web site.

Link to Bloodshed: http://www.bloodshed.net/dev/devcpp.html
Download from here:

 devcpp-4.9.9.2 setup.exe (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5281/
media/devcpp-4.9.9.2_setup.exe)

1.2.3.3 Getting a C++ Source Code File

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Listed below is a C++ source code file titled: Compiler Test.cpp It has been prepared
for Connexions web delivery. Download and store it in the Compiler Test sub-folder
you created. You may need to right click on the link and select "Save Target As" in
order to download the file.

Download from here:

 Compiler Test.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5282/media/
Compiler_Test.cpp.txt)

1.2.4 Installation Instructions for Bloodshed Dev-C++ 5
compiler/IDE

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Version 5 which is well tested (don't let the beta release scare you) and should
work on a variety of machines and various Microsoft Operating systems including
Windows 98, Windows 2000, Windows XP and Windows Vista. Below are installation
instructions for installing it on a machine or installing it on a flash drive. We don't
suggest trying to switch between the machine drive and flash drive. If it is installed on
the machine drive and you try installing it on a flash drive, it creates problems and will

8

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.bloodshed.net/dev/devcpp.html
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5281/media/devcpp-4.9.9.2_setup.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5281/media/devcpp-4.9.9.2_setup.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5281/media/devcpp-4.9.9.2_setup.exe
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5282/media/Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5282/media/Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5282/media/Compiler_Test.cpp.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

not work perperly. Either install it on the flash drive to gain your portability or install it
on your machine.

1.2.4.1 Computer Installation Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. Navigate to the Cpp Software Download folder and run the devcpp-4.9.9.2
setup.exe software by double cliking on the filename.

2. Use common sense and answer the installation prompts. NOTE THE FOLLOWING
TWO ITEMS:

3. When it gets to the "Choose Install Location" use the default software location of:
C:\Dev-Cpp\ (or select the location you want to store the installed program but
use the default unless you are familiar with installing software).

4. When it asks: "Do you want to install Dev C++ for all users on this computer?"
answer "Yes".

5. After it installs, it will ask some "first time confguration" questions. Again, use
common sense and answer the questions. NOTE THE FOLLOWING ITEM:

6. Answer "No" to the retrieve information from header files.
7. It will start your compiler/IDE with a "Tip of the day". We suggest you check the

box in the lower left and select "Close".
8. Close your compiler/IDE by using the normal red "X" box. We want to show you

how to start your compiller normally.
9. You start your compiler software similar to starting any software loaded on your

machine ("Start" then "All Programs" then "Bloodshed Dev-C++" then "Dev-C++").
10. On the menus at the top Select "File" then "Open project or file" then navigate to

where your source code file (Compiler Test.cpp) is stored on your hard drive. See
the suggested folder name above. Select the source code file and open it.

11. You should see the source code listing. Press F9 key or select the "Execute" then
"Compile & Run" from the menus at the top. A black screen box should appear
and you answer questions appropriately to run the program. When you are done
running your program the black screen box goes away.

1.2.4.2 Flash Drive Installation Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

1. Navigate to the Cpp Software Download folder and run the devcpp-4.9.9.2
setup.exe software by double cliking on the filename.

2. Use common sense and answer the installation prompts. NOTE THE FOLLOWING
TWO ITEMS:

3. When it gets to the "Choose Install Location" you can see that the default
software location of: C:\Dev-Cpp\ however, it needs to be changed. Change the
"Destination Directory" by selecting changing the default software location from:
C:\Dev-Cpp\ to DriveLetter:\Dev-Cpp\ (where the DriveLetter is the drive that
represents your flash drive).

4. When it asks: "Do you want to install Dev C++ for all users on this computer?"
answer "No".

9

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5. After it installs, it will ask some "first time confguration" questions. Again, use
common sense and answer the questions. NOTE THE FOLLOWING ITEM:

6. Answer "No" to the retrieve information from header files.
7. It will start your compiler/IDE with a "Tip of the day". We suggest you check the

box in the lower left and select "Close".
8. Close your compiler/IDE by using the normal red "X" box. We want to show you

how to start your compiller normally.
9. To start your compiler software you navigate to the "Dev-Cpp" folder on your

flash drive and select the "devcpp.exe" application. NOTE: When using the flash
drive you should not try starting the compiler by double clicking on a C++ source
code file. This method works on a machine installation but does not work on a
flash drive installation.

10. On the menus at the top Select "File" then "Open project or file" then navigate to
where your source code file (Compiler Test.cpp) is stored on your flash drive. See
the suggested folder name above. Select the source code file and open it.

11. You should see the source code listing. Press F9 key or select the "Execute" then
"Compile & Run" from the menus at the top. A black screen box should appear
and you answer questions appropriately to run the program. When you are done
running your program the black screen box goes away.

1.3 Modularization and C++ Program Layout

1.3.1 Concept of Modularization
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

One of the most important concepts of programming is the ability to group some lines
of code into a unit that can be included in our program. The original wording for this
was a sub-program. Other names include: macro, sub-routine, procedure, module and
function. We are going to use the term function for that is what they are called in the
two predominant programming languages of today: C++ and Java. Functions are
important because they allow us to take large complicated programs and to divide
them into smaller manageable pieces. Because the function is a smaller piece of the
overall program, we can concentrate on what we want it to do and test it to make sure
it works properly. Generally functions fall into two categories:

1. Program Control -Functions used to simply sub divide and control the program.
These functions are unique to the program being written. Other programs may
use similar functions maybe even functions with the same name, but the content
of the functions are almost always very different.

2. Specifc Task -Functions designed to be used with several programs. These
functions perform a specific task and thus are useable in many different
programs because the other programs also need to do the specific task. Specifc
task functions are sometimes referred to as building blocks. Because they are
already coded and tested, we can use them with confdence to more efciently
write a large program.

10

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The main program must establish the existence of functions used in that program.
Depending on the programming language, there is a formal way to:

1. define a function (it's definition or the code it will execute)
2. call a function
3. declare a function (a prototype is a declaration to a complier)

Program Control functions normally do not communicate information to each other
but use a common area for variable storage. Specifc Task functions are constructed so
that data can be communicated between the calling program piece (which is usually
another function) and the function being called. This ability to communicate data is
what allows us to build a specific task function that may be used in many programs.
The rules for how the data is communicated in and out of a function vary greatly by
programming language, but the concept is the same. The data items passed (or
communicated) are called parameters. Thus the wording: parameter passing. The
four data communication options include:

1. no communication in with no communication out
2. some communication in with no communication out
3. some communication in with some communication out
4. no communication in with some communication out

1.3.2 Introduction of Functions within C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We are going to consider a simple program that might be used for testing a compiler
to make sure that it is installed correctly.

Example: Compiler Test.cpp source code

//**

// Filename: Compiler Test.cpp

// Purpose: Average the ages of two people

// Author: Ken Busbee; © Kenneth Leroy Busbee

// Date: Jan 5, 2009

// Comment: Main idea is to be able to

// debug and run a program on your compiler.

//**

// Headers and Other Technical Items

#include <iostream>

using namespace std;

// Function Prototypes

void pause(void);

// Variables

11

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

int agel;

int age2;

double answer;

//**

// main

//**

int main(void)

{

// Input

cout « "\nEnter the age of the first person --->:

"; cin » agel;

cout « "\nEnter the age of the second person -->:

"; cin » age2;

// Process

answer = (agel + age2) 1 2.0;

// Output

cout « "\nThe average of their ages is -------->: ";

cout « answer;

pause();

return 0;

}

//**

// pause

//**

void pause(void)

{

cout « "\n\n";

system("PAUSE");

cout « "\n\n";

return;

}

//**

// End of Program

//**

This program has two functions, one from each of our categories. The technical layout
of functions are the same, it is our distinction that creates the two categories based on
how a function is being implemented.

12

1.3.2.1 Program Control Function

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The main program piece in C++ program is a special function with the identifier
name of main. The special or uniqueness of main as a function is that this is where
the program starts executing code and this is where it usually stops executing code. It
is usually the first function defined in a program and appears after the area used for
includes, other technical items, declaration of prototypes, the listing of global
constants and variables and any other items generally needed by the program. The
code to define the function main is provided; however, it is not prototyped or usually
called like other functions within a program. In this simple example, there are no
other program control functions.

1.3.2.2 Specifc Task Function

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We often have the need to perform a specific task that might be used in many
programs. In the Compile Test.cpp source code above we have such a task that is used
to stop the execution of the code until the user hits the enter key. The functions name
is: pause. This function is not communicating any information between the calling
function and itself, thus the use of the data type void.

Example: general layout of a function

<return value data type> function identifier name(<data

type><identifier name for input value>)

{

lines of code;

return <value>;

}

There is no semi-colon after the first line. Semi-colons are used at the end of a
statement in C++, but not on the first line when defning a function. Functions have a
set of braces {} used for identifying a group or block of statements or lines of code.
There are normally several lines of code within a function. Lines of code containing the
instructions end in a semi-colon. Can you identify the definition of the pause function
in the above program example? The pause function definition is after the function
main. Though not technically required, most programs list all functions (program
control or specific task) after the function main.

Let's identify the location where the function pause is called. The calling function is the
function main and it towards the end of the function. The line looks like:

13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

pause();

When you call a function you use its identifier name and a set of parentheses. You
place any data items you are passing inside the parentheses, and in our example
there are none. A semi-colon ends the statement or line of code. After our program is
compiled and running, the lines of code in the function main are executed and when it
gets to the calling of the pause function, the control of the program moves to the
pause function and starts executing the lines of code in the pause function. When it's
done with the lines of code, it will return to the place in the program that called it (in
our example the function main) and continue with the code in that function.

Once we know how to define a function and how to call a function, we usually will
need to know how to declare a function to the compiler (called a prototype). Because
of normal computer programming industry standards, programmers usually list the
function main first with other functions defined after it. Then somewhere in the
function main, we will call a function. When we convert our source code program to an
executable version for running on our computer, the first step of the process is
compiling. The compiler program demands to know what the communication will be
between two functions when a function is called. It will know the communication
(what going in and out as parameters) if the function being called has been defined.
But, we have not defined that function yet; it is defined after the function main. To
solve this problem, we show the compiler a prototype of what the function will look
like (at least the communication features of the function) when we define it.

void pause(void);

This line of code looks exactly like the first line in our function definition with one
important addition of a semi-colon. Prototypes (or declarations to the compiler of the
communications of a function not yet defined) are placed near the top of the program
before the function main. Summary concept: If you call a function before it is
defined you must prototype it before it is called. Looking at our list of the three
things you do in conjunction with a function in the order that they normally appear in
a program, there is a formal way to:

1. declare a function (a prototype is a communications declaration to a complier)
2. call a function
3. define a function

1.3.3 C++ Program Layout
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

From the above example, you can see that 2/3 of the program is the two functions.
Most C++ programs have several items before the function main. As in the example,
they often are:

14

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1. Documentation Most programs have a comment area at the start of the program
with a variety of comments pertinent to the program. Any line starting with two
slashes // is a comment and the compiler software disregards everything from
the // to the end of the line.

2. include<iostream> This line of code inserts a file into the source code. The file
contains necessary code to be able to do simple input and output.

3. using namespace std The C++ compiler has an area where it keeps the identifier
names used in a program organized and it is called a namespace. There is a
namespace created in conjunction with the iostream file called: std. This line
informs the compiler to use the namespace std where the identifier names in the
iostream are established.

4. Function prototypes have already been explained.
5. We need some variables (storage areas) for this program to work. They are

defined next.

1.3.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 1.9: modularization

The ability to group some lines of code into a unit that can be included in our
program.

Definition 1.10: function

What modules are called in the two predominant programming languages of today:
C++ and Java.

Definition 1.11: program control

Functions used to simply sub divide and control the program.

Definition 1.12: specific task

Functions designed to be used with several programs.

Definition 1.13: parameter passing

How the data is communicated in to and out of a function.

Definition 1.14: identifier name

The name given by the programmer to identify a function or other program items
such as variables.

Definition 1.15: function prototype

A function's communications declaration to a complier.

Definition 1.16: function call

A function's using or invoking of another function.

Definition 1.17: function definition

15

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The code that defnes what a function does.

Definition 1.18: braces

Used to identify a block of code in C++.

1.4 Practice 1: Introduction to Programming

1.4.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Install the Bloodshed Dev-C++ 5 compiler
3. Make minor modifcations to an existing program

1.4.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 01

(***
See the file at <http://cnx.org/content/m22450/latest/index.html>
)

1.4.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 1.4.1

Answer the following statements as either true or false:

1. Beginning programmers participate in all phases of the Systems Development
Life Cycle.

2. The Bloodshed Dev-C++ 5 compiler/IDE is the preferred compiler for this
textbook/collection, however any C++ compiler will work.

3. Most compilers can be installed on a flash drive.
4. In addition to function as the name of a sub-program, the computer industry also

uses macro, procedure and module.
5. Generally functions fall into two categories: Program Control and Specifc Task.

16

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1.4.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

1.4.5 Lab Assignment

1.4.5.1 Creating a Folder or Sub-Folder for Chapter 01 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the compiler installation directions you were asked to make a folder named: Cpp
Source Code Files. All of your lab assignments in this course assume you have that
folder on the same drive as your compiler (either drive C: your hard disk drive, or on a
flash drive). If you don't have that folder, go create it now.

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_01 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

1.4.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Compiler_Test.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5300/medi
a/Compiler_Test.cpp.txt)

1.4.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Navigate to your sub-folder: Chapter 01 and rename the Compiler Test.cpp
source code file to: Lab 01.cpp

• If you are having problems seeing the file extensions, visit the "Show Hide File
Extensions" instructions within the Appendix.

17

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5300/media/Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5300/media/Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5300/media/Compiler_Test.cpp.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Start your compiler and open the source code file. Carefully make the following
modifcations:

• Change the comments at the top, specifcally:
• The filename should be: Lab 01.cpp
• Purpose should be: Average the weight of three people
• Remove the next 2 lines of comment talking about the main idea
• Author: put your name and erase my name and copyright
• Date: Put today's date
• Remove the next 3 lines of comment dealing with licensing (don't erase the

asterisk line)

Note: During the rest of the course you will often use a source code file
provided by the instructor as your starting point for a new lab assignment.
Sometimes you will use a source code file that you have created as your starting
point for a new lab assignment. Either way, you should modify the comments
area as appropriate to include at a minimum the four lines of information
(filename, purpose, author and date) as established in this lab assignment.

• We are now going to make simple modifcations to this program so that it is
able to average the weight of three people. Do the following:

• Within the variables area, change the variable names for age1 and age2 to
weight1 and weight2. Add another variable of integer data type with the identifier
name of weight3.

• The input area has two prompts and requests for data from the user. They are
paired up a prompt and getting data from the keyboard. We need to modify the
prompt to ask for weight instead of age. We need to change the variable name
from age1 to weight1. Do this for the second pair that prompts and gets the
second data item. Create a third pair that prompts and gets the third data item.

• The process area has only one line of code and we need to make changes that
add the weight3 and divides by 3.0 instead of 2.0. The code should look like this:

• answer = (weight1 + weight2 + weight3) / 3.0;
• The output area needs the text modifed from ages to weights.
• Build (compile and run) your program. You have successfully written this program

if when it run and you put in the three weights; it tells you the correct average.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

1.4.6 Problems

1.4.6.1 Problem 01a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

List the steps of the Systems Development Life Cycle and indicate which step you are
likely to work in as a new computer professional.

18

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1.4.7 Solutions to Exercises in Chapter 1
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 1: Introduction to Programming

Solution to Exercises 1.4.1

1. false
2. true
3. false
4. true
5. true

19

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 2 Program Planning & Design

2.1 Program Design

2.1.1 Topic Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Program Design consists of the steps a programmer should do before they start
coding the program in a specific language. These steps when properly documented
will make the completed program easier for other programmers to maintain in the
future. There are three broad areas of activity:

• Understanding the Program
• Using Design Tools to Create a Model
• Develop Test Data

2.1.2 Understanding the Program
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If you are working on a project as a one of many programmers, the system analyst
may have created a variety of documentation items that will help you understand
what the program is to do. These could include screen layouts, narrative descriptions,
documentation showing the processing steps, etc. If you are not on a project and you
are creating a simple program you might be given only a simple description of the
purpose of the program. Understanding the purpose of a program usually involves
understanding it's:

• Inputs
• Processing
• Outputs

This IPO approach works very well for beginning programmers. Sometimes, it might
help to visualize the programming running on the computer. You can imagine what
the monitor will look like, what the user must enter on the keyboard and what
processing or manipulations will be done.

2.1.3 Using Design Tools to Create a Model
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

At first you will not need a hierarchy chart because your first programs will not be
complex. But as they grow and become more complex, you will divide your program
into several modules (or functions).

20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The first modeling tool you will usually learn is pseudocode. You will document the
logic or algorithm of each function in your program. At first, you will have only one
function, and thus your pseudocode will follow closely the IPO approach above.

There are several methods or tools for planning the logic of a program. They include:
fowcharting, hierarchy or structure charts, pseudocode, HIPO, Nassi-Schneiderman
charts, Warnier-Orr diagrams, etc. Programmers are expected to be able to
understand and do fowcharting and pseudocode. These methods of developing the
model of a program are usually taught in most computer courses. Several standards
exist for fowcharting and pseudocode and most are very similar to each other.
However, most companies have their own documentation standards and styles.
Programmers are expected to be able to quickly adapt to any fowcharting or
pseudocode standards for the company at which they work. The others methods that
are less universal require some training which is generally provided by the employer
that chooses to use them.

Later in your programming career, you will learn about using applications software
that helps create an information system and/or programs. This type of software is
called Computer-aided Software Engineering.

Understanding the logic and planning the algorithm on paper before you start to code
is very important concept. Many students develop poor habits and skipping this step
is one of them.

2.1.4 Develop Test Data
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Test data consists of the user providing some input values and predicting the
outputs. This can be quite easy for a simple program and the test data can be used to
check the model to see if it produces the correct results.

2.1.5 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 2.1: IPO

Inputs -Processing -Outputs

Definition 2.2: pseudocode

English-like statements used to convey the steps of an algorithm or function.

Definition 2.3: test data

Providing input values and predicting the outputs.

21

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2.2 Pseudocode

2.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Pseudocode is one method of designing or planning a program. Pseudo means false,
thus pseudocode means false code. A better translation would be the word fake or
imitation. Pseudocode is fake (not the real thing). It looks like (imitates) real code but it
is NOT real code. It uses English statements to describe what a program is to
accomplish. It is fake because no complier exists that will translate the pseudocode to
any machine language. Pseudocode is used for documenting the program or module
design (also known as the algorithm).

The following outline of a simple program illustrates pseudocode. We want to be able
to enter the ages of two people and have the computer calculate their average age
and display the answer.

Example 2.1: Outline using Pseudocode

Input

display a message asking the user to enter the first age

get the first age from the keyboard

display a message asking the user to enter the second age

get the second age from the keyboard

Processing

calculate the answer by adding the two ages together and dividing

by two

Output

display the answer on the screen

pause so the user can see the answer

After developing the program design, we use the pseudocode to write code in a
language (like Pascal, COBOL, FORTRAN, "C", " C++", etc.) where you must follow the
rules of the language (syntax) in order to code the logic or algorithm presented in the
pseudocode. Pseudocode usually does not include other items produced during
programming design such as identifier lists for variables or test data.

There are other methods for planning and documenting the logic for a program. One
method is HIPO. It stands for Hierarchy plus Input Process Output and was developed
by IBM in the 1960s. It involved using a hierarchy (or structure) chart to show the
relationship of the sub-routines (or functions) in a program. Each sub-routine had an
IPO piece. Since the above problem/task was simple, we did not need to use multiple
sub-routines, thus we did not produce a hierarchy chart. We did incorporate the IPO
part of the concept for the pseudocode outline.

22

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 2.4: pseudo

Means false and includes the concepts of fake or imitation.

2.3 Test Data

2.3.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Test data consists of the user providing some input values and predicting the outputs.
This can be quite easy for a simple program and the test data can be used twice.

1. to check the model to see if it produces the correct results (model checking)
2. to check the coded program to see if it produces the correct results (code

checking)

Test data is developed by using the algorithm of the program. This algorithm is usually
documented during the program design with either fowcharting or pseudocode. Here
is the pseudocode in outline form describing the inputs, processing and outputs for a
program used for painting rectangular buildings.

Example 2.2: Pseudocode using an IPO Outline for Painting a Rectangular
Building

Input

display a message asking user for the length of the building

get the length from the keyboard

display a message asking user for the width of the building

get the width from the keyboard

display a message asking user for the height of the building

get the height from the keyboard

display a message asking user for the price per gallon of paint

get the price per gallon of paint from the keyboard

display a message asking user for the sq ft coverage of a gallon of

paint

get the sq ft coverage of a gallon of paint from the keyboard

Processing

calculate the total area of the building by:

multiplying the length by height by 2

23

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

then multiply the width by height by 2

then add the two results together

calculate the number of gallons of paint needed by:

dividing the total area by the coverage per gallon

then round up to the next whole gallon

calculate the total cost of the paint by:

multiplying the total gallons needed by the price of one gallon

of paint

Output

display the number of gallons needed on the monitor

display the total cost of the paint on the monitor

pause so the user can see the answer

2.3.2 Creating Test Data and Model Checking
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Test data is used to verify that the inputs, processing and outputs are working
correctly. As test data is initially developed it can verify that the documented algorithm
(pseudocode in the example we are doing) is correct. It helps us understand and even
visualize the inputs, processing and outputs of the program.

Inputs: My building is 100 feet long by 40 feet wide and 10 feet in height and I selected
paint costing $28.49 per gallon that will cover 250 square feet per gallon. We should
verify that the pseudocode is prompting the user for this data.

Processing: Using my solar powered hand held calculator, I can calculate (or predict)
the total area would be: (100 x 10 x 2 plus 40 x 10 x 2) or 2,800 sq ft. The total gallons
of paint would be: (2800 / 250) or //.2 gallons. But rounded up, I would need twelve
(12) gallons of paint. The total cost would be: (28.49 times 12) or $341.88. We should
verify that the pseudocode is performing the correct calculations.

Output: Only the signifcant information (number of gallons to buy and the total cost)
are displayed for the user to see. We should verify that the appropriate information is
being displayed.

2.3.3 Testing the Coded Program -Code Checking
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The test data can be developed and used to test the algorithm that is documented (in
our case our pseudocode) during the program design phase. Once the program is
code with compiler and linker errors resolved, the programmer gets to play user and
should test the program using the test data developed. When you run your program,
how will you know that it is working properly? Did you properly plan your logic to
accomplish your purpose? Even if your plan was correct, did it get converted correctly

24

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

(coded) into the chosen programming language (in our case C++)? The answer (or
solution) to all of these questions is our test data.

By developing test data we are predicting what the results should be, thus we can
verify that our program is working properly. When we run the program we would
enter the input values used in our test data. Hopefully the program will output the
predicted values. If not then our problem could be any of the following:

1. The plan (IPO outline or other item) could be wrong
2. The conversion of the plan to code might be wrong
3. The test data results were calculated wrong

Resolving problems of this nature can be the most difficult problems a programmer
encounters. You must review each of the above to determine where the error is lies.
Fix the error and re-test your program.

2.3.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 2.5: model checking

Using test data to check the design model (usually done in pseudocode).

Definition 2.6: code checking

Using test data to check the coded program in a specific language (like C++).

2.4 Practice 2: Program Planning & Design

2.4.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Create a pseudocode document for a programming problem
3. Create a test data document for a programming problem

2.4.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 02

(***
See the file at <http://cnx.org/content/m22453/latest/index.html>

25

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

***)

2.4.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 2.4.1

Answer the following statements as either true or false:

1. Coding the program in a language like C++ is the first task of planning. You plan
as you code.

2. Pseudocode is the only commonly used planning tool.
3. Test data is developed for testing the program once it is code into a language like

C++.
4. The word pseudo means false and includes the concepts of fake or imitation.
5. Many programmers pick up the bad habit of not completing the planning step

before starting to code the program.

2.4.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

2.4.5 Lab Assignment

2.4.5.1 Creating a Folder or Sub-Folder for Chapter 02 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 02 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

2.4.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

26

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

 Solution_Lab_01_Pseudocode.txt (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/5327/media/Solution_Lab_01_Pseudocode.txt)

 Solution_Lab_01_Test_Data.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5327/media/Solution_Lab_01_Test_Data.txt)

2.4.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Navigate to your sub-folder: Chapter 02 and print the: Solution Lab 01
Pseudocode.txt and the: Solution Lab 01 Test Data.txt files. Review the printouts
in conjunction with your Lab 01 source code file. Note: In Lab 01 we gave you step
by step directions for modifying the Compiler Test.cpp source code file into the
Lab 01.cpp source code file. I could have given you the pseudocode and test data
files, but you had not received any instructions about them. Now, after having
studied the Chapter 2 materials, these files should make sense.

• Make copies of the: Solution Lab 01 Pseudocode.txt and Solution Lab 01 Test
Data.txt and rename them: Lab 02 Pseudocode.txt and Lab 02 Test Data.txt

• Here is the problem. Your local bank has many customers who save their change
and periodically bring it in for deposit. The customers have sorted the coins
(pennies, nickels, dimes and quarters forget half dollars and dollar coins) and
know how many (an integer data type) of each value they have but have evolved
(or their environment has made them lazy). They have lost their ability to do
simple arithmetic. They can't seem to determine the total value of all of the coins
without a calculator (or computer). Write a program to interact with the
customers and to determine and report the total value of their coins.

• No! No! No! We are not going to write a program (create source code) using the
C++ programming language. We are going to design a plan for a program using
pseudocode as our model. Additionally, we need to develop some test data for
use in testing our model.

• Start your text editor (Microsoft Notepad. Set the font on Notepad to: Courier 12
font because Courier uses the same amount of space horizontally for each letter.
It will make the information in the files show as it should be seen. Open your Lab
02 pseudocode text file. Change all items as needed to be able to solve the above
problem. NOTE: You may use any application software that will let you open,
modify and save ASCII text files. You may even use the Bloodshed Dev-C++ 5
compiler/IDE software to view, modify and save ASCII text files; after all, our
source code files are ASCII text files with a special extension of .cpp

• Open your Lab 02 test data text file. Modify the text file as appropriate. Use your
test data and step through your pseudocode. Does everything seem to work?
Have you missed something?

• When you are satisfed that you have your program plan and test data completed,
close your text files. That's right, I said, "Save and close your text files." Files
should be properly closed before being used by other software and this includes
the Operating System software that moves, copies and renames files.

27

http://www.opentextbooks.org.hk/system/files/resource/5/5267/5327/media/Solution_Lab_01_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5327/media/Solution_Lab_01_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5327/media/Solution_Lab_01_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5327/media/Solution_Lab_01_Test_Data.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5327/media/Solution_Lab_01_Test_Data.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5327/media/Solution_Lab_01_Test_Data.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

2.4.6 Problems

2.4.6.1 Problem 02a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Create simple IPO pseudocode to solve the following:

Problem: I have a friend who is visiting from Europe and he does not understand
exactly how much gas he is buying for his car. We need to write a program that allows
him to enter the gallons of gas and convert it to liters (metric system). NOTE: One US
gallon equals 3.7854 liters.

2.4.6.2 Problem 02b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Create test data for the following:

Problem: A major restaurant sends a chef to purchase fruits and vegetables every day.
Upon returning to the store the chef must enter two pieces of data for each item he
purchased. The quantity (Example: 2 cases) and the price he paid (Example: $4.67).
The program has a list of 20 items and after the chef enters the information, the
program provides a total for the purchases for that day. You need to prepare test data
for five (5) items: apples, oranges, bananas, lettuce and tomatoes.

2.4.7 Solutions to Exercises in Chapter 2
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 2: Program Planning & Design

Solution to Exercise 2.4.1

Answers:

1. false
2. false
3. false
4. true
5. true

28

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 3 Data & Operators

3.1 Data Types in C++

3.1.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Our interactions (inputs and outputs) of a program are treated in many languages as a
stream of bytes. These bytes represent data that can be interpreted as representing
values that we understand. Additionally, within a program we process this data in
various ways such as adding them up or sorting them. This data comes in different
forms. Examples include: yourname which is a string of characters; your age which is
usually an integer; or the amount of money in your pocket which is usually a value
measured in dollars and cents (something with a fractional part). A major part of
understanding how to design and code programs in centered in understanding the
types of data that we want to manipulate and how to manipulate that data.

"A type defnes a set of values and a set of operations that can be applied on those
values. The set of values for each type is known as the domain for that type." 1 The
four major families of data include:

• Nothing
• Integer
• Floating-point
• Complex

The C++ programming language identifes five data types as standard data types:

• Void
• Boolean
• Character
• Integer
• Floating-point

The standard data types and the complex data types within C++ have a series of
attributes, which include:

• C++ Reserved or Key Word
• Domain the allowed values
• Signage do they allow negative numbers or only positive numbers
• Meaning i.e. What do they represent
• Rules of Definition What special characters indicate the data type
• Size in terms of the number of bytes of storage used in the memory
• Operations Allowed i.e. Which operators can I use on the data type

1. Behrouz A. Forouzan and Richard F. Gilberg, Computer Science A Structured Approach using C++ Second Edition (United
States of America: Thompson Brooks/Cole, 2004) 33.

29

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Placing some of the above into a summary table, we get:

Family
Data
Type

Reserved
Word

Represents
Standard
Type

Nothing
Null or
nothing

void No data Yes

Integer Boolean bool
Logical true and
false

Yes

Integer Character char Single characters Yes

Integer Integer int Whole numbers Yes

Floating
Point

Floating
Point

float
Fractional
numbers

Yes

Complex String string
A sequence (sting
them along) of
characters

No

Complex Array N/A
A collection of
elements of the
same data type

No

Complex Pointer N/A

A value that
points to a
location (an
address) within
the data area

No

Table 3.1 A summary table

The five standard data types usually exist in most programming languages and act or
behave similarly from language to language. Most courses of study for a programming
course or language will explain the standard data types first. After they are learned,
the complex data types are introduced.

The Boolean, character and integer data types are identifed as belonging to the
Integer Family. These data types are all represented by integer numbers and thus act
or behave similarly.

30

3.1.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 3.1: data type

Defines a set of values and a set of operations that can be applied on those values.

Definition 3.2: data type families

1) Nothing 2) Integer 3) Floating-Point 4) Complex

Definition 3.3: domain

The set of allowed values for a data type.

Definition 3.4: integer

A data type representing whole numbers.

Definition 3.5: floating point

A data type representing numbers with fractional parts.

3.2 Identifier Names

3.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Within programming a variety of items are given descriptive names to make the code
more meaningful to us as humans. These names are called "Identifier Names".
Constants, variables, type definitions, functions, etc. when declared or defined are
identifed by a name. These names follow a set of rules that are imposed by:

1. the language's technical limitations
2. good programming practices
3. common industry standards for the language

3.2.2 Technical to Language
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

• Use only allowable characters (for C++ the first character alphabetic or
underscore, can continue with alphanumeric or underscore)

• Can't use reserved words
• Length limit

These attributes vary from one programming language to another. The allowable
characters and reserved words will be different. The length limit refers to how many
characters are allowed in an identifier name and often is compiler dependent and

31

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

may vary from compiler to compiler for the same language. However, all
programming languages have these three technical rules.

3.2.3 Good Programming Techniques
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

• Meaningful
• Be case consistent

Meaningful identifier names make your code easier for another to understand. After
all what does "p" mean? Is it pi, price, pennies, etc. Thus do not use cryptic (look it up
in the dictionary) identifier names.

Some programming languages treat upper and lower case letters used in identifier
names as the same. Thus: pig and Pig are treated as the same identifier name.
Unknown to you the programmer, the compiler usually forces all identifier names to
upper case. Thus: pig and Pig both get changed to PIG. However not all programming
languages act this way. Some will treat upper and lower case letters as being different
things. Thus: pig and Pig are two different identifier names. If you declare it as pig and
then reference it in your code later as Pig you get a compiler error. To avoid the
problem altogether, we teach students to be case consistent. Use an identifier name
only once and spell it (upper and lower case) the same way within your program.

3.2.4 Industry Rules
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

• Do not start with underscore (used for technical programming)
• variables in all lower case
• CONSTANTS IN ALL UPPER CASE

These rules are decided by the industry (those who are using the programming
language). The above rules were commonly used within the "C" programming
language and have to large degree carried over to C++.

3.2.5 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 3.6: reserved word

Words that cannot be used by the programmer as identifier names because they
already have a specific meaning within the programming language.

32

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.3 Constants &Variables

3.3.1 Understanding Constants
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Various textbooks describe constants using different terminology. Added to the
complexity are the explainations from various industry professionals will vary greatly.
Let's see if we can clear it up.

A constant is a data item whose value cannot change during the program's execution.
Thus, as its name implies their value is constant.

A variable is a data item whose value can change during the program's execution.
Thus, as its name implies their value can vary.

Constants are used in three ways within C++. They are:

1. literal constant
2. defined constant
3. memory constant

A literal constant is a value you type into your program wherever it is needed.
Examples include the constants used for initializing a variable and constants used in
lines of code:

Example 3.1: Literal Constants

int age = 2l;

char grade = 'A';

float money = l2.34;

bool rich = false;

cout « "\nStudents love computers";

age = 57;

Additionally, we have learned how to recognize the data types of literal constants.
Single quotes for char, double quotes for string, number without a decimal point for
integer, number with a decimal point belongs to the floating-point family, and Boolean
can use the reserved words of true or false.

In addition to literal constants, most text books refer to either symbolic constants or
named constants but these two refer to the same concept. A symbolic constant is
represented by a name similar to how we name variables. Let's say it backwards; the
identifier name is the symbol that represents the data item. Within C++ identifier
names have some rules. One of the rules says those names should be meaningful.
Another rule about using ALL CAPS FOR CONSTANTS is an industry rule. There are two
ways to create symbolic or named constants:

33

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

#define PI 3.l4l59

Called a defined constant because it uses a textual substitution method controlled by
the compiler pre-processor command word "define".

const double PI = 3.l4l59;

The second one is called sometimes called constant variable but that name is
contradictory all by itself. How can it be constant and vary at the same time? The
better name for the second one is a memory constant because they have a "specific
storage location in memory".

3.3.2 Defining Constants & Variables
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the above examples we see how to define both variables and constants along with
giving them an initial value. Memory constants must be assigned a value when they
are defined. But variables do not have to be assigned initial values.

int height;

float value coins;

Variables once defined may be assigned a value within the

instructions of the program.

height = 72;

value coins = 2 * 0.25 + 3 * 0.05;

3.3.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 3.7: constant

A data item whose value cannot change during the program's execution.

Definition 3.8: variable

A data item whose value can change during the program's execution.

34

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.4 Data Manipulation

3.4.1 Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Single values by themselves are important; however we need a method of
manipulating values (processing data). Scientists wanted an accurate machine for
manipulating values. They wanted a machine to process numbers or calculate
answers (that is compute the answer). Prior to 1950, dictionaries listed the definition
of computers as " humans that do computations". Thus, all of the terminology for
describing data manipulation is math oriented. Additionally, the two fundamental data
type families (the integer family and floating-point family) consist entirely of number
values.

3.4.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 3.9: expression

A valid sequence of operand(s) and operator(s) that reduces (or evaluates) to a single
value.

Definition 3.10: operator

A language-specific syntactical token (usually a symbol) that causes an action to be
taken on one or more operands.

Definition 3.11: operand

A value that receives the operator's action.

Definition 3.12: precedence

Determines the order in which the operators are allowed to manipulate the operands.

Definition 3.13: associativity

Determines the order in which the operators of the same precedence are allowed to
manipulate the operands.

Definition 3.14: evaluation

The process of applying the operators to the operands and resulting in a single value.

Definition 3.15: parentheses

Change the order of evaluation in an expression. You do what's in the parentheses
first.

35

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.4.3 An Expression Example with Evaluation
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Let's look at an example: 2 + 3 * 4 + 5 is our expression but what does it equal?

1. the symbols of + meaning addition and * meaning multiplication are our
operators

2. the values 2, 3, 4 and 5 are our operands
3. precedence says that multiplication is higher than addition
4. thus, we evaluate the 3 * 4 to get 12
5. nowwehave:2+12+5
6. the associativity rules say that addition goes left to right, thus we evaluate the 2

+12 to get 14
7. nowwehave:14+5
8. fnally, we evaluate the 14 + 5 to get 19; which is the value of the expression

Parentheses would change the outcome. (2 + 3) * (4 + 5) evaluates to 45.
Parentheses would change the outcome. (2 + 3) * 4 + 5 evaluates to 25.

3.4.4 Precedence of Operators Chart
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Each computer language has some rules that define precedence and associativity.
They often follow rules we may have already learned. Multiplication and division come
before addition and subtraction is a rule we learned in grade school. This rule still
works. The precedence rules vary from one programming language to another. You
should refer to the reference sheet that summarizes the rules for the language that
you are using. It is often called a Precedence of Operators Chart. You should review
this chart as needed when evaluating expressions.

A valid expression consists of operand(s) and operator(s) that are put together
properly. Why the (s)? Some operators are:

1. Unary that is only have one operand
2. Binary that is have two operands, one on each side of the operator
3. Trinary which has two operator symbols that separate three operands

Most operators are binary, that is they require two operands. Within C++ there is only
one trinary operator, the conditional. All of the unary operators are on the left side of
the operand, except postfx increment and postfx decrement. Some precedence charts
indicate of which operators are unary and trinary and thus all others are binary.

36

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.5 Assignment Operator

3.5.1 Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The assignment operator allows us to change the value of a modifable data object (for
beginning programmers this typically means a variable). It is associated with the
concept of moving a value into the storage location (again usually a variable). Within
C++ programming language the symbol used is the equal symbol. But bite your
tongue, when you see the symbol you need to start thinking: assignment. The
assignment operator has two operands. The one to the left of the operator is usually
an identifier name for a variable. The one to the right of the operator is a value.

Example 3.2: Simple Assignment

int age; // variable set up

then later in the program

age = 21;

The value 21 is moved to the memory location for the variable named: age. Another
way to say it: age is assigned the value 21.

Example 3.3: Assignment with an Expression

int total cousins; // variable set up

then later in the program

total_cousins =4+3 + 5 +2;

The item to the right of the assignment operator is an expression. The expression will
be evaluated and the answer is 14. The value 14 would assigned to the variable
named: total_cousins.

Example 3.4: Assignment with Identifier Names in the Expression

int students_period_1 = 25; // variable set up with initialization

int students_period_2 = 19;

int total_students;

then later in the program

total_students = students_period_1 + students_period_2;

The expression to the right of the assignment operator contains some identifier
names. The program would fetch the values stored in those variables; add them
together and get a value of 44; then assign the 44 to the total students variable.

37

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.5.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 3.16: assignment

An operator that changes the value of a modifable data object.

3.6 Arithmetic Operators

3.6.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

An operator performs an action on one or more operands. The common arithmetic
operators are:

Action C++ operator symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulus (associated with integers) %

Table 3.2 Common Arithmetic Operators

These arithmetic operators are binary that is they have two operands. The operands
may be either constants or variables.

age + 1

This expression consists of one operator (addition) which has two operands. The first
is represented by a variable named age and the second is a literal constant. If age had
a value of 14 then the expression would evaluate (or be equal to) 15.

These operators work as you have learned them throughout your life with the
exception of division and modulus. We normally think of division as resulting in an
answer that might have a fractional part (a floating-point data type). However, division
when both operands are of the integer data type act differently. Please refer to the
supplemental materials on "Integer Division and Modulus".

38

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.7 Data Type Conversions

3.7.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Changing a data type of a value is referred to as "type conversion". There are two ways
to do this:

1. Implicit the change is implied
2. Explicit the change is explicitly done with the cast operator

The value being changed may be:

1. Promotion going from a smaller domain to a larger domain
2. Demotion going from a larger domain to a smaller domain

3.7.2 Implicit Type Conversion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Automatic conversion of a value from one data type to another by a programming
language, without the programmer specifcally doing so, is called implicit type
conversion. It happens when ever a binary operator has two operands of different
data types. Depending on the operator, one of the operands is going to be converted
to the data type of the other. It could be promoted or demoted depending on the
operator.

Example 3.5: Implicit Promotion

55 + 1.75

In this example the integer value 55 is converted to a floating-point value (most likely
double) of 55.0. It was promoted.

Example 3.6: Implicit Demotion

int money; // variable set up

then later in the program

money = 23.l6;

In this example the variable money is an integer. We are trying to move a floating-
point value 23.16 into an integer storage location. This is demotion and the floating-
point value usually gets truncated to 23.

39

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.7.3 Promotion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Promotion is never a problem because the lower data type (smaller range of allowable
values) is sub set of the higher data type (larger range of allowable values). Promotion
often occurs with three of the standard data types: character, integer and floating-
point. The allowable values (or domains) progress from one type to another. That is
the character data type values are a sub set of integer values and integer values are a
sub set of floating-point values; and within the floating-point values: float values are a
sub set of double. Even though character data represent the alphabetic letters,
numeral digits (0 to 9) and other symbols (a period, $, comma, etc.) their bit pattern
also represent integer values from 0 to 255. This progression allows us to promote
them up the chain from character to integer to float to double.

3.7.4 Demotion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Demotion represents a potential problem with truncation or unpredictable results
often occurring. How do you ft an integer value of 456 into a character value? How do
you ft the floating-point value of 45656.453 into an integer value? Most compilers give
a warning if it detects demotion happening. A compiler warning does not stop the
compilation process. It does warn the programmer to check to see if the demotion is
reasonable.

If I calculate the number of cans of soup to buy based on the number of people I am
serving (say 8) and the servings per can (say 2.3), I would need 18.4 cans. I might want
to demote the 18.4 into an integer. It would truncate the 18.4 into 18 and because
the value 18 is within the domain of an integer data type, it should demote with the
truncation side effect.

If I tried demoting a double that contained the number of stars in the Milky Way
galaxy into an integer, I might have a get an unpredictable result (assuming the
number of stars is larger than allowable values within the integer domain).

3.7.5 Explicit Type Conversion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Most languages have a method for the programmer to change or cast a value from
one data type to another; called explicit type conversion. Within C++ the cast operator
is a unary operator; it only has one operand and the operand is to the right of the
operator. The operator is a set of parentheses surrounding the new data type.

Example 3.7: Explicit Demotion with Truncation

40

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

(int) 4.234

This expression would evaluate to: 4.

3.7.6 Demonstration Program in C++

3.7.6.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

3.7.6.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the soruce code file(s) in conjunction with other learning materials.

 Demo_Data_Type_Conversions.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/
5267/5365/media/Demo_Data_Type_Conversions.cpp.txt)

3.7.7 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 3.17: implicit

A value that has its data type changed automatically.

Definition 3.18: explicit

Changing a value's data type with the cast operator.

Definition 3.19: promotion

Going from a smaller domain to a larger domain.

Definition 3.20: demotion

Going from a larger domain to a smaller domain.

41

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5365/media/Demo_Data_Type_Conversions.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5365/media/Demo_Data_Type_Conversions.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5365/media/Demo_Data_Type_Conversions.cpp.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 3.21: truncation

The fractional part of a floating-point data type that is dropped when converted to an
integer.

3.8 Practice 3: Data & Operators

3.8.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Understand basic data types and how operators manipulate data.
3. Given pseudocode and test data documents, write the C++ code for a program

3.8.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 03

(***
See the file at <http://cnx.org/content/m22455/latest/index.html>
***)

3.8.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Answer the following statements as either true or false:

1. A data type defnes a set of values and the set of operations that can be applied
on those values.

2. Reserved or key words can be used as identifier names.
3. The concept of precedence says that some operators (like multiplication and

division) are to be executed before other operators (like addition and
subtraction).

4. An operator that needs two operands, will promote one of the operands as
needed to make both operands be of the same data type.

5. Parentheses change the precedence of operators.

42

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.8.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Manipulation_Data_Part_1 (http://www.opentextbooks.org.hk/system/files/resource/5/5267/537
1/media/Manipulation_Data_Part_1.pdf)

3.8.5 Lab Assignment

3.8.5.1 Creating a Folder or Sub-Folder for Chapter 03 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 03 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

3.8.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Solution_Lab_03_Pseudocode (http://www.opentextbooks.org.hk/system/files/resource/5/5267/
5374/media/Solution_Lab_03_Pseudocode.txt)

 Solution_Lab_03_Test_Data (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5
374/media/Solution_Lab_03_Test_Data.txt)

3.8.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Navigate to your sub-folder: Chapter 03 and open and study the two files.
• We have learned that a fundamental concept of interaction with computers is to

divide the problem/task into three parts input, processing and output. This
problem is simple and we will use the IPO (input processing output) approach
again. However this time we are going to think about it backwards.

43

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5371/media/Manipulation_Data_Part_1.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5371/media/Manipulation_Data_Part_1.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5371/media/Manipulation_Data_Part_1.pdf
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5374/media/Solution_Lab_03_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5374/media/Solution_Lab_03_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5374/media/Solution_Lab_03_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5374/media/Solution_Lab_03_Test_Data.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5374/media/Solution_Lab_03_Test_Data.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5374/media/Solution_Lab_03_Test_Data.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• What output do I want displayed?
• Number of gallons of paint
• Total cost of the paint

• Thus, what calculations do I need to make?
• Total cost of the paint is the Number of gallons needed times price per gallon
• Number of gallons needed is the Total area to be covered (let's use square feet)

divided by the coverage per gallon of paint (Note: you must round up to the next
full gallon of paint.)

• Total area to be covered is the Length times height times 2 added to the width
times height times 2

• Which leads us to, what data do I need as input?
• Price of a gallon of paint
• Number of square feet that a gallon will cover
• Length of the house
• Width of the house
• Height of the house

• You can see that by working the logic backwards, we can start to completely see
what the program must do. We need to enter some data (input), do some
calculations (process) and display the results (output).

• Copy into your sub-folder: Chapter 03 one of the source code listings that we
have used (we suggest the Lab 01 source code) and rename the copy to: Lab
03.cpp

• Modify the code to follow the Solution Lab 03 Pseudocode.txt file.
• I am just going to give you the line of code for rounding up to the next whole

gallon of paint (See the "Data Type Conversions" module within Chapter 3 of the
Connexions materials. Do you understand why it works?).

• total_gal_paint - total area / coverage_gal_paint + 0.9999;
• Build (compile and run) your program. You have successfully written this program

when it runs with your test data and gives the predicted results.

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

44

3.8.6 Problems

3.8.6.1 Problem 03a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Write the C++ code to do the following pseudocode example.

Example 3.8: pseudocode

Prompt the user for his monthly income.

Get the users monthly income.

Multiply the monthly income by 12.

Display the annual income.

Pause the program so the user can see the answer. (HINT: You may call

a function.)

3.8.7 Solutions to Exercises in Chapter 3
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 3: Data & Operators

Solution to Exercise 3.8.1

Answers:

1. true
2. false
3. true
4. true
5. false - Parentheses change the order of evaluation in an expression.

45

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 4 Often Used Data Types

4.1 Integer Data Type

4.1.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The integer data type has two meanings:

• The integer data type with its various modifers that create different domains
• The integer family which also includes the Boolean and character data types

The integer data type basically represents whole numbers (no fractional parts). The
integer values jump from one value to another. There is nothing between 6 and 7. It
could be asked why not make all your numbers floating point which allow for
fractional parts. The reason is twofold. First, some things in the real world are not
fractional. A dog, even with only 3 legs, is still one (1) dog not i of a dog. Second,
integer data type is often used to control program fow by counting, thus the need for
a data type that jumps from one value to another.

The integer data type has the same attributes and acts or behaves similarly in all
programming languages. The most often used integer data type in C++ is the simple
integer.

C++ Reserved Word int

Represent Whole numbers (no fractional parts)

Size Usually 4 bytes

Normal Signage Signed (negative and positive values)

Domain (Values Allowed) -2,147,483,648 to 2, 147,483,647

C++ syntax rule Do not start with a 0 (zero)

C++ syntax rule No decimal point

Within C++ there are various reserved words that can be used to modify the size or
signage of an integer. They include: long, short, signed and unsigned. Signed is rarely
used because integers are signed by default you must specify unsigned if you want
integers that are only positive. Possible combinations are:

46

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C++ Reserved Word Combination Signage

short int signed

unsigned short int unsigned

int signed

unsigned int unsigned

long int singed

unsigned long int unsigned

The domain of each of the above data type options varies with the complier being
used and the computer. The domains vary because the byte size allocated to the data
varies with the compiler and computer. This effect is known as being machine
dependent. Additionally, there have been some size changes with upgrades to the
language. In "C" the int data type was allocated 2 bytes of memory storage on an Intel
compatible central processing unit (cpu) machine. In "C++" an int is allocated 4 bytes.

These variations of the integer data type are an annoyance in C++ for a beginning
programmer. For a beginning programmer it is more important to understand the
general attributes of the integer data type that apply to most programming languages.

4.1.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 4.1: machine dependent

An attribute of a programming language that changes depending on the computer's
CPU.

4.2 Floating-Point Data Type

4.2.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The floating-point data type is a family of data types that act alike and difer only in the
size of their domains (the allowable values). The floating-point family of data types
represent number values with fractional parts. They are technically stored as two
integer values: a mantissa and an exponent. The floating-point family has the same

47

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

attributes and acts or behaves similarly in all programming languages. They can
always store negative or positive values thus they always are signed; unlike the integer
data type that could be unsigned. The domain for floating-point data types varies
because they could represent very large numbers or very small numbers. Rather than
talk about the actual values, we mention the precision. The more bytes of storage the
larger the mantissa and exponent, thus more precision.

The most often used floating-point family data type used in C++ is the double. By
default, most compilers convert floating-point constants into the double data type for
use in calculations. The double data type will store just about any number most
beginning programmers will ever encounter.

C++ Reserved
Word

double

Represent Numbers with fractional parts

Size Usually 8 bytes

Storage
two parts (always treated together)a mantissa
and an exponent

Normal Signage Signed (negative and positive values)

Domain (Values
Allowed)

±1.7E-308 to ±1.7E308

C++ syntax rule
the presence of a decimal point means it's
floating-point data

Within C++ there are various reserved words that can be used to establish the size in
bytes of a floatingpoint data item. More bytes mean more precision:

C++ Reserved Word Size

float 1 bytes

double 8 bytes

long double 10 to 12 bytes (varies by machine)

The domain of each of the above data type options varies with the complier being
used and the computer. The domains vary because the byte size allocated to the data

48

varies with the compiler and computer. This effect is known as being machine
dependent.

These variations of the floating-point family of data types are an annoyance in C++ for
a beginning programmer. For a beginning programmer it is more important to
understand the general attributes of the floating-point family that apply to most
programming languages.

4.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 4.2: double

The most often used floating-point family data type used in C++.

Definition 4.3: precision

The effect on the domain of floating-point values given a larger or smaller storage
area in bytes.

Definition 4.4: mantissa exponent

The two integer parts of a floating-point value.

4.3 String Data Type

4.3.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Technically, there is no string data type in the C++ programming language. However,
the concept of a string data type makes it easy to handle strings of character data. A
single character has some limitations. Many data items are not integers or floating-
point values. The message Hi Mom! is a good example of a string. Thus, the need to
handle a series of characters as a single piece of data (in English correctly called a
datum).

In the "C" programming language all string were handled as an array of characters
that end in an ASCII null character (the value 0 or the first character in the ASCII
character code set). Associated with object oriented programming the string class has
been added to C++ as a standard part of the programming language. This changed
with the implementation with strings being stored as a length controlled item with a
maximum length of 255 characters. Included in the C++ string class is the reserved
word of string as if it were a data type. Some basics about strings include:

49

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C++ Reserved Word string

Represent Series of characters (technically an array)

Size Varies in length

Normal Signage N/A

Domain (Values Allowed) Extended ASCII Character Code Set

C++ syntax rule Double quote marks for constants

Table 4.1 Basics about Strings

For now, we will address only the use of strings as constants. Most modern compliers
that are part of an Integrated Development Environment (IDE) will color the source
code to help the programmer see different features more readily. Beginning
programmers will use string constants to send messages to the monitor. A typical line
of C++ code:

cout « "Hi Mom!";

would have the "Hi Mom" colored (usually red) to emphasize that the item is a string.

4.3.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 4.5: string

A series or array of characters as a single piece of data.

4.4 Arithmetic Assignment Operators

4.4.1 Overview of Arithmetic Assignment
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The five arithmetic assignment operators are a form of short hand. Various
textbooks call them "com pound assignment operators" or "combined assignment
operators". Their usage can be explained in terms of the assignment operator and the
arithmetic operators. In the table we will use the variable age and you can assume
that it is of integer data type.

50

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Arithmetic assignment examples: Equivalent code:

age += l4; age = age + l4;

age -= l4; age = age -l4;

age *= 14; age = age * 14;

age /= 14; age = age / 14;

age %= 14; age = age % 14;

Table 4.2 Arithmetic assignment

4.4.2 Demonstration Program in C++

4.4.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

4.4.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the soruce code file(s) in conjunction with other learning materials.

 Demo_Arithmetic_Assignment.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5
267/5393/media/Demo_Arithmetic_Assignment.cpp.txt)

51

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5393/media/Demo_Arithmetic_Assignment.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5393/media/Demo_Arithmetic_Assignment.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5393/media/Demo_Arithmetic_Assignment.cpp.txt

4.5 Lvalue & Rvalue

4.5.1 Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

They refer to on the left and right side of the assignment operator. The Lvalue
(pronounced: L value) concept refers to the requirement that the operand on the left
side of the assignment operator is modifable, usually a variable. Rvalue concept pulls
or fetches the value of the expression or operand on the right side of the assignment
operator. Some examples:

Example 4.1

int age; // variable set up

then later in the program

age = 39;

The value 39 is pulled or fetched (Rvalue) and stored into the variable named age
(Lvalue); destroying the value previously stored in that variable.

Example 4.2

int age; // variable set up

int voting age = l8; // variable set up with initialization

then later in the program

age = voting age;

If the expression has a variable or named constant on the right side of the assignment
operator, it would pull or fetch the value stored in the variable or constant. The value
18 is pulled or fetched from the variable named voting age and stored into the
variable named age.

Example 4.3

age < 17;

If the expression is a test expression or Boolean expression, the concept is still an
Rvalue one. The value in the identifier named age is pulled or fetched and used in the
relational comparison of less than.

Example 4.4

const int JACK BENNYS AGE = 39; // constant set up

then later in the program

52

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

JACK BENNYS AGE = 65;

This is illegal because the identifier JACK BENNYS AGE does not have Lvalue
properties. It is not a modifable data object, because it is a constant.

Some uses of the Lvalue and Rvalue can be confusing.

Example 4.5

int oldest = 55; // variable set up with initialization

then later in the program

age = oldest++;

Postfx increment says to use my existing value then when you are done with the other
operators; increment me. Thus, the first use of the oldest variable is an Rvalue context
where the existing value of 55 is pulled or fetched and then assigned to the variable
age; an Lvalue context. The second use of the oldest variable is an Lvalue context
where in the value of oldest is incremented from 55 to 56.

4.5.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 4.6: Lvalue

The requirement that the operand on the left side of the assignment operator is
modifable, usually a variable.

Definition 4.7: Rvalue

Pulls or fetches the value stored in a variable or constant.

4.6 Integer Division and Modulus

4.6.1 Overview of Integer Division and Modulus
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

By the time we reach adulthood, we normally think of division as resulting in an
answer that might have a fractional part (a floating-point data type). This type of
division is known as floating-point division. However, division when both operands are
of the integer data type acts differently on most computers and is called: integer
division. Within the C++ programming language the following expression does not give
the answer of 2.75 or 2(3/4).

Example 4.6

11 / 4

53

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Because both operands are of the integer data type the evaluation of the expression
(or answer) would be 2 with no fractional part (it gets thrown away). Again, this type of
division is call integer division and it is what you learned in grade school the first time
you learned about division.

Definition 4.8: integer division

Division with no fractional parts.

Figure 4.1 Integer division as learned in grade school.

In the real world of data manipulation there are some things that are always handled
in whole units or numbers (integer data type). Fractions just don't exist. To illustrate
our example: I have // dollar coins to distribute equally to my 4 children. How many do
they each get? Answer is 2 with me still having 3 left over (or with 3 still remaining in
my hand). The answer is not 2 i each or 2.75 for each child. The dollar coins are not
divisible into fractional pieces. Don't try thinking out of the box and pretend you're a
pirate. Using an axe and chopping the 3 remaining coins into pieces of eight. Then,
giving each child 2 coins and 6 pieces of eight or 2 6/8 or 2 i or 2.75. If you do think this
way, I will change my example to cans of tomato soup. I dare you to try and chop up
three cans of soup and give each kid i of a can. Better yet, living things like puppy
dogs. After you divide them up with an axe, most children will not want the i of a dog.

What is modulus? It's the other part of the answer for integer division. It's the
remainder. Remember in grade school you would say, "Eleven divided by four is two
remainder three." In C++ programming language the symbol for the modulus operator
is the percent sign (%).

Example 4.7

11% 4

Thus, the answer or value of this expression is 3 or the remainder part of integer
division.

Definition 4.9: modulus

The remainder part of integer division. Many compilers require that you have integer
operands on both sides of the modulus operator or you will get a compiler error. In
other words, it does not make sense to use the modulus operator with floating-point
operands. Don't let the following items confuse you.

Example 4.8

6 / 24 which is different from 6 % 24

54

How many times can you divide 24 into 6? Six divided by 24 is zero. This is different
from: What is the remainder of 6 divided by 24? Six, the remainder part given by
modulus.

Exercise 4.6.1

Evaluate the following division expressions:

1. 14 / 4
2. 5 / 13
3. 7 / 2.0

Exercise 4.6.2

Evaluate the following modulus expressions:

1. 14 % 4
2. 5 % 13
3. 7 % 2.0

4.6.2 Demonstration Program in C++

4.6.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

4.6.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the soruce code file(s) in conjunction with other learning materials.

 Demo_Integer_Division_and_Modulus.cpp (http://www.opentextbooks.org.hk/system/files/reso
urce/5/5267/5401/media/Demo_Integer_Division_and_Modulus.cpp.txt)

55

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5401/media/Demo_Integer_Division_and_Modulus.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5401/media/Demo_Integer_Division_and_Modulus.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5401/media/Demo_Integer_Division_and_Modulus.cpp.txt

4.7 Practice 4: Often Used Data Types

4.7.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Design a program, to include: understanding the problem, completing Internet
research as appropriate, create a pseudocode document and create a test data
document.

3. Write the C++ code for a program using appropriate planning documentation that
you or another has designed.

4.7.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 04

(***
See the file at <http://cnx.org/content/m22456/latest/index.html>
***)

4.7.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 4.7.1

Answer the following statements as either true or false:

1. Integer data types are stored with a mantissa and an exponent.
2. Strings are identifed by single quote marks.
3. An operand is a value that receives the operator's action.
4. Arithmetic assignment is a shorter way to write some expressions.
5. Integer division is rarely used in computer programming.

4.7.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

56

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.7.5 Lab Assignment

4.7.5.1 Creating a Folder or Sub-Folder for Chapter 04 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 04 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

4.7.5.2 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• The Problem/Task I have a friend who is visiting from Europe and he does not
understand Fahrenheit temperatures. We need to write a program that allows
him to enter the temperature in Fahrenheit (as announced on TV or radio) and
convert it to Celsius. Clue 1: Fahrenheit water freezes at 32 degrees and boils at
212 degrees. Celsius water freezes a zero (0) degrees and boils at 100 degrees.
Google the internet (how to convert Fahrenheit to Celsius) if you need more help.
Clue 2: You can also use Internet sites to do a conversion and thus create your
test data.

• You only need two variables in this program: Fahrenheit and Celsius both of
which should be the integer data type. When you convert the Fahrenheit to
Celsius you will need to use a floating-point expression doing floating-point
calculations for precision. Additionally we want to round up or down the Celsius
answer by adding 0.5 to the calculation expression.

• Within your sub-folder: Chapter 04 you will need to create three files:
Lab_04_Pseudocode.txt and Lab_04_Test_Data.txt and Lab_04.cpp NOTE: It will
be easier to copy some previous files from another assignment and use those
copies by renaming them and modifying them as appropriate. The professor is
expecting the items you create to have a similar format to those we have been
using in the course.

• Create your pseudocode, test data and source code files.
• Build (compile and run) your program. You have successfully written this program

when it runs with your test data and gives the predicted results.

57

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

4.7.6 Problems

4.7.6.1 Problem 04a - Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Decide on the data type and identifier names for the following:

Problem: A men's clothing store that caters to the very rich wants to create a data
base for its customers that records clothing measurements. They need to record
information for shoes, socks, pants, dress shirts and casual shirts. HINT: You may
need more than 5 data items.

4.7.7 Solutions to Exercises in Chapter 4
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 4.6.1

Answers:

1. 3
2. 0
3. 3.5 because one of the operands is a floating-point value, it is not integer division

Solution to Exercise 4.6.2

Answers:

1. 2
2. 5
3. "error" because most compilers require both operands to be of the integer data

type

Solutions to Practice 4: Often Used Data Types

Solution to Exercise 4.7.1

Answers:

1. false
2. false
3. true
4. true
5. false

58

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 5 Integrated Development
Environment

5.1 Integrated Development Environment

5.1.1 IDE Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

High-level language programs are usually written (coded) as ASCII text into a source
code file. A unique file extension (Examples: .asm .cob .for .pas .c .cpp) is used to
identify it as a source code file. As you can guess for our examples Assembly, COBOL,
FORTRAN, Pascal, "C" and "C++" however, they are just ASCII text files (other text files
usually use the extension of .txt). The source code produced by the programmer must
be converted to an executable machine code file specifcally for the computer's CPU
(usually an Intel or Intel compatible CPU within today's world of micro computers).
There are several steps in getting a program from its source code stage to running the
program on your computer. Historically, we had to use several software programs (a
text editor, a compiler, a linker and operating system commands) to make the
conversion and run our program. However, today all those software programs with
their associated tasks have been integrated into one program usually called a
compiler. However, this one compiler program is really many software items that
create an environment used by programmers to develop software. Thus the name:
Integrated Development Environment or IDE.

The following fgure shows the progression of activity in an IDE as a programmer
enters the source code and then directs the IDE to compile and run the program.

59

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

:

Figure 5.1 Integrated Development Environment or IDE

Upon starting the IDE software the programmer usually indicates he wants to open a
file for editing as source code. As they make changes they might either do a "save as"
or "save". When they have fnished entering the source code, they usually direct the
IDE to "compile & run" the program. The IDE does the following steps:

1. If there are any unsaved changes to the source code file it has the test editor
save the changes.

2. The compiler opens the source code file and does its first step which is
executing the pre-processorcompiler directives and other steps needed to get
the file ready for the second step. The include will insert header files into the code
at this point. If it encounters an error, it stops the process and returns the user to
the source code file within the text editor with an error message. If no problems
encountered it saves the source code to a temporary file called a translation unit.

3. The compiler opens the translation unit file and does its second step which is
converting the programming language code to machine instructions for the CPU,
a data area and a list of items to be resolved by the linker. Any problems
encounted (usually a syntax or violation of the programming language rules)
stops the process and returns the user to the source code file within the text
editor with an error message. If no problems encountered it saves the machine
instructions, data area and linker resolution list as an object file.

4. The linker opens the program object file and links it with the library object files as
needed. Unless all linker items are resolved, the process stops and returns the
user to the source code file within the text editor with an error message. If no
problems encountered it saves the linked objects as an executable file.

60

5. The IDE directs the operating system's program called the loader to load the
executable file into the computer's memory and have the Central Processing Unit
(CPU) start processing the instructions. As the user interacts with the program,
entering his test data, he might discover that the outputs are not correct. These
types of errors are called logic errors and would require him to return to the
source code to change the algorithm.

5.1.2 Resolving Errors
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Despite our best eforts at becoming perfect programmers, we will create errors.
Solving these errors is known as debugging your program. The three types of errors
in the order that they occur are:

1. Compiler
2. Linker
3. Logic

There are two types of compiler errors; pre-processor (1st step) and conversion (2nd
step). A review of Figure 1 above shows the four arrows returning to the source code
so that the programmer can correct the mistake.

During the conversion (2nd step) the complier might give a warning message which in
some cases may not be a problem to worry about. For example: Data type demotion
may be exactly what you want your program to do, but most compilers give a warning
message. Warnings don't stop the compiling process but as their name implies, they
should be reviewed.

The next three fgures show IDE monitor interaction for the Bloodshed Dev-C++ 5
compiler/IDE.

61

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.2 Compiler Error (the red line is where the complier stopped)

Figure 5.3 Linker Error (no red line with an error message describing linking problem)

62

Figure 5.4 Logic Error (from the output within the "Black Box" area)

5.1.3 Demonstration Program in C++

5.1.3.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

5.1.3.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Pre_Processor_Compiler_Errors.cpp (http://www.opentextbooks.org.hk/system/files/res
ource/5/5267/5419/media/Demo_Pre_Processor_Compiler_Errors.cpp.txt)

 Demo_Compiler_Conversion_Errors.cpp (http://www.opentextbooks.org.hk/system/files/resour
ce/5/5267/5419/media/Demo_Compiler_Conversion_Errors.cpp.txt)

 Demo_Linker_Errors.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/541
9/media/Demo_Linker_Errors.cpp.txt)

63

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Pre_Processor_Compiler_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Pre_Processor_Compiler_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Pre_Processor_Compiler_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Compiler_Conversion_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Compiler_Conversion_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Compiler_Conversion_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Linker_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Linker_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Linker_Errors.cpp.txt

 Demo_Logic_Errors.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/
media/Demo_Logic_Errors.cpp.txt)

5.1.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 5.1: text editor

A software program for creating and editing ASCII text files.

Definition 5.2: compiler

Converts source code to object code.

Definition 5.3: pre-processor

The first step the complier does in converting source code to object code.

Definition 5.4: linker

Connects or links object files into an executable file.

Definition 5.5: loader

Part of the operating system that loads executable files into memory and direct the
CPU to start running the program.

Definition 5.6: debugging

The process of removing errors from a program. 1) compiler 2) linker 3) logic

Definition 5.7: warning

A compiler alert that there might be a problem.

5.2 Standard Input and Output

5.2.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Every task we have the computer do happens inside the central processing unit (CPU)
and the associated memory. Once our program is loaded into memory and the
operating system directs the CPU to start executing our programming statements the
computer looks like this:

64

http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Logic_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Logic_Errors.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5419/media/Demo_Logic_Errors.cpp.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.5 Figure 5.5 CPU Memory Input/Output Devices

Our program now located in the memory has basically two areas:

• Machine instructions our instructions for what we want done
• Data storage our variables that we using in our program

Often our program contains instructions to interact with the input/output devices. We
need to move data into (read) and/or out of (write) the memory data area. A device is
a piece of equipment that is electronically connected to the memory so that data can
be transferred between the memory and the device. Historically this was done with
punched cards and printouts. Tape drives were used for electronic storage. With time
we migrated to using disk drives for storage with keyboards and monitors (with
monitor output called soft copy) replacing punch cards and printouts (called hard
copy).

Most computer operating systems and by extension programming languages have
identified the keyboard as the standard input device and the monitor as the
standard output device. Often the keyboard and monitor are treated as the default
device when no other specific device is indicated.

5.2.2 Standard I/O within C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The developers of the C++ programming language decided to provide some of the
more technical code needed to interact with the operating system and the I/O devices.
In the following example the include directive inserts a file that contains code from the

65

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Input-Output Stream library. This file contains necessary code to use cout and cin
for sending data to the monitor or getting data from the keyboard.

#include <iostream>

You should think of cout and cin as being locations that you can send to or receive
data from; similar in concept to any other variable storage location within the data
area of our program. The C++ programming language has two operators to use in
conjunction with I/O devices.

Action C ++ operator symbol
Used
with

insertion operator
(write)

« (a pair of less than
symbols)

cout

extraction operator
(read)

» (a pair of greater than
symbols)

cin

Consider the following code:

Example 5.1: Insertion and Extraction

int agel; // variable set up

then later on in our program

cout « "\nEnter the age of the first person --->: ";

cin » agel;

Using the cout the programmer displays (or inserts) a prompting message on the
monitor for the user to see. Using the cin the user types an integer value and hits the
enter key and the computer extracts the value from the keyboard and stores it into
the variable named age1. Within the computer all data are stored as numbers and
thus part of the technical code provided by the developers of the C++ programming
language that is within the Input-Output Stream library converts data from numbers
to those symbols we are used to seeing as humans and vice versa. Example: If the
user entered the numeral digits 57 and hit the enter key the extraction operator
would convert the 57 into a binary number and move the binary number into the
integer storage place named age1.

The cout which uses the standard output device does not format the output into a
Graphical User Interface (GUI) where you have a mouse to use. A modern operating
system using GUI normally opens a black screen output box that would be similar to
how the monitor was used when first developed in the 1960's. That is the default of
how cout is normally implemented by most compilers.

The output message has a unique item worth mentioning. At the very front of the
message is a backslash followed by the letter n. They do not get printed on the

66

monitor. It is a special code (called a printer escape code) telling the printer to go to a
new line. Printer! I thought we were using a monitor? We are but the code is a left over
from the early days of printer output. The backslash tells the printer or monitor that
the next letter is a command. The letter n is used for telling the printer or monitor to
go to the front of a new line.

5.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 5.8: device

A piece of equipment that is electronically connected to the memory so that data can
be transferred between the memory and the device.

Definition 5.9: standard input

The keyboard.

Definition 5.10: standard output

The monitor.

Definition 5.11: insertion

Aka writing or sending data to an output device.

Definition 5.12: extraction

Aka reading or getting data from an input device.

Definition 5.13: escape code

A code directing an output device to do something.

5.3 Compiler Directives

5.3.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A compiler directive is an instruction to the compiler to complete a task before
formally starting to compile the program, thus they are sometimes called pre-
processor directives. Among other items, during the pre processor step the compiler
is looking for compiler directives and processes them as they are encountered. After
completing the tasks as directed, the compiler proceeds to its second step where it
checks for syntax errors (violations of the rules of the language) and converts the
source code into an object code that contains machine language instructions, a data
area, and a list of items to be resolved when he object file is linked to other object
files.

67

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Within C++ the pound symbol or as the first character of a line indicates that the next
word is a directive (or command word) to be evaluated. The two most common
compiler directives are:

1. include with the item following include being the name of a file that is to be
inserted at that place in the file. The files are often called "Header Files" because
the include directive is normally inserted toward the top of the file (at the head)
as one of the first items.

2. define with the item followed by an identifier name and a value. This identifier
name and value is stored by the compiler and when it encounters the identifier
name in the program it substitutes the value for the identifier name.

In the following example the include directive is inserting a file that contains code
from the Input-Output Stream library. This file contains necessary code to use cout

and cin for sending data to the monitor or getting data from the keyboard.

#include <iostream>

In the next example the define directive is being used to handle a constant (called a
defined constant).

Example 5.2: Subtituting PI

#define PI 3.l4l59

....Later on in the program when it encounters PI

....it will replace or substitute PI with the value 3.l4l59

....For example:

area circle = radius * radius * PI;

would become:

area circle = radius * radius * 3.l4l59;

Of note, compiler directives in C++ do not have a semi-colon after them. Within C++
programming instructions or statements end with a semi-colon, but not compiler
directives.

5.3.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 5.14: compiler directive

An instruction to the compiler to complete a task before formally starting to compile
the program.

Definition 5.15: include

A compiler directive to insert the contents of a file into the program.

68

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.4 Practice 5: Integrated Development Environment

5.4.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Be able to list the categories and give examples of errors encountered when
using an Integrated Development Environment (IDE).

3. Write the C++ code for a program using appropriate planning documentation that
you or another has designed.

5.4.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 05

(***
See the file at <http://cnx.org/content/m22457/latest/index.html>
***)

5.4.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 5.4.1

Answer the following statements as either true or false:

1. IDE means Integer Division Expression.
2. Most modern compilers are really an IDE type of software, not just a compiler.
3. cin and cout are used for the standard input and output in C++.
4. Programming errors are extremely easy to understand and fx.
5. All C++ programs will have at least one include type of compiler directive.

5.4.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

69

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.4.5 Lab Assignment

5.4.5.1 Creating a Folder or Sub-Folder for Chapter 05 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 05 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

5.4.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Solution Lab 02 Pseudocode.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5435/media/Solution_Lab_02_Pseudocode.txt)

 Solution Lab 02 Test Data.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5
435/media/Solution_Lab_02_Test_Data.txt)

5.4.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Copy into your sub-folder: Chapter 05 one of the source code listings that we
have used. We suggest the Lab 01 source code and rename the copy: Lab 05.cpp

• Modify the code to follow the Solution Lab 02 Pseudocode.txt file.
• Build (compile and run) your program. You have successfully written this program

if when it runs and you use the test data [use the test data as supplied as the
solution for Lab 02] it gives the predicted results.

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

70

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5435/media/Solution_Lab_02_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5435/media/Solution_Lab_02_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5435/media/Solution_Lab_02_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5435/media/Solution_Lab_02_Test_Data.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5435/media/Solution_Lab_02_Test_Data.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5435/media/Solution_Lab_02_Test_Data.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.4.6 Problems

5.4.6.1 Problem 05a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

List and describe what might cause the four (4) types of errors encountered in a
program using an Integrated Development Environment software product.

5.4.6.2 Problem 05b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Identify four (4) problems with this code listing (HINT: The four (4) types of errors
encountered in a program using an Integrated Development Environment software
product).

Example 5.3: C++ Source Code Listing

//**

// Filename: Compiler Test.cpp

// Purpose: Average the ages of two people

// Author: Ken Busbee; © Kenneth Leroy Busbee

// Date: Jan 5, 2009

// Comment: Main idea is to be able to

// debug and run a program on your compiler.

//**

// Headers and Other Technical Items

#include <iostrern>

using namespace std;

// Function Prototypes

void pause(void);

// Variables

int agel;

int age2;

double answear;

//**

// main

//**

int main(void)

{

// Input

cout « "\nEnter the age of the first person --->: ";

cin » agel;

71

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

cout « "\nEnter the age of the second person -->: ";

cin » age2;

// Process

answer = (agel + age2) / 3.0;

// Output

cout « "\nThe average of their ages is -------->: ";

cout « answer;

pause();

return 0;

}

//**

// End of Program

//**

5.4.7 Solutions to Exercises in Chapter 5
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 5: Integrated Development Environment

Solution to Exercise 5.4.1

Answers:

1. false
2. true
3. true
4. false
5. true

72

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 6 Program Control Functions

6.1 Pseudocode Examples for Functions

6.1.1 Concept
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

No standard for pseudocode syntax exists. However, there are some commonly
followed conventions to help make pseudocode written by one programmer easily
understood by another programmer. The following describes a method for using
pseudocode for functions that would be understood by programmers. Five concepts
are:

• Use a beginning phrase word to start the function
• Use a communication phrase word to identify the items being passed into the

function
• Use indentation to show the action part of the function
• Use a communication phrase word to identify the items being passed out of the

function
• Use an ending phrase word to end the function
• Use a calling phrase word to direct your program to use a fucntion

The following is a suggested outline of function phrase words:

Item/Purpose Starting Phrase
Word

Ending Phrase
Word

Beginning Function N/A

Communication In Pass In: none

Action N/A N/A

Communication
Out

Pass Out: none

Ending N/A Endfunction

Calling a Function Call: none

Table 6.1

73

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.1.2 Examples
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Here are some examples showing functions defined in pseudocode using our
conventions as described above.

Example 6.1: pseudocode: Function with no parameter passing

Function clear monitor

Pass In: nothing

Direct the operating system to clear the monitor

Pass Out: nothing

Endfunction

Example 6.2: pseudocode: Function with parameter passing

Function delay program so you can see the monitor

Pass In: integer representing tenths of a second

Using the operating system delay the program

Pass Out: nothing

Endfunction

Example 6.3: pseudocode: Function main calling the clear monitor function

Function main

Pass In: nothing

Doing some lines of code

Call: clear monitor

Doing some lines of code

Pass Out: value zero to the operating system

Endfunction

6.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 6.1: phrase word

Words used to make pseudocode logic clear to any reader.

74

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.2 Hierarchy or Structure Chart

6.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The hierarchy chart (also known as a structure chart) shows the relationship of
various units. Its name comes from its general use in showing the organization (or
structure) of a business. The President at the top, then vice presidents on the next
level, etc. Within the context of a computer program it shows the relationship between
modules (or functions). Detail logic of the program is not presented. It does represent
the organization of the functions used within the program showing which functions
are calling on a subordinate function. Those above are calling those on the next level
down.

Hierarchy charts are created by the programmer to help document a program. They
convey the big picture of the modules (or functions) used in a program.

:

Figure 6.1 Hierarchy or Structure chart for a program that has five functions.

6.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 6.2: hierarchy chart

75

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Convey the relationship or big picture of the various functions in a program.

Definition 6.3: structure chart

Another name for a hierarchy chart.

6.3 Program Control Functions

6.3.1 Prerequisite Material
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Critical to this module is the review of several Connexions modules:

1. m_18861 - Titled: Modularization and C++ Program Layout
2. m_19136 - Titled: Pseudocode Examples for Functions
3. m_18682 - Titled: Hierarchy or Structure Chart

You should review these materials before proceeding. If you are viewing this module
on-line, links to these items are in the "Links" box to your right.

6.3.2 Concept of Modularization
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The concept is everywhere present in the real world about us. Simply put it is to take
a large complicated problem and to divide it into smaller manageable pieces.
The hierarchy chart of any large organization (government unit, company, university,
hospital, etc.) will show levels of people with job titles that indicate a different area of
responsibility. Each person is a small piece of the overall workings of the organization.
Each person can concentrate on their unique talent or task to make sure it works
properly. Collectively they accomplish the goals of the organization.

Additionally, the concept has been around for a long time. A village of 300 years ago
had farmers, tailors, butchers, blacksmiths, etc. Manufacturing is a prime example of
not just work being modularized but the product itself is viewed in terms of modules
or systems (Example of a automobile: engine, steering, brakes, etc.).

The world of computers, both hardware (equipment) and software (computer
programs), also uses this modular concept. Thus, the concept migrates to a single
computer program; allowing us to modularize the program into manageable tasks
called functions.

76

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.3.3 Program Control Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Program Control functions normally do not communicate information to each other
but use a common area for variable storage. The rules for how data is communicated
in and out of a function vary greatly by programming language, but the concept is the
same. The data items passed (or communicated) are called parameters. Thus the
wording: parameter passing. However, with program control functions we use the
data communication option of no communication in -with no communication out.
Our data variables and constants are placed in a common area available to all
functions (called global scope).

The identifier names for program control functions usually imply a task to be
accomplished, such as get-data, process-data or show-results. As you learn to write
more complicated programs the number of lines of code will increase. Prudence
dictates that it would be benefcial to divide the program into functions that perform
unique tasks. The larger the program the more need for modularization or creating of
program control functions.

Depending on the programming language, there is a formal way to:

1. define a function (it's definition or the code it will execute))
2. call a function
3. declare a function (a prototype is a declaration to a complier)

One of the easier ways to understand program control function is to view an example.
Even if you don't know the C++ programming language, you can study the materials to
help understand the modularization process.

6.3.4 Demonstration Program in C++

6.3.4.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

77

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.3.4.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Program_Control_Functions_before_Compiler_Test.cpp (http://www.opentextbooks.or
g.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_before_Compi
ler_Test.cpp.txt)

 Demo_Program_Control_Functions_Pseudocode.txt (http://www.opentextbooks.org.hk/system/
files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Pseudocode.txt)

 Demo_Program_Control_Functions_Hierarchy_Chart.jpg (http://www.opentextbooks.org.hk/sy
stem/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Hierarchy_Chart.jpg)

 Demo_Program_Control_Functions.cpp (http://www.opentextbooks.org.hk/system/files/resourc
e/5/5267/5455/media/Demo_Program_Control_Functions.cpp.txt)

6.3.4.3 Study the Materials Collectively to Understand Modularization

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The four items represent a progression from no modularization to modularization:

1. Program code before it is modularized
2. Modularized pseudocode and a hierarchy chart for the program
3. Program code that has been modularized

The simplicity of the program should not be considered during this review. It is
obvious that the program does not need modularization. The example is to show or
demonstrate how to modularize a program for program control.

6.3.5 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 6.4: common area

An area of the program where variables and constants are defined so that they are
available to all

functions.

78

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_before_Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_before_Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_before_Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_before_Compiler_Test.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5455/media/Demo_Program_Control_Functions.cpp.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.4 Void Data Type

6.4.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The void data type has no values and no operations. It's a data type that represents
the lack of a data type.

C++ Reserved Word void

Represent Nothing

Size N/A or None

Normal Signage N/A

Domain (Values Allowed) None

Table 6.1 Void data type

This data type was added in the transition from "C" to "C++". In "C" by default a
function returned an integer data type. Some functions don't return a value of any
kind. Thus, the need to have a data type that indicates nothing is being returned. The
void data type is mainly used in the definition and prototyping of functions to indicate
that either nothing is being passed in and/or nothing is being passed out.

6.4.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 6.5: void data type

A data type that has no values or operators and is used to represent nothing.

6.5 Documentation and Making Source Code Readable

6.5.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We are going to consider a simple program that might be used for testing a compiler
to make sure that it is installed correctly.

Example 6.4: Compiler Test.cpp source code

79

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

//**

// Filename: Compiler Test.cpp

// Purpose: Average the ages of two people

// Author: Ken Busbee; © Kenneth Leroy Busbee

// Date: Jan 5, 2009

// Comment: Main idea is to be able to

// debug and run a program on your compiler.

//**

// Headers and Other Technical Items

#include <iostream>

using namespace std;

// Function Prototypes

void pause(void);

// Variables

int agel;

int age2;

double answer;

//**

// main
//***

int main(void)

{

// Input

cout « "\nEnter the age of the first person --->: ";

cin » agel;

cout « "\nEnter the age of the second person -->: ";

cin » age2;

// Process

answer = (agel + age2) 1 2.0;

// Output

cout « "\nThe average of their ages is -------->: ";

cout « answer;

pause();

return 0;

}

//**

// pause

80

//**

void pause(void)

{

cout « "\n\n";

system("PAUSE");

cout « "\n\n";

return;

}

//**

// End of Program

//**

Within the programming industry there is a desire to make software programs easy to
maintain. The desire centers in money. Simply put, it costs less money to maintain a
well written program. One important aspect of program maintenance is making
source code listings clear and as easy to read as possible. To that end we will consider
the following:

1. Documentation
2. Vertical Alignment
3. Appropriate use of Comments
4. Banners for Functions
5. Block Markers on Lines by Themselves
6. Indent Block Markers
7. Meaningful Identifier Names Consistently Typed
8. Appropriate use of Typedef

The above items are not needed in order for the source code to compile. Technically
the compiler does not read the source code the way humans read the source code.
But that is exactly the point; the desire is to make the source code easier for humans
to read. You should not be confused between what is possible (technically will
compile) and what is ok (acceptable good programming practice that leads to readable
code). Let's cover each item in more detail.

6.5.1.1 Documentation

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Documentation is usually placed at the top of the program using several comment
lines. The amount of information would vary based on the requirements or standards
of the company who is paying its employees or independent contractors to write the
code. Notice the indication of revision dates.

81

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.5.1.2 Vertical Alignment

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You see this within the documentation area. All of the items are aligned up within the
same column. This vertical alignment occurs again when the variables are defined.
When declaring variable or constants many textbooks put several items on one line;
like this:

Example 6.5: Common Textbook Defning of Variables

float length, width, height, price gal paint, total area, total cost;

int coverage gal paint, total gal paint;

However common this is in textbooks, it would generally not be acceptable to
standards used in most companies. You should declare each item on its own line; like
this:

Example 6.6: Proper Defning of Variables with Vertical Alignment

float length;

float width;

float height;

float price_gal_paint;

int coverage_gal_paint;

float total_area;

int total_gal_paint;

float total_cost;

This method of using one item per line is more readable by humans. It is quicker to
find an identifier name, because you can read the list vertically faster than searching
horizontally. Some programmers list them in alphabetic order, especially when the
number of variables exceeds about twenty.

The lines of code inside either function are also aligned vertically and indented two
spaces from the left. The indentation helps set the block of visually.

6.5.1.3 Appropriate use of Comments

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You can see through the source code short little comments that describe an area or
section. Note the use of input, processing and output which are part of the IPO
concept within the program design.

82

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.5.1.4 Banners for Functions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Note the use of comments in the form of a banner before each function.

Example 6.7: Comments as a Banner

//**

// main

//**

The function name is placed with two lines of asterisks. It makes it extremely easy to
find each function definition because you don't have to read the functions to see
where the one ends and the next one begins. You can quickly read the function names
within the banners.

6.5.1.5 Block Markers on Lines by Themselves

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Within many languages there is a method to identify a group of programming
statements as a unit. With C++ the functions use a set of symbols, the braces {}, to
identify a block of code, sometimes referred to as a compound statement. Braces are
used in other aspects of programs, but for now we will look at this simple example.
These braces have a tendency to cause problems, especially when they don't have a
proper opening brace associated with a proper closing brace. To solve that problem
many programmers simply put a brace on a line by itself and make sure the opening
brace and closing brace are in the same vertical column.

6.5.1.6 Indent Block Markers

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A block of code associated with a function or with a control structure is indented two
or three spaces. When blocks of code are nested each nesting is indented two or three
spaces. In our example above the blocks of code for the function definitions are
indented two spaces.

6.5.1.7 Meaningful Identifier Names Consistently Typed

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

As the name implies "identifier names" should clearly identify who (or what) you are
talking about. Calling you spouse "Snooky" may be meaningful to only you. Others

83

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

might need to see her full name (Jane Mary Smith) to appropriately identify who you
are talking about. The same concept in programming is true. Variables, constants,
functions, typedefs and other items should use meaningful identifier names.
Additionally, those names should be typed consistently in terms of upper and lower
case as they are used in the program. Don't define a variable as: Pig and then type it
later on in your program as: pig.

6.5.1.8 Appropriate use of Typedef

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many programming languages have a command that allows for the creation of an
identifier name that represents a data type. The new identifier name is described or
connected to a real data type. This feature is not demonstrated in the code above and
is often a confusing concept. It is a powerful way to help document a program so that
it is meaningful, but is often used by more experienced programmers.

6.5.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 6.6: documentation

A method of preserving information useful to others in understanding an information
system or part thereof.

Definition 6.7: vertical alignment

A method of listing items vertically so that they are easier to read quickly.

Definition 6.8: comments

Information inserted into a source code file for documentation of the program.

Definition 6.9: banners

A set of comment lines used to help separate the functions and other sections of a
program.

Definition 6.10: braces

Used to identify a block of code in C++.

Definition 6.11: indention

A method used to make sections of source code more visible.

Definition 6.12: meaningful

A rule that says identifier names must be easily understood by another reading the
source code.

Definition 6.13: consistent

84

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

A rule that says to type identifier names in upper and lower case consistently
throughout your source code.

6.6 Practice 6: Program Control Functions

6.6.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Given pseudocode, test data and source code of an existing program, modify the
pseudocode and source code to create "program control" functions.

6.6.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 06

(***
See the file at <http://cnx.org/content/m22458/latest/index.html>
***)

6.6.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 6.6.1

Answer the following statements as either true or false:

1. Pseudocode has a strict set of rules and is the same everywhere in the computer
programming industry.

2. Hierarchy Charts and Structure Charts are basically the same thing.
3. Program Control functions are used to simply sub divide and control the

program.
4. The void data type is rarely used in C++.
5. Making source code readable is only used by beginning programmers.

6.6.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

85

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.6.4.1 Lab Assignment

6.6.4.1.1 Creating a Folder or Sub-Folder for Chapter 06 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 06 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

6.6.4.1.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Solution_Lab_01.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/me
dia/Solution_Lab_01.cpp)

 Solution_Lab_01_Pseudocode.txt (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/5479/media/Solution_Lab_01_Pseudocode%20%281%29.txt)

 Solution_Lab_01_Test_Data.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5479/media/Solution_Lab_01_Test_Data%20%281%29.txt)

 Solution_Lab_01m_with_Program_Control.cpp (http://www.opentextbooks.org.hk/system/file
s/resource/5/5267/5479/media/Solution_Lab_01m_with_Program_Control.cpp)

 Solution_Lab_01m_Pseudocode_with_Program_Control.txt (http://www.opentextbooks.org.hk/
system/files/resource/5/5267/5479/media/Solution_Lab_01m_Pseudocode_with_Program_Contro
l.txt)

 Solution_Lab_01m_Hierarchy_Chart (http://www.opentextbooks.org.hk/system/files/resource/
5/5267/5479/media/Solution_Lab_01m_Hierarchy_Chart.jpg)

 Solution_Lab_03.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/me
dia/Solution_Lab_03.cpp)

 Solution_Lab_03_Pseudocode.txt (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/5479/media/Solution_Lab_03_Pseudocode%20%281%29.txt)

 Solution_Lab_03_Test_Data.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5479/media/Solution_Lab_03_Test_Data%20%281%29.txt)

6.6.4.1.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

86

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01_Pseudocode%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01_Pseudocode%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01_Pseudocode%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01_Test_Data%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01_Test_Data%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01_Test_Data%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_with_Program_Control.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_with_Program_Control.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_with_Program_Control.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Pseudocode_with_Program_Control.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Pseudocode_with_Program_Control.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Pseudocode_with_Program_Control.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Pseudocode_with_Program_Control.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_01m_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03_Pseudocode%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03_Pseudocode%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03_Pseudocode%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03_Test_Data%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03_Test_Data%20%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5479/media/Solution_Lab_03_Test_Data%20%281%29.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Navigate to your sub-folder: Chapter 06. Review the original Lab 01 materials.
Compile and run the Lab 01 source code. Then review and compare the original
Lab 01 materials to modularized Lab 01 materials taking note of the conversion to
"program control" functions. Compile and run the Lab 01m source code. Review
as needed the course materials. Email your professor if you have any questions.

• We have supplied the solution to the Lab 03 assignment. Review the Lab 03
assignment by compiling and running the Lab 03 source code.

• You need to copy the Lab 03 source code file and pseudocode file to make the
following new files: Lab 06.cpp and Lab 06 Pseudocode.txt

• Modify the Lab 06 pseudocode file to implement "program control" functions as
shown in the demonstration materials.

• Modify the Lab 06 source code file to implement "program control" functions as
shown in the demonstration materials.

• Build (compile and run) your program. You have successfully written this program
if when it runs and you use the test data [use the same test data as used in Lab
03] it gives the same results as Lab 03.

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

6.6.4.2 Problems

6.6.4.2.1 Problem 06a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Create a hierarchy chart for the following pseudocode example.

Example 6.8: pseudocode

**

Filename: Average_IQ.txt

Purpose: Average the IQs of two people

Author: Ken Busbee; © Kenneth Leroy Busbee

Date: Jan 17, 2009

**

Function main

Pass In: nothing

Call: get_iqs

Call: process_iqs

Call: show_average

Pass Out: zero to the OS

Endfunction

87

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Function get_iqs

Pass In: nothing

display a message asking user for the IQ of the first person

get the IQ of the first person from the keyboard

display a message asking user for the IQ of the second person

get the IQ of the second person from the keyboard

Pass Out: nothing

Endfunction

Function process_iqs

Pass In: nothing

calculate the answer by adding the two IQs and

dividing by 2.0

Pass Out: nothing

Endfunction

Function show_average

Pass In: nothing

display the answer with an appropriate message

Call: pause

Pass Out: nothing

Endfunction

Function pause

Pass In: nothing

direct the operating system to pause the program

Pass Out: nothing

Endfunction

**

Potential Variables

Data Type Identifier Name

********* ***************

integer iq1

integer iq2

88

double answer

**

End of file

6.6.4.2.2 Problem 06b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Identify some problems that make this code "undocumented", "unreadable" or wrong
in some other way.

Example 6.9: C++ source code

//**

// Author: Ken Busbee; © 2009 Kenneth Leroy Busbee

// Date: Jan 17, 2009

//**

#include <iostream>

using namespace std;

void pause(void);

int age1, age2;

double xx;

//**

// main

//**

int main(void)

{

// Input

cout << "\nEnter the age of the first person --->: ";

cin >> age1;

cout << "nnEnter the age of the second person -->: ";

cin >> age2;

// Process

xx = (age1 + age2) / 2.0;

// Output

cout << "\nThe average of their ages is -------->: ";

cout << xx;

89

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

pause();

return 0;

}

void pause(void)

{ cout << "\n\n";

system("PAUSE");

cout << "\n\n";

return; }

//**

// End of Program

//**

6.6.4.3 Solutions to Exercises in Chapter 6

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 6: Program Control Functions

Solution to Exercise 6.6.1

Answers:

1. false
2. true
3. true
4. false
5. false

90

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 7 Specific Task Functions

7.1 Specific Task Functions

7.1.1 Prerequisite Material
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Critical to this module is the review of two Connexions modules:

1. m 18861 Titled: Modularization and C++ Program Layout
2. m 19145 Titled: Program Control Functions

You should review these materials before proceeding. If you are viewing this module
on-line, links to these items are in the "Links" box to your right.

7.1.2 General Concept
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Program Control functions which might have similar identifier names usually perform
slightly different tasks in one program to another. Looking at the organizational chart
or hierarchy chart for two companies, both might have a vice president of production,
but producing automobiles is different than producing ice cream. Similar but different.
As you go down deeper into an organization you might find the job title of security
guard. Notice that the security guard at the automobile plant and the security guard at
the ice cream plant have exactly the same job. In fact, they are most likely
interchangeable. Within programming when a task gets specific it might be useable in
several programs. The calculation of leap year is a good example. Needed for the

verifcation of dates, is there or is there not a 29th of February for this year. Needed in
thousands of programs.

7.1.3 Specifc Task Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

To create good Specifc Task functions you need to do all communication needed via
parameter passing. Thus all programs that will use the function will communicate in
precisely the same way. In our leap year example, you would communicate into the
function the year and the function would return the communication of true or false;
meaning it is a leap year and there is a 29th of February (true) or it is not a leap year
(false).

The ability to modularize our program into specific task functions means that we can
write the specific task function once making sure it works correctly, then reuse it over

91

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

and over in many programs. As you can guess there is a balance. Most programs will
have some program control functions and some specific task functions. The key to
deciding if the function should be a specific task function is usually rooted in the
uniqueness of the task so that it can be used in many programs. Specifc task functions
once created are usually placed into a user defined library then shared with others for
use in many programs.

7.1.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 7.1: user defined library

A file containing specific task functions created by individuals to be used in many
programs.

7.2 Global vs Local Data Storage

7.2.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The concept of global and local data storage is usually tied to the concept of scope.
Scope is the area of the program where an item (be it variable, constant, function, etc.)
that has an identifier name is recognized. In our discussion we will use a variable and
the place within a program where the variable is defined determines its scope.

Global scope (and by extension global data storage) occurs when a variable is defined
"outside of a function". When compiling the program it creates the storage area for
the variable within the program's data area as part of the object code. The object
code has a machine code piece, a data area and linker resolution instructions.
Because the variable has global scope it is available to all of the functions within your
source code. It can even be made available to functions in other object modules that
will be linked to your code; however we will forgo that explaination now. A key
wording change should be learned at this point. Although the variable has global
scope, technically it is available only from the point of definition to the end of the
program source code. That is why most variable with global scope are placed near
the top of the source code before any functions. This way they are available to all of
the functions.

Local scope (and by extension local data storage) occurs when a variable is defined
"inside of a function". When compiling, the compiler creates machine instructions that
will direct the creation of storage locations on an area known as the stack which is
part of the computer's memory. These memory locations exist until the function
completes its task and returns to its calling function. In assembly language we talk
about items being pushed onto the stack and popped of the stack when the function
terminates. Thus, the stack is a reusable area of memory being used by all functions

92

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

and released as functions terminate. Although the variable has local scope, technically
it is available only from the point of definition to the end of the function. The
parameter passing of data items into a function establishes them as local variables.
Additionally, any other variables or constants needed by the function usually occur
near the top of the function definition so that they are available during the entire
execution of the function's code.

Scope is an important concept to modularization. Program Control functions usually
use global scope for variables and constants placing them near the top of the program
before any functions. Specifc Task functions use only local scope variables by passing
data as needed into the function with parameter passing and creating local variables
and constants as needed. Any information that needs to be communicated back to the
calling function is again done via parameter passing. This closed communications
model that passes all data into and out of a function creates an important
predecessor concept for encapsulation which is used in object oriented
programming.

7.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 7.2: global scope

Data storage defined outside of a function.

Definition 7.3: local scope

Data storage defined inside of a function.

Definition 7.4: data area

A part of an object code file used for storage of data.

Definition 7.5: stack

A part of the computer's memory used for storage of data.

Definition 7.6: scope

The area of a source code file where an identifier name is recognized.

7.3 Using a Header File for User Defned Specifc Task
Functions

7.3.1 Concept: User Defned Specifc Task Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Most companies have certain tasks that are unique to their company. Collectively the
programming staf may decide to build several functions and organize them into one
or more user libraries. Specifc task functions are often built using a testing shell

93

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

program. The sole purpose of the testing shell program is to create the specific task
functions and to test them to insure that they are working properly. Think of a clam,
its shell surrounds the important part, the pearl. A testing shell program surrounds
the specific task function (the important part). Usually the testing shell program will be
used to create several functions that will be placed into a user defined library. The
process fows as follows:

1. The testing shell program with the specific task functions is built and thoroughly
tested.

2. A copy of the testing shell source code is saved as the header file that once
modifed will be placed in the user library. You delete the main part of the
program leaving a comments area, any needed include file references and the
specific task functions.

Figure 7.1 Creating a header file from a copy of the testing shell.

3. Another copy of the testing shell source code is saved as the prototypes file. This
is a text file that retains only the prototypes for the functions that were placed
into the header file. The functions should be using meaningful identifier names,
thus the prototypes should provide adequate information to others on how to
call the function with appropriate parameter passing.

94

Figure 7.2 Creating a prototypes file from a copy of the testing shell.

4. Another copy of the testing shell source code is saved as the verify header
program. You delete the functions prototypes and definitions then provide an
include that points to the header file. This program is compiled and run to make
sure the header file is working properly.

Figure 7.3 Creating a verify header file from a copy of the testing shell.

95

A good way to understand the concept is to review the four files described above that
have been created by a programmer. We will be using the C++ programming
language, however the code is easy to understand and will serve our needs well at
explaining the concepts; even if you are not familiar with C++.

7.3.2 Demonstration Using C++

7.3.2.1 Creating a Folder or Sub-Folder for the Four Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Monitor Header

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

7.3.2.2 Download the Four Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following files to your storage device in the appropriate
folder.

Monitor_Testing_Shell.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/54
98/media/Monitor_Testing_Shell.cpp.txt)

 udst_monitor.h (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/uds
t_monitor.h.txt)

 udst_monitor_prototypes.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/54
98/media/udst_monitor_prototypes.txt)

Monitor_Verify_Header.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/54
98/media/Monitor_Verify_Header.cpp)

7.3.2.3 Study the Files Collectively to Understand the Concepts

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Take a few moments to review the files in conjunction with the concept discussion
above. You should compile and run the Monitor Testing Shell.cpp program.

96

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/Monitor_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/Monitor_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/Monitor_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/udst_monitor.h.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/udst_monitor.h.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/udst_monitor.h.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/udst_monitor_prototypes.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/udst_monitor_prototypes.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/udst_monitor_prototypes.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/Monitor_Verify_Header.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/Monitor_Verify_Header.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5498/media/Monitor_Verify_Header.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

7.3.2.4 Creating a Folder or Sub-Folder for your User Library

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to create a folder that will
hold the header files you create. We suggest that you create the folder in conjunction
with the compiler/IDE software. If you were using the Bloodshed Dev-C++ 5
compiler/IDE you most likely installed the compiler/IDE software at: C:\Dev-Cpp\ if
you installed it on your machine or at: DriveLetter:\Dev-Cpp\ (where the DriveLetter
is the drive that represents your flash drive) if you installed it on a flash drive. We
suggest that you create a sub-folder at that location named:

• user library

The path of: C:\Dev-Cpp\user library would be created as the location for your user
library if using your machine installation. You can literally place it anywhere and name
the library any name, but once you decide on a place and name; you do not want to
move or rename the folders.

7.3.2.5 Placing the Header File into the User Library

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You need to copy the udst monitor.h file placing it into the user library folder just
created. As you can guess the udst stands for user defined specific task. The functions
within this header file would be used to control the interaction a user has with the
monitor. The .h is a convention of the C++ programming language and indicates a
header file. Thus the identifier name for the header file is very meaningful and
descriptive.

7.3.2.6 Verify that the Header File Works Properly

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Review the Monitor Verify Header.cpp source code file and note the two include
commands are dif ferent.

1. The Standard Library uses a less than and a greater than to bracket the Standard
Library name of: iostream

2. The user library uses quote marks to bracket the location of the header file. This
identifes to the complier that we are specifying the exact file we want. We provide
a complete file specification (drive, path information, filename and extension).

3. Because this item is technically a string within C++, we must use two back slashes
between the drive, path(s) and filename. This is because the first back slash
assumes that the next character is an escape code and if we really don't want an
escape code but a back slash, the second back slash says no I wanted a back

97

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

slash.This string: "C:\\Dev-Cpp\\user library\\udst monitor.h" will be interpreted
to mean: C:\Dev-Cpp\user library\udst monitor.h

Depending on what drive you are using, what path folder structure you are using and
what you called your folder; you may need to correct the include reference within the
source code so that it properly references the header file.

Compile and run the Monitor Verify Header.cpp program. Note: It should work exactly
as the Monitor Testing Shell.cpp program.

7.3.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 7.7: udst

User Defned Specifc Task

Definition 7.8: testing shell

A program used to create specific task functions.

Definition 7.9: header file

A file that contains items we want to have included toward the top of our source code.

7.4 Practice 7: Specifc Task Functions

7.4.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Given a testing shell program already coded and tested, create a user defined
specific task header file, a user defined specific task prototypes document and a
source code program to verify that the header file works properly.

7.4.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 07

(***
See the file at <http://cnx.org/content/m22459/latest/index.html>
***)

98

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

7.4.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 7.4.1

Answer the following statements as either true or false:

1. Scope refers to a brand of mouth wash.
2. User defined specific task functions are usually placed into a user defined library.
3. Local and global data storage is associated with the concept of scope.
4. Creating a header file for user defined specific task functions is a difficult task.
5. The stack is part of the computer's memory used for storage of data.

7.4.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

7.4.5 Lab Assignment

7.4.5.1 Creating a Folder or Sub-Folder for Chapter 07 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 07 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

7.4.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab 07 Testing Shell.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5510/
media/Lab_07_Testing_Shell.cpp.txt)

99

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5510/media/Lab_07_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5510/media/Lab_07_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5510/media/Lab_07_Testing_Shell.cpp.txt

7.4.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Navigate to your sub-folder: Chapter 07. Compile and run the Lab 07 Testing Shell
source code. Note: This program uses an include file that points to the "udst
monitor.h" file as explained in Chapter 7 materials.

• Following same process as shown in the module "Using a Header File for User
Defned Specifc Task Functions" that is within the Chapter 7 materials; make the
following files: udst us to metric.h and udst us to metric prototypes.txt and
Lab 07 Verify Header.cpp

• Copy the header file to your user library, then build (compile and run) your verify
header program.

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

7.4.6 Problems

7.4.6.1 Problem 07a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Create the pseudocode to solve the following specific task function:

Problem: An interior designer always needs to calculate the area of a room to
determine the amount of foor covering needed (usually carpet). The rooms are
rectangular with the dimensions measured in feet (with decimal fractions). The
function however needs to return square yards. Hint: There are 3 lineal feet to a yard.

7.4.6.2 Problem 07b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Create test data the following specific task function:

Problem: An interior designer always needs to calculate the area of a room to
determine the amount of floor covering needed (usually carpet). The rooms are
rectangular with the dimensions measured in feet (with decimal fractions). The
function however needs to return square yards. Hint: There are 3 lineal feet to a yard.

100

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

7.4.7 Solutions to Exercises in Chapter 7
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 7: Specific Task Functions

Solution to Exercise 7.4.1

Answers:

1. false - Although Scope is a brand of mouth wash; we are looking for the computer
related definition.

2. true
3. true
4. false - It may seem difficult at first, but with a little practice it is really quite easy.
5. true

101

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 8 Standard Libraries

8.1 Standard Libraries

8.1.1 Overview of Standard Libraries
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many common or standard functions, whose definitions have been written, are
ready to be used in any program. They are organized into a group of functions (think
of them as several books) and are collectively called a Standard Library There are
many function organized into several libraries For example, within C++ many math
functions exist and have been coded (and placed into libraries). These functions were
written by programmers and tested to insure that they work properly. In most cases
the functions were reviewed by several people to double and triple check to insure
that they did what was expected. We have the advantage of using these functions with
confidence that they will work properly in our programs, thus saving us time and
money.

A main program must establish the existence of functions used in that program.
Depending on the programming language, there is a formal way to:

1. define a function
2. declare a function (a prototype is a declaration to a compiler)
3. call a function

When we create functions in our program, we usually see them in the following order
in our source code listing:

1. declare the function (prototype)
2. call the function
3. define the function

When we use functions created by others that have been organized into library, we
include a header file in our program which contains the prototypes for the functions.
Just like functions that we create, we see them in the following order in our source
code listing:

1. declaring the function (prototype provided in the include file)
2. call the function (with parameter passing of values)
3. define the function (it is either defined in the header file or the linker program

provides the actual object code from a Standard Library object area)

In most cases, the user can look at the prototype and understand exactly how the
communications (parameter passing) into and out of the function will occur when the
function is called. Let's look at the math example of absolute value. The prototype is:

102

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

int abs(int number);

Not wanting to have a long function name the designers named it: abs instead of
"absolute". This might seem to violate the identifier naming rule of using meaningful
names, however when identifier names are established for standard libraries they are
often shortened to a name that is easily understood by all who would be using them.
The function is of data type int, meaning that the function will return an integer value.
It is obvious that the integer value returned is the answer to the question, "What is the
absolute value of the integer that is being passed into the function". This function is
passed only one value; an int number. If I had two integer variables named apple
and banana; and I wanted to store the absolute value of banana into apple; then a line
of code to call this function would be:

apple = abs(banana);

Let's say it in English, pass the function absolute the value stored in variable banana
and assign the returning value from the function to the variable apple. Thus, if you
know the prototype you can usually properly call the function and use its returning
value (if it has one) without ever seeing the definition of the code (i.e. the source code
that tells the function how to get the answer; that is written by someone else; and
either included in the header file or compiled and placed into an object library; and
linked during the linking step of the Integrated Development Environment (IDE).

8.1.2 Demonstration Program in C++

8.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

8.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the

103

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

program(s). Study the source code and/or other file(s) in conjunction with other
learning materials.

 Demo_Standard_Libraries (http://www.opentextbooks.org.hk/system/files/resource/5/5267/552
1/media/Demo_Standard_Libraries.cpp)

 Demo_Standard_Libraries_Listing (http://www.opentextbooks.org.hk/system/files/resource/5/5
267/5521/media/Demo_Standard_Libraries_Listing.txt)

8.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 8.1: Standard Library

A set of specific task functions that have been added to the programming language for
universal use.

Definition 8.2: confdence

The reliance that Standard Library functions work properly.

Definition 8.3: abs

A function within the cmath standard library in C++ which stands for absolute.

8.2 Practice 8: Standard Libraries

8.2.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Given a testing shell program already coded and tested, add another specific task
function, and test it, then create a user defined specific task header file, a user
defined specific task prototypes document and a source code program to verify
that the header file works properly.

8.2.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 08

(***
See the file at <http://cnx.org/content/m22460/latest/index.html>
***)

104

http://www.opentextbooks.org.hk/system/files/resource/5/5267/5521/media/Demo_Standard_Libraries.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5521/media/Demo_Standard_Libraries.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5521/media/Demo_Standard_Libraries.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5521/media/Demo_Standard_Libraries_Listing.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5521/media/Demo_Standard_Libraries_Listing.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5521/media/Demo_Standard_Libraries_Listing.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

8.2.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 8.2.1

Answer the following statements as either true or false:

1. The standard library is a set of specific task functions that have been added to the
programming language for universal use.

2. Programmers should not have confdence that standard library functions work
properly.

3. It would be easier to write programs without using specific task functions.

8.2.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

8.2.5 Lab Assignment

8.2.5.1 Creating a Folder or Sub-Folder for Chapter 08 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 08 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

8.2.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_08_Testing_Shell.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/553
0/media/Lab_08_Testing_Shell.cpp.txt)

105

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5530/media/Lab_08_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5530/media/Lab_08_Testing_Shell.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5530/media/Lab_08_Testing_Shell.cpp.txt

8.2.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Navigate to your sub-folder: Chapter 08. Compile and run the Lab 08 Testing Shell
source code. Note: This program uses an include file that points to the "udst
monitor.h" file as explained in Connexions Chapter 7 materials.

• You need to add another function to this testing shell titled: area triangle that is
to calculate the area of a triangle. Define the function, prototype it, and within the
function main add an area for calling the function (similar to the existing
functions with test data). Be confdent that it is working properly.

• Following same process as shown in the Connexions module "Using a Header File
for User Defned Specifc Task Functions" that is within the Chapter 7 materials;
make the following files: udst geo area.h and udst geo area prototypes.txt and
Lab 08 Verify Header.cpp

• Copy the header file to your user library, then build (compile and run) your verify
header program.

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

8.2.6 Problems

8.2.6.1 Problem 08a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Write the C++ code to do the following specific task function.

Example 8.1: pseudocode

Function area regular hexagon

Pass In: side

Calculate: side times side times 3 times the square root of 0.75

Pass Out: the calculation

Endfunction

8.2.7 Solutions to Exercises in Chapter 8
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 8: Standard Libraries

106

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Solution to Exercise 8.2.1

Answers:

1. true
2. false
3. false

107

Chapter 9 Character Data, Sizeof,
Typedef, Sequence

9.1 Character Data Type

9.1.1 Overview of the Character Data Type
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The character data type basically represents individual or single characters.
Characters comprise a variety of symbols such as the alphabet (both upper and lower
case) the numeral digits (0 to 9), punctuation, etc. All computers store character data
in a one byte feld as an integer value. Because a byte consists of 8 bits, this one byte
feld has 28 or 256 possibilities using the positive values of 0 to 255.

Most microcomputers use the ASCII (stands for American Standard Code for
Information Interchange and is pronounced "ask-key") Character Set which has
established values for 0 to 127. For the values of 128 to 255 they usually use the
Extended ASCII Character Set. When we hit the capital A on the keyboard, the
keyboard sends a byte with the bit pattern equal to an integer 65. When the byte is
sent from the memory to the monitor, the monitor converts the integer value of 65 to
into the symbol of the capital A to display on the monitor.

The character data type attributes include:

108

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C++
Reserved
Word

char

Represent Single characters

Size 1 byte

Normal
Signage

Unsigned (positive values only)

Domain
(Values
Allowed)

Values from 0 to 127 as shown in the standard ASCII
Character Set, plus values 128 to 255 from the
Extended ASCII Character Set

C++
syntax
rule

Single quote marks _ Example: 'A'

9.1.2 Demonstration Program in C++

9.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

9.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the soruce code file(s) in conjunction with other learning materials.

109

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

 Demo_Character_Data_Type.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/5540/media/Demo_Character_Data_Type.cpp.txt)

9.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 9.1: character

A data type representing single text characters like the alphabet, numeral digits,
punctuation, etc.

Definition 9.2: ASCII

American Standard Code for Information Interchange

Definition 9.3: single quote marks

Used to create character type data within the C++ programming language.

9.2 Sizeof Operator

9.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Every data item, constants and variables, not only have a data type, but the data type
determines how many bytes the item will use in the memory of the computer. The size
of each data type varies with the complier being used and the computer. This effect is
known as being machine dependent. Additionally, there have been some size
changes with upgrades to the language. In "C" the int data type was allocated 2 bytes
of memory storage on an Intel compatible central processing unit (cpu) machine. In
"C++" an int is allocated 4 bytes.

There is an operator named "sizeof (...)" that is a unary operator, that is it has only one
operand. The operand is to the right of the operator and is placed within the
parentheses if it is a data type. The operand may be any data type (including those
created by typedef). If the operand is an identifier name it does not need to go inside
a set of parentheses. It works for both variable and memory constant identifier
names. This operator is unique in that it performs its calculation at compile time for
global scoped items and at run time for local scoped items. Examples:

cout << "The size of an integer is: " << sizeof (int);

The compiler would determine the byte size of an integer on the specific machine and
in essence replaces the sizeof operator with a value. Integers are usually 4 bytes long,
thus the line of code would be changed to:

110

http://www.opentextbooks.org.hk/system/files/resource/5/5267/5540/media/Demo_Character_Data_Type.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5540/media/Demo_Character_Data_Type.cpp.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5540/media/Demo_Character_Data_Type.cpp.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

cout << "The size of an integer is: " << 4;

If you place an identi_er name that represents a data storage area (variable or
memory constant), it looks at the definition for the identifier name.

Note: the parentheses are not needed and often not included for an identifier
name.

Example 9.1: sizeof with a Variable

double money; // variable set up with initialization

then later on in the program

cout << "The size of money is: " << sizeof money;

The compiler would determine the byte size of money by looking at the definition
where it indicates that the data type is double. The double data type on the specific
machine (usually 8 bytes) would replace the code and it would become:

cout << "The size of money is: " << 8;

9.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 9.4: sizeof

An operator that tells you how many bytes a data type occupies in storage.

9.3 Typedef -An Alias

9.3.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The typedef statement allows the programmer to create an alias, or synonym, for an
existing data type. This can be useful in documenting a program. The C++
programming language syntax is:

typedef <the real data type><the alias identifier name>;

111

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Let's say a programmer is using a double data type to store the amount of money that
is being used for various purposes in a program. He might define the variables as
follows:

Example 9.2: Regular Definition of Variables

double income;

double rent;

double vacation;

However, he might use the typedef statement and define the variables as follows:

Example 9.3: Using typedef when Defning Variables

typedef double cash;

the typedef must be defined before its use

cash income;

cash rent;

cash vacation;

The typedef statement is not used very often by beginning programmers. It usually
creates more confusion than needed, thus stick to using the normal data types at first.

9.3.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 9.5: typedef

Allows the programmer to create an alias, or synonym, for an existing data type.

9.4 Sequence Operator

9.4.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The sequence (or comma) operator is used to separate items. It has several uses, four
of which are listed then demonstrated:

1. To separate identifier names when declaring variables or constants
2. To separate several parameters being passed into a function
3. To separate several initialization items or update items in a for loop
4. Separate values during the initialization of an array

This first example is often seen in textbooks, but this method of declaring variables is
not preferred. It is difficult to quickly read the identifier names.

112

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

int pig, dog, cat, rat;

The following vertical method of declaring variables or constants is preferred.

Example 9.4: Preferred Vertical Method of Defning Variables

int pig;

int dog;

int cat;

int rat;

The data types and identifier names (known as parameters) are separated from each
other. This example is a function prototype. double area trapezoid(double base,
double height, double top); In the syntax of a for loop you have three parts each
separated by a semi-colon. The first is the initial ization area which could have more
than one initialization. The last is the update area which could have more than one
update. Mutiple initializations or updates use the comma to separate them. This
example is only the first line of a for loop.

for(x =l, y =5; x < l5; x++, y++)

The variable ages is an array of integers. Initial values are assigned using block
markers with the values separated from each other using a comma.

int ages[J = {2,4,6,29,32};

9.4.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 9.6: sequence

An operator used to separate multiple occurrences of an item.

9.5 Practice 9: Character Dataf Sizeoff Typedeff
Sequence

9.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

113

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Given appropriate documents produced by a System Analyst, create planning
documents (pseudocode and test data), then a source code program that
accomplishes the goals of the program.

9.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 09

(***
See the file at <http://cnx.org/content/m22461/latest/index.html>
***)

9.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 9.5.1

Answer the following statements as either true or false:

1. The character data type in C++ uses the double quote marks, like: char grade "A";
2. Sizeof is an operator that tells you how many bytes a data type occupies in

storage.
3. Typedef helps people who can't hear and is one of the standard accommodation

features of a programming language for people with a learning disability.
4. The sequence operator should be used when defning variables in order to save

space.
5. Programming can be both enjoyable and frustrating.

9.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

9.5.4.1 Lab Assignment

9.5.4.1.1 Creating a Folder or Sub-Folder for Chapter 09 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as

114

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_09 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

9.5.4.1.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_09_Narrative_Description (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5558/media/Lab_09_Narrative_Description.txt)

 Lab_09_Aerial_View_Center_Pivot_Irrigation (http://www.opentextbooks.org.hk/system/files/r
esource/5/5267/5558/media/Lab_09_Aerial_View_Center_Pivot_Irrigation.jpg)

 Lab_09_Hierarchy_Chart (http://www.opentextbooks.org.hk/system/files/resource/5/5267/555
8/media/Lab_09_Hierarchy_Chart.jpg)

9.5.4.1.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Review the Connexions module "Systems Development Life Cycle" within the
Chapter 1 materials. Think of yourself as a programmer assigned to a project
during the Implementation phase with your professor as the System Analyst.

• Navigate to your sub-folder: Chapter 09. Review the first two items provided by
the system analyst which he produced during the Design phase of the Systems
Development Life Cycle. These two documents historically would have been
printed and be placed into a program documentation folder. The items you
produce in creating the program would be added to the folder. However, shifting
to our paperless view of the world, today these items might be created and
stored electronically in electronic folders (which is basically what we are doing by
using our sub-folder titled: Chapter 09). The third item, the hierarchy chart, would
normally be produced by the programmer. However, given your inexperience, the
system analyst has created it for you. Make sure you understand what the
program is to do. Any questions ask the system analyst (aka your professor).

• NOTE: The narrative description for this lab assignment describes how farmers in
the mid-west part of the United States irrigate a piece of land using a circular
irrigation system. This practice also known to as center pivot irrigation is not
unique to the United States. Google "map Qatar", click on the map and switch to
the "Satellite" view, zoom in and notice that there are several spots in this small
middle eastern country where this type of irrigation is being used. "These systems

115

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Aerial_View_Center_Pivot_Irrigation.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Aerial_View_Center_Pivot_Irrigation.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Aerial_View_Center_Pivot_Irrigation.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Hierarchy_Chart.jpg
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5558/media/Lab_09_Hierarchy_Chart.jpg
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

are found and used in all parts of the world..." which supports the
appropriateness of this programming problem to all students.

Note: In your pseudocode document you do not need to create any pseudocode
for the Standard Library or User Library functions. Just indicate that you call
them from the Program Control functions. If needed, review the Connexions
module "Pseudocode Examples for Functions" within the Chapter 6 materials.
HINT: Copying the pseudocode and test data files from the Chapter 06 folder
might be a good way to start building these items.

• Design the program and create your test data by building a Lab 09
Pseudocode.txt file and a Lab 09 Test Data.txt file. WARNING: Don't touch the
compiler/IDE. Don't start by creating the source code file. Creating the source
code then producing the planning documentation afterwards is a bad habit that
beginning programmers often acquire.

• After you have successfully planned the document and created your test data;
create the source code file naming it: Lab 09.cpp HINTS: Using a previous source
code file as your starting file makes sense. The file in the Chapter 06 folder might
be a good start. You might want to copy some of the include information from the
Verify Header code in Chapter 08 into your Lab 09 source code file.

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

9.5.4.2 Problems

9.5.4.2.1 Problem 09a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The sequence operator can be used when declaring multiple identifier names for
variables or constants of the same data type. Is this a good or bad programming habit
and why?

9.5.4.3 Solutions to Exercises in Chapter 9

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 9: Character Data, Sizeof, Typedef, Sequence

Solution to Exercise 9.5.1 Answers:

1. false
2. true
3. false

116

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4. false
5. true

117

Chapter 10 Introduction to
Structured Programming

10.1 Structured Programming

10.1.1 Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

One of the most important concepts of programming is the ability to control a
program so that different lines of code are executed or that some lines of code are
executed many times. The mechanisms that allow us to control the fow of execution
are called control structures. Flowcharting is a method of documenting (charting) the
fow (or paths) that a program would execute. There are four main categories of
control structures:

• Sequence Very boring. Simply do one instruction then the next and the next. Just
do them in a given sequence or in order listed. Most lines of code are this.

• Selection This is where you select or choose between two or more fows. The
choice is decided by asking some sort of question. The answer determines the
path (or which lines of code) will be executed.

• Iteration Also known as repetition, it allows some code (one to many lines) to be
executed (or repeated) several times. The code might not be executed at all
(repeat it zero times), executed a fxed number of times or executed indefnitely
until some condition has been met. Also known as looping because the
fowcharting shows the fow looping back to repeat the task.

• Branching A control structure that allows the fow of execution to jump to a
different part of the program. This category is rarely used in modular structured
programming.

All high-level programming languages have control structures. All languages have the
first three categories of control structures (sequence, selection, and iteration). Most
have the if thenelse structure (which belongs to the selection category) and the while
structure (which belongs to the iteration category). After these two basic structures
there are usually language variations.

The concept of structured programming started in the late 1960's with an article by
Edsger Dijkstra. He proposed a "go to less" method of planning programming logic
that eliminated the need for the branching category of control structures. The topic
was debated for about 20 years. But ultimately "By the end of the 20th century nearly
all computer scientists were convinced that it is useful to learn and apply the concepts
of structured programming.

118

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

10.1.1.1 Introduction to Selection Control Structures

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The basic attribute of a selection control structure is to be able to select between two
or more alternate paths. This is described as either two-way selection or multiway
selection. A question using Boolean concepts usually controls which path is selected.
All of the paths from a selection control structure join back up at the end of the
control structure, before moving on to the next lines of code in a program.

We have mentioned that the if then else control structure belongs to the selection
category and is a two-way selection.

Example 10.1: if then else control structure

if (age > l7)

{

cout « "You can vote.";

}

else

{

cout « "You can't vote.";

}

10.1.1.2 Introduction to Iteration Control Structures

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The basic attribute of an iteration control structure is to be able to repeat some lines
of code. The visual display of iteration creates a circular loop pattern when
flowcharted, thus the word "loop" is associated with iteration control structures.
Iteration can be accomplished with test before loops, counting loops, and test after
loops. A question using Boolean concepts usually controls how long the loop will
execute.

We have mentioned that the while control structure belongs to the iteration category
and is a test before loop.

Example 10.2: while control structure

counter = 0;

while (counter < 5)

{

cout « "\nI love computers!";

counter ++;

119

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

}

10.1.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 10.1: control structures

Mechanisms that allow us to control the fow of execution within a program.

Definition 10.2: sequence

A control structure where you do the items in the sequence listed.

Definition 10.3: selection

A control structure where you select between two or more choices.

Definition 10.4: iteration

A control structure that allows some lines of code to be executed many times.

Definition 10.5: branching

A control structure that allows the fow of execution to jump to a different part of the
program.

Definition 10.6: structured programming

A method of planning programs that avoids the branching category of control
structures.

10.2 Pseudocode Examples for Control Structures

10.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

No standard for pseudocode syntax exists. However, there are some commonly
followed conventions to help make pseudocode written by one programmer easily
understood by another programmer. Most of these conventions follow two concepts:

• Use indentation to show the action part of a control structure
• Use an ending phrase word to end a control structure

The sequence control structure simply lists the lines of pseudocode. The concern is
not with the sequence category but with selection and two of the iteration control
structures. The following are commonly used ending phrase-words:

120

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Control Structure Ending Phrase Word

If then Else Endif

Case Endcase

While Endwhile

For Endfor

Table 10.1 Examples of common ending phrase-words

The Do While and Repeat Until iteration control structures don't need an ending
phrase-word. We simply use the first word, then the action part, followed by the
second word with the test expression. Here are some examples:

10.2.2 Selection Control Structures
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 10.3: pseudocode: If then Else

If age > 17

Display a message indicating you can vote.

Else

Display a message indicating you can't vote.

Endif

Example 10.4: pseudocode: Case

Case of age

0 to 17 Display "You can't vote."

18 to 64 Display "You're in your working years."

65 + Display "You should be retired."

Endcase

10.2.3 Iteration (Repetition) Control Structures
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 10.5: pseudocode: While

121

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

count assigned zero

While count < 5

Display "I love computers!"

Increment count

Endwhile

Example 10.6: pseudocode: For

For x starts at 0, x < 5, increment x

Display "Are we having fun?"

Endfor

Example 10.7: pseudocode: Do While

count assigned five

Do

Display "Blast off is soon!"

Decrement count

While count > zero

Example 10.8: pseudocode: Repeat Until

count assigned five

Repeat

Display "Blast off is soon!"

Decrement count

Until count < one

10.3 Flowcharting

10.3.1 Flowcharting Symbols

10.3.1.1 Terminal

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The rounded rectangles, or terminal points, indicate the fowchart's starting and
ending points.

122

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.1 Flowchart's starting and ending points

10.3.1.2 Process

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The rectangle depicts a process such as a mathematical computation, or a variable
assignment.

123

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.2 The rectangle depicts a process

Note: the C++ language equivalent is the statement.

10.3.1.3 Input/Output

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The parallelograms designate input or output operations.

124

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.3 The parallelograms designate input or output operations

Note: the C++ language equivalent is cin or cout.

10.3.1.4 Connectors

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Sometimes a fowchart is broken into two or more smaller fowcharts. This is usually
done when a fowchart does not ft on a single page, or must be divided into sections. A
connector symbol, which is a small circle with a letter or number inside it, allows you
to connect two fowcharts on the same page. A connector symbol that looks like a
pocket on a shirt, allows you to connect to a fowchart on a different page.

125

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.4 On-Page Connector

Figure 10.5 Off-Page Connector

126

10.3.1.5 Decision

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The diamond is used to represent the true/false statement being tested in a decision
symbol.

Figure 10.6 The diamond is used to represent the true/false statement

10.3.1.6 Module Call

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A program module is represented in a fowchart by rectangle with some lines to
distinguish it from process symbol. Often programmers will make a distinction
between program control and specific task modules as shown below.

Note: C++ equivalent is the function.

Local module: usually a program control function.

127

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.7 Rectangle with a line

Library module: usually a specific task function.

Figure 10.8 Rectangle with some lines

128

10.3.1.7 Flow Lines

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Note: The default flow is left to right and top to bottom (the same way you read
English). To save time arrowheads are often only drawn when the flow lines go
contrary the normal.

Figure 10.9 The default flow

10.3.2 Examples
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We will demonstrate various fowcharting items by showing the fowchart for some
pseudocode.

10.3.3 Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 10.9: pseudocode: Function with no parameter passing

Function clear monitor

Pass In: nothing

129

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Direct the operating system to clear the monitor

Pass Out: nothing

Endfunction

Figure 10.10 Function clear monitor

Example 10.10: pseudocode: Function main calling the clear monitor function

Function main

Pass In: nothing

Doing some lines of code

Call: clear monitor

Doing some lines of code

Pass Out: value zero to the operating system

Endfunction

130

Figure 10.11 Function main

10.3.3.1 Sequence Control Structures

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The next item is pseudocode for a simple temperature conversion program. This
demonstrates the use of both the on-page and of-page connectors. It also illustrates
the sequence control structure where nothing unusually happens. Just do one
instruction after another in the sequence listed.

Example 10.11: pseudocode: Sequence control structure

Filename: Solution_Lab_04_Pseudocode.txt

Purpose: Convert Temperature from Fahrenheit to Celsius

Author: Ken Busbee; © 2008 Kenneth Leroy Busbee

Date: Dec 24, 2008

Pseudocode = IPO Outline

input

display a message asking user for the temperature in Fahrenheit

get the temperature from the keyboard

processing

calculate the Celsius by subtracting 32 from the Fahrenheit

temperature then multiply the result by 5 then

divide the result by 9. Round up or down to the whole number.

HINT: Use 32.0 when subtracting to ensure floating-point accuracy.

131

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

output

display the celsius with an appropriate message

pause so the user can see the answer

Figure 10.12 Sequence control structure

Figure 10.13 Sequence control structured continued

132

10.3.3.2 Selection Control Structures Example 10.12: pseudocode: If
then Else

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If age > l7

Display a message indicating you can vote.

Else

Display a message indicating you can't vote.

Endif

Figure 10.14 If then Else control structure

Example 10.13: pseudocode: Case

Case of age

0 to 17 Display "You can't vote."

18 to 64 Display "Your in your working years."

65 + Display "You should be retired."

Endcase

133

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.15 Case control structure

10.3.3.3 Iteration (Repetition) Control Structures

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 10.14: pseudocode: While

count assigned zero

While count < 5

Display "I love computers!"

Increment count

Endwhile

134

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.16 While control structure

Example 10.15: pseudocode: For

For x starts at 0, x < 5, increment x

Display "Are we having fun?"

Endfor

The for loop does not have a standard fowcharting method and you will find it done in
different ways. The for loop as a counting loop can be fowcharted similar to the while
loop as a counting loop.

135

Figure 10.17 For control structure

Example 10.16: pseudocode: Do While

count assigned five

Do

Display "Blast off is soon!"

Decrement count

While count > zero

136

Figure 10.18 Do While control structure

Example 10.17: pseudocode: Repeat Until

count assigned five

Repeat

Display "Blast off is soon!"

Decrement count

Until count < one

137

Figure 10.19 Repeat Until control structure

10.3.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 10.7: flowcharting

A programming design tool that uses graphical elements to visually depict the flow of
logic within a function.

Definition 10.8: process symbol

A rectangle used in flowcharting for normal processes such as assignment.

Definition 10.9: input/output symbol

A parallelogram used in flowcharting for input/output interactions.

Definition 10.10: decision symbol

A diamond used in flowcharting for asking a question and making a decision.

Definition 10.11: flow lines

Lines (sometimes with arrows) that connect the various fowcharting symbols.

138

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

10.4 Practice 10: Introduction to Structured
Programming

10.4.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Given pseudocode, write the C++ code for a program that uses if then else and
while control structures.

10.4.1.1 Memory Building Activities

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 10

(***
See the file at <http://cnx.org/content/m19692/latest/index.html>
***)

10.4.2 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 10.4.1

Answer the following statements as either true or false:

1. There are only two categories of control structures.
2. Branching control structures are rarely used in good structured programming.
3. If then else is a multiway selection control structure.
4. The while control structure is part of the branching category.
5. Pseudocode is better than flowcharting.

10.4.3 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

139

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

10.4.4 Lab Assignment

10.4.4.1 Creating a Folder or Sub-Folder for Chapter 10 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 10 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

10.4.4.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_10_Pseudocode (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5595/med
ia/Lab_10_Pseudocode.txt)

10.4.4.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file from the Lab 10 Pseudocode.txt file. Name it: Lab 10.cpp
• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

10.4.5 Problems

10.4.5.1 Problem 10a - Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

List the four categories of control structures and provide a brief description of each
category.

140

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5595/media/Lab_10_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5595/media/Lab_10_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5595/media/Lab_10_Pseudocode.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

10.4.6 Solutions to Exercises in Chapter 10
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 10: Introduction to Structured Programming

Solution to Exercise 10.4.1

Answers:

1. false
2. true
3. false
4. false
5. false

141

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 11 Two Way Selection

11.1 If Then Else

11.1.1 Introduction to Two Way Selection

11.1.1.1 Traditional Two Way Selection

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We are going to introduce the control structure from the selection category that is
available in every high level language. It is called the if then else structure. Asking a
question that has a true or false answer controls the if then else structure. It looks like
this:

if the answer to the question is true

then do this

else because it's false

do this

In most languages the question (called a test expression) is a Boolean expression.
The Boolean data type has two values true and false. Let's rewrite the structure to
consider this:

if expression is true

then do this

else because it's false

do this

Some languages use reserved words of: "if", "then" and "else". Many eliminate the
"then". Additionally the "do this" can be tied to true and false. You might see it as:

if expression is true

action true

else

action false

And most languages infer the "is true" you might see it as:

if expression

action true

142

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

else

action false

The above four forms of the control structure are saying the same thing. The else
word is often not used in our English speaking today. However, consider the following
conversation between a mother and her child.

Child asks, "Mommy, may I go out side and play?"

Mother answers, "If your room is clean then you may go outside and play or else you
may go sit on a chair for five minutes as punishment for asking me the question when
you knew your room was dirty."

Let's note that all of the elements are present to determine the action (or fow) that the
child will be doing. Because the question (your room is clean) has only two possible
answers (true or false) the actions are mutually exclusive. Either the child 1) goes
outside and plays or 2) sits on a chair for five minutes. One of the actions is executed;
never both of the actions.

11.1.1.2 One Choice -Implied Two Way Selection

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Often the programmer will want to do something only if the expression is true, that is
with no false action. The lack of a false action is also referred to as a "null else" and
would be written as:

if expression

action true

else

do nothing

Because the "else do nothing" is implied, it is usually written in short form like:

if expression

action true

11.1.2 Two Way Selection within C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The syntax for the if then else control structure within the C++ programming language
is:

143

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

if (expression)

statement;

else

statement;

Note: The test expression is within the parentheses, but this is not a function
call. The parentheses are part of the control structure. Additionally, there is no
semicolon after the parenthesis following the expression.

11.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 11.1: if then else

A two way selection control structure.

Definition 11.2: mutually exclusive

Items that do not overlap. Example: true and false.

11.2 Boolean Data Type

11.2.1 Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Boolean data type is also known as the logical data type and represents the
concepts of true and false. The name "Boolean" comes from the mathematician
George Boole; who in 1854 published: An Investigation of the Laws of Thought.
Boolean algebra is the area of mathematics that deals with the logical representation
of true and false using the numbers 0 and 1. The importance of the Boolean data type
within programming is that it is used to control programming structures (if then else,
while loops, etc.) that allow us to implement "choice" into our algorithms.

The Boolean data type has the same attributes and acts or behaves similarly in all
programming languages. The rules within the C++ programming language are:

144

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C++
Reserved
Word

bool

Represent Logical concepts of true and false

Size Usually 1 byte

Normal
Signage

Unsigned

Domain
(Values
Allowed)

0 meaning false, and 1 meaning true

C++
syntax
rule

true and false are reserved words that can be used as
values in expressions

C++
concept/
rule

Any value from any data type can be demoted into a
Boolean data type with zero representing false and all
non-zero values representing true.

Table 11.1 C++ Reserved Word and bool

Most control structures use a test expression that executes either selection (as in the:
if then else) or iteration (as in the while; do while; or for loops) based on the
truthfulness or falseness of the expression. Thus, we often talk about the Boolean
expression that is controlling the structure. Within many programming languages,
this expression must be a Boolean expression and is governed by a tight set of rules.
However, in C++ every data type can be used as a Boolean expression because the
value of any data type within C++ can be demoted into a Boolean value.

Within most languages, expressions that yield Boolean data type values are divided
into two groups. One group uses the relational operators within their expressions and
the other group uses logical operators within their expressions.

Within the C++ programming language the Boolean data type is one of the standard
or basic data types and is a member of the integer family.

11.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 11.3: Boolean

145

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

A data type representing the concepts of true and false.

Definition 11.4: test expression

An expression used to control programming structures.

11.3 Relational Operators

11.3.1 Overview of the Relational Operators
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The relational operators are often used to create a test expression that controls
program fow. This type of expression is also known as a Boolean expression because
they create a Boolean answer or value when evaluated. There are six common
relational operators that give a Boolean value by comparing (showing the relationship)
between two operands. If the operands are of different data types, implicit promotion
occurs to convert the operands to the same data type.

Definition 11.5: relational operator

An operator that gives a Boolean value by evaluating the relationship between two
operands. Operator symbols and/or names vary with different programming
languages. The C++ programming language operators with their meanings are:

C++ Operator Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equality (equal to)

!= inequality (not equal to)

Table 11.2 Boolean expressions

Exercise 11.3.1

Evaluate the following Boolean expressions:

1. 9 < 25
2. 9 < 3
3. 9 > 14

146

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4. 9 <= 17
5. 9 >= 25
6. 9 == 13
7. 9!= 13
8. 9!< 25

The answers to Boolean expressions within the C++ programming language are a
value of either 1 for true or 0 for false.

Be careful. In math you are familiar with using this symbol = to mean equal and =/ to
mean not equal. In the C++ programming language the =/ is not used and the symbol
means assignment.

11.3.2 Demonstration Program in C++

11.3.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

11.3.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Relational_Operators (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5
614/media/Demo_Relational_Operators.cpp)

11.4 Compound Statement

11.4.1 The Need for a Compound Statement
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

For illustration we will use the syntax for the if then else control structure within the
C++ programming language. However this problem generally exists for all control

147

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5614/media/Demo_Relational_Operators.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5614/media/Demo_Relational_Operators.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5614/media/Demo_Relational_Operators.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

structures within any language that requires the use of compound statements. The
syntax is:

if (expression)

statement;

else

statement;

Within the C++ programming language there can be only one statement listed as
the action part of a control structure. Often, we will want to do more than one
statement. This problem is overcome by creating a compound statement. The brace
symbols the opening { and the closing } -are used to create a compound statement.
For example:

if(expression)

{

statement;

statement;

}

else

{

statement;

statement;

}

Because programmers often forget that they can have only one statement listed as
the action part of a control structure; the C++ programming industry encourages
the use of indentation (to see the action parts clearly) and the use of compound
statements (braces), even if there is only one action. Thus:

if(expression)

{

statement;

}

else

{

statement;

}

By writing code in this manner, if the programmer modifes the code by adding more
statements to either the action true or the action false; they will not introduce either
compiler or logic errors. Using indentation and braces should become standard
practice for C++ programmers and programmers in any other language that require
the use of compound statements with the control structures.

148

11.4.2 Other Uses of a Compound Statement
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

"A compound statement is a unit of code consisting of zero or more statements. It is
also known as a block. The compound statement allows a group of statements to
become one single entry. You used a compound statement in your first program when
you formed the body of the function main. All C++ functions contain a compound
statement known as the function body.

A compound statement consists of an opening brace, optional declarations,
definitions, and statements, followed by a closing brace. Although all three are
optional, one should be present.

11.4.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 11.6: compound statement

A unit of code consisting of zero or more statements.

Definition 11.7: block

Another name for a compound statement.

11.5 Practice 11: Two Way Selection

11.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Given pseudocode, write the C++ code for a program that uses the if then else
control structure.

11.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 11

(***
See the file at <http://cnx.org/content/m19764/latest/index.html>

149

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

***)

11.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 11.5.1

Evaluate the following Boolean expressions:

1. 25 < 7
2. 3 < 7
3. 14 > 7
4. 17 <= 7
5. 25 >= 7
6. 13 == 7
7. 9 != 7
8. 5 !> 7

11.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Animated gif showing if then else

Click this link to watch the video:
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5623/media/video.m
p4
Manipulation_Data_Part_2 (http://www.opentextbooks.org.hk/system/files/resource/5/5267/562
3/media/Manipulation_Data_Part_2.pdf)

11.5.5 Lab Assignment

11.5.5.1 Creating a Folder or Sub-Folder for Chapter 11 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 11 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

150

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5623/media/video.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5623/media/video.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5623/media/Manipulation_Data_Part_2.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5623/media/Manipulation_Data_Part_2.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5623/media/Manipulation_Data_Part_2.pdf
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

11.5.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_11_Pseudocode (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5626/med
ia/Lab_11_Pseudocode.txt)

11.5.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file from the Lab_11_Pseudocode.txt file. Name it:
Lab_11.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

11.5.6 Problems

11.5.6.1 Problem 11a - Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Create a table with the six relational operators and their meanings.

11.5.6.2 Problem 11b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Explain why we are using the "if then else" to manipulate the input data in the
example below.

Example 11.1: C++ source code

cout << "nnEnter one side of the rectangle --------->: " ;

cin >> side1;

cout << "nnEnter the other side of the rectangle --->: " ;

cin >> side2;

if (side1 > side2)

151

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5626/media/Lab_11_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5626/media/Lab_11_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5626/media/Lab_11_Pseudocode.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

{

length = side1;

width = side2;

}

else

{

length = side2;

width = side1;

}

11.5.7 Solutions to Exercises in Chapter 11
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 11.3.1

Answers:

1. 1
2. 0
3. 0
4. 1
5. 0
6. 0
7. 1
8. Error, the "not less than" is not a valid operator.

Solutions to Practice 11: Two Way Selection

Solution to Exercise 11.5.1

Answers:

1. 0
2. 1
3. 1
4. 0
5. 1
6. 0
7. 1
8. Error, the "not greater than" is not a valid operator.

152

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 12 Multiway Selection

12.1 Nested If Then Else

12.1.1 Introduction to Mulitway Selection

12.1.1.1 Nested Control Structures

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We are going to first introduce the concept of nested control structures. Nesting is a
concept that places one item inside of another. Consider:

if expression

true action

else

false action

This is the basic form of the if then else control structure. Now consider:

if age is less than l8

you can't vote

if age is less than l6

you can't drive

else

you can drive else

you can vote

if age is less than 2l

you can't drink

else

you can drink

As you can see we simply included as part of the "true action" a statement and
another if then else control structure. We did the same (nested another if then else)
for the "false action". In our example we nested if then else control structures. Nesting
could have an if then else within a while loop. Thus, the concept of nesting allows the
mixing of the different categories of control structures.

153

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.1.1.2 Multiway Selection

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

One of the drawbacks of two way selection is that we can only consider two choices.
But what do you do if you have more than two choices. Consider the following which
has four choices:

if age equal to 18

you can now vote

else

if age equal to 39

you are middle aged

else

if age equal to 65

you can consider retirement

else

your age is unimportant

You get an appropriate message depending on the value of age. The last item is
referred to as the default. If the age is not equal to 18, 39 or 65 you get the default
message. In some situations there is no default action. Consider:

if age equal to 18

you can now vote

else

if age equal to 39

you are middle aged

else

if age equal to 65

you can consider retirement

The last if then else control structure has no "else". It's implied "else do nothing".
Without the default the multiway selection could be written as a series of "if then
without the else" structures. Consider:

if age equal to l8

you can now vote

if age equal to 39

you are middle aged

if age equal to 65

you can consider retirement

154

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

We have shown two ways to accomplish multiway selection. The choice of using
nested if then else control structures or a series of if then control structures is decided
on the existence of a default action (you must use nested if then else) or programmer
preference if there is not a default action (you may use nested if then else or a series
of if then control structures).

12.1.2 if then else Syntax within C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The syntax for the if then else control structure within the C++ programming language
is:

Example 12.1: C++ source code: Layout of an if then else

if (expression)

{

statement;

}

else

{

statement;

}

Note: The test expression is within the parentheses, but this is not a function
call. The parentheses are part of the control structure. Additionally, there is no
semicolon after the parenthesis following the expression.

12.1.3 C++ Example
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Multiway selection is often needed to cover all possibilities. Assume that the user has
been prompted for the ages of two people with the answers stored in variables
named age1 and age2. Consider:

Example 12.2: C++ source code

if(age1 > age2)

{

cout << "nnnnThe first person is older.";

}

else

155

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

{

cout << "nnnnThe second person is older.";

}

What if the two persons are the same age? The program incorrectly says the second
person is older. To solve this we must handle all three possibilities. Consider this
mulitway selection example:

Example 12.3: C++ source code

if(age1 == age2)

{

cout << "nnnnThey are the same age.";

}

else

{

if(age1 > age2)

{

cout << "nnnnThe first person is older.";

}

else

{

cout << "nnnnThe second person is older.";

}

}

12.1.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 12.1: nested control structures

Placing one control structure inside of another.

Definition 12.2: multiway selection

Using control structures to be able to select from more than two choices.

156

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.2 Logical Operators

12.2.1 Overview of the Logical Operators
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Within most languages, expressions that yield Boolean data type values are divided
into two groups. One group uses the relational operators within their expressions and
the other group uses logical operators within their expressions.

The logical operators are often used to help create a test expression that controls
program fow. This type of expression is also known as a Boolean expression because
they create a Boolean answer or value when evaluated. The answers to Boolean
expressions within the C++ programming language are a value of either 1 for true or 0
for false. There are three common logical operators that give a Boolean value by
manipulating other Boolean operand(s). Operator symbols and/or names vary with
different programming languages. The C++ programming language operators with
their meanings are:

C++
Operator

Meaning Comment Typing

&&
Logical
and

two ampersands

II
Logical
or

two vertical dashes or piping
symbols

!
Logical
not

unary the exclamation point

Table 12.1 The C++ programming language operators with their meanings

Note: The vertical dashes or piping symbol is found on the same key as the
backslash \. You use the SHIFT key to get it. It is just above the Enter key on
most keyboards. It may be a solid vertical line on some keyboards and show as
a solid vertical line on some print fonts.

In most languages there are strict rules for forming proper logical expressions. An
example is:

6 > 4&& 2 <= l4

157

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

This expression has two relational operators and one logical operator. Using the
precedence of operator rules the two "relational comparison" operators will be done
before the "logical and" operator. Thus:

l && l

or

true && true

The fnal evaluation of the expression is: 1 meaning true.

We can say this in English as: It is true that six is greater than four and that two is less
than or equal to fourteen.

When forming logical expressions programmers often use parentheses (even when
not technically needed) to make the logic of the expression very clear. Consider the
above complex Boolean expression rewritten:

(6 > 4)&& (2 <= l4)

12.2.2 Truth Tables
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A common way to show logical relationships is in truth tables.

x y x && y

false false false

false true false

true false false

true true true

Table 12.2 Logical and (&&)

158

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

x y x || y

false false false

false true true

true false true

true true true

Table 12.3 Logical or (||)

x !x

false true

true false

Table 12.4 Logical not (!)

12.2.3 Examples
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

I call this example of why I hate "and" and love "or".

Everyday as I came home from school on Monday through Thursday; I would ask my
mother, "May I go outside and play?" She would answer, "If your room is clean and
your homework is done then you may go outside and play." I learned to hate the word
"and". I could manage to get one of the tasks done and have some time to play before
dinner, but both of them... well, I hated "and".

On Friday my mother took a more relaxed view point and when asked if I could go
outside and play she responded, "If your room is clean or your homework is done
then you may go outside and play." I learned to clean my room quickly on Friday
afternoon. Well needless to say, I loved "or".

For the next example, just imagine a teenager talking to their mother. During the
conversation mom says, "After all, your Dad is reasonable!" The teenager says,
"Reasonable. (short pause) Not."

Maybe college professors will think that all their students studied for the exam. Ha ha!
Not. Well, I hope you get the point.

Exercise 12.2.1

Evaluate the following Logical Boolean expressions:

159

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1. 25 < 7 II 15 > 36
2. 15 > 36 II 3 < 7
3. 14 > 7 &&5 <= 5
4. 4 > 3 && 17 <= 7
5. ! false
6. !(13 != 7)
7. 9!= 7 && !0
8. 5 > && 7

12.2.4 Demonstration Program in C++

12.2.4.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

12.2.4.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Logical_Operators (http://www.opentextbooks.org.hk/system/files/resource/5/5267/564
6/media/Demo_Logical_Operators.cpp)

12.2.5 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 12.3: logical operator

An operator used to create complex Boolean expressions.

Definition 12.4: truth tables

A common way to show logical relationships.

160

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5646/media/Demo_Logical_Operators.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5646/media/Demo_Logical_Operators.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5646/media/Demo_Logical_Operators.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.3 Case Control Structure

12.3.1 Traditional Case Control Structure

12.3.1.1 Multiway Selection using the Case Structure

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

One of the drawbacks of two way selection is that we can only consider two choices.
But what do you do if you have more than two choices. Consider the following which
has four choices:

if age equal to l8 you can vote else if age equal to 39 you're middle aged else if age
equal to 65 consider retirement else age is un-important

You get an appropriate message depending on the value of age. The last item is
referred to as the default. If the age is not equal to 18, 39 or 65 you get the default
message. In some situations there is no default action. Consider this flowchart
example:

Figure 12.1 Flowchart example

This flowchart is of the case control structure and is used for multiway selection. The
decision box holds the variable age. The logic of the case is one of equality where in
the value in the variable age is compared to the listed values in order from left to
right. Thus, the value stored in age is compared to 18 or is "age equal to 18". If it is
true, the logic fows down through the action and drops out at the bottom of the case
structure. If the value of the test expression is false, it moves to the next listed value to

161

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

the right and makes another comparison. It works exactly the same as our nested if
then else structure.

12.3.1.2 C++ Code to Accomplish Multiway Selection

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Using the same example as above, here is the C++ code to accomplish the case control
structure.

Example 12.4: C++ source code -case structure with integers

switch (age)

{

case 18: cout _ "nnYou can vote.";

break;

case 39: cout _ "nnYou're middle aged.";

break;

case 65: cout _ "nnConsider retirement.";

break;

default: cout _ "nnAge is un-important.";

}

The first thing you should note is that the C++ programming language does not
formally have a case control structure. It does have a switch control structure but it
acts differently than the traditional case control structure. We use a break (which is a
branching control structure) with the switch to make it act like the traditional case
structure. This is one of the few allowable ways to use the switch with break within the
C++ programming language to simulate the traditional case structure. All other uses of
the switch or break are to be avoided if you are to stay within the bounds of good
structured programming techniques.

The value in the variable age is compared to the first "case" (note: case is one of the
C++ reserved words) which is the value 18 (also called the listed value) using an
equality comparison or is "age equal to 18". If it is true, the cout is executed which
displays "You can vote." and the next line of code (the break) is done (which jumps us
to the end of the control structure). If it is false, it moves on to the next case for
comparison.

Most programming languages, including C++, require the listed values for the case
control structure be of the integer family of data types. This basically means either an
integer or character data type. Consider this example that uses character data type
(choice is a character variable):

Example 12.5: C++ source code -case structure with characters

switch (choice)

162

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

{

case 'A': cout _ "nnYou are an A student.";

break;

case 'B': cout _ "nnYou are a B student.";

break;

case 'C': cout _ "nnYou are a C student.";

break;

default: cout _ "nnMaybe you should study harder.";

}

12.3.2 Limitations of the Case Control Structure
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Most programming languages, including C++, do not allow ranges of values for case
like structures. Consider this flowcharting example that used ranges:

Figure 12.2 Flowcharting example using ranges

Consider also the following pseudocode for the same logic:

Case of age

0 to 17 Display "You can't vote."

18 to 64 Display "You're in your working years."

163

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

65 + Display "You should be retired."

Endcase

Using the case control structure when using non integer family or ranges of values is
allowed when designing a program and documenting that design with pseudocode or
fowcharting. However, the implementation in most languages would follow a nested
if then else approach with complex Boolean expressions. The logic of the above
examples would look like this:

if age > 0 and age <= to 17

display You can't vote.

else

if age is >= 18 and age <= 64

display You're in your working years.

else

display You should be retired.

12.3.3 Good Structured Programming Methods
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Most text book authors confrm that good structured programming techniques and
habits are more important than concentrating on the technical possibilities and
capabilities of the language that you are using to learn programming skills.
Remember, this module is concentrating on programming fundamentals and concepts
and it uses the C++ programming language to build our initial programming skills. It is
not a created with the intent to cover the C++ programming language in detail, despite
the fact that at times we have to cover C++ language mechanics.

12.3.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 12.5: case

A control structure that does mulitway selection.

Definition 12.6: switch

A C++ control structure that can be made to act like a case control structure.

164

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.4 Branching Control Structures

12.4.1 Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The branching control structures allow the fow of execution to jump to a different part
of the program. The common branching control structures that are used with other
control structures are: break, continue and goto. These are rarely used in modular
structured programming with one exception. That exception is in relation to creating
the case within the selection category of control structures. Within C++ the break is
used with the switch to create a structure that acts like the traditional case structure.
There is one other branching control structure that is often not viewed as branching
control structure. It is: return; which is used with functions. Thus, there are two
commonly used branching control reserved words used in C++; break and return.
Additionally, we will add to our list of branching items a pre-defined function
commonly used in the C++ programming language of: exit; that is part of the C
standard library (cstdlib). Some definitions:

12.4.1.1 Definitions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 12.7: branching control structures

Allow the fow of execution to jump to a different part of the program.

Definition 12.8: break

A branching control structure that terminates the existing structure.

Definition 12.9: continue

A branching control structure that causes a loop to stop its current iteration and begin
the next one.

Definition 12.10: goto

A branching control structure that causes the logic to jump to a different place in the
program.

Definition 12.11: return

A branching control structure that causes a function to jump back to the function that
called it.

Definition 12.12: exit

A pre-defined function used to prematurely stop a program and jump to the operating
system.

165

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

We will discuss each item indicating which ones are allowed or not allowed within
good structured programming practices.

12.4.2 Examples

12.4.2.1 break

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The break is used in one of two ways; with the switch (a C++ programming structure)
to make it act like a case structure (it's more common name within most programming
languages) or as part of a looping process to break out of the loop. The first usage is
allowed in good structured programming and the second is not allowed in good
structured programming.

Example 12.6: C++ source code

switch (age)

{

case 18: cout << "\nYou can vote.";

break;

case 39: cout << "\nYou are middle aged.";

break;

case 65: cout << "\nYou are at retirement age.";

break;

default: cout << "\nYour current age is not important.";

}

The following is an unauthorized use of break in a loop and it gives the appearance
that the loop will execute 8 times, but the break statement causes it to stop during the
fifth iteration.

Example 12.7: C++ source code

counter = 0;

while(counter < 8)

{

cout << counter << endl;

if (counter == 4)

{

break;

}

counter++;

}

166

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.4.2.2 continue

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The continue structure is not allowed in good structured programming. The following
gives the appearance that the loop will print to the monitor 8 times, but the continue
statement causes it not to print number 4.

Example 12.8: C++ source code

for(counter = 0; counter < 8; counter++)

{

if (counter == 4)

{

continue;

}

cout << counter << endl;

}

12.4.3 goto
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The goto structure is not allowed in good structured programming. It is with a certain
amount of hesitancy that we even show it. Many textbooks do not cover the goto.
Within the C++ programming language you create a label with an identifier name
followed by a colon. You use the command word goto followed by the label. A label
can be used before it is declared.

Example 12.9: C++ source code

some lines of code;

goto mynewspot; //jumps to the label

some lines of code;

some lines of code;

some lines of code;

mynewspot: some statement; //Declared label

some lines of code;

167

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.4.3.1 return

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The return is allowed in good structured programming, but only at the end of a
function. A function should not pre-maturely end by having the logic of the function
have it terminate by jumping back to the function that called it.

Example 12.10: C++ source code

//**

// get data

//**

void get_data(void)

{

// Input - Test Data - 5678.9, 5432.1

cout << "nnEnter the length of the property in feet --->: ";

cin >> property_length;

cout << "nnEnter the width of the property in feet ---->: ";

cin >> property_width;

return;

}

12.4.3.2 exit

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Although exit is technically a pre-defined function, it is covered here because of its
common usage in pro gramming. A good example is the opening a file and then
testing to see if the file was actually opened. If not, we have an error that usually
indicates that we want to pre-maturely stop the execution of the program. Within the
C++ programming language the exit function terminates the running of the program
and in the process returns an integer value back to the operating system. It fts the
definition of branching which is to jump to some other place in the program. In our
example the value returned to the operating system is the value of the constant
named: EXIT FAILURE.

Example 12.11: C++ source code

inData.open(filename); //Open input file

if (!inData) //Test to see if file was opened

{

cout << "nnnnError opening file: " << filename << "\n\n";

pause(); //Pause - user reads message

168

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

exit(EXIT_FAILURE); //Allows a pre-mature jump to OS

}

12.5 Practice 12: Multiway Selection

12.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Identify which selection control structures are two-way selection and which are
multiway selection.

3. Understand, define and/or explain case, switch and nested if then else.
4. Be able to write pseudo code or flowcharting for the case control structure.
5. Be able to write C++ source code for a case structure using equality and listed

values (switch with break to act like a case structure).
6. Be able to write C++ source code for a case structure using ranges of values or

floating-point values (nested if then else to act like a case structure).
7. When feasible, be able to convert C++ source code from switch acting like a case

to nested if then else and vice versa.

12.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 12

(***
See the file at <http://cnx.org/content/m19968/latest/index.html>
***)

12.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 12.5.1

Evaluate the following Logical Boolean expressions:

1. 25 > 39 || 15 > 36
2. 19 > 26 || 13 < 17

169

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3. 14 < 7 &&6 <= 6
4. 4 > 3 && 17 >= 7
5. ! true
6. !(13 == 7)
7. 9 != 7&& !1
8. 6 < && 8

12.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Manipulation_Data_Part_3 (http://www.opentextbooks.org.hk/system/files/resource/5/5267/566
8/media/Manipulation_Data_Part_3.pdf)

12.5.5 Lab Assignment

12.5.5.1 Creating a Folder or Sub-Folder for Chapter 12 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 12 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

12.5.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_12a (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5671/media/Lab_12
a.cpp)

12.5.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Compile and run the Lab_12a.cpp source code file. Understand how it works.
• Copy the source code file Lab_12a.cpp naming it: Lab_12b.cpp

170

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5668/media/Manipulation_Data_Part_3.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5668/media/Manipulation_Data_Part_3.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5668/media/Manipulation_Data_Part_3.pdf
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5671/media/Lab_12a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5671/media/Lab_12a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5671/media/Lab_12a.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Convert the nested if then else to a switch with breaks.
• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

12.5.6 Problems

12.5.6.1 Problem 12a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Flowchart the following pseudocode:

Example 12.12: pseudocode

Case of shoe_size

4 to 6 Display "Small."

7 to 9 Display "Medium."

10 + Display "Large."

Endcase

12.5.6.2 Problem 12b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The "Flip-Flops" is a unique shoe store that only sells fip-fops. Adult shoe sizes less
than 4 are handled in the children's department, thus we don't need to concern
ourselves with sizes less than 4. Half shoe sizes are to be rounded down, thus the
prompt to the user that happens before this case structure will have addressed that
issue. The variable shoe size will be an integer value between 4 and 1,000,000,000
(one billion).

Write C++ source code for the following pseudocode:

Example 12.13: pseudocode

Case of shoe_size

4 to 6 Display "Small."

7 to 9 Display "Medium."

10 + Display "Large."

Endcase

171

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.5.6.3 Problem 12c -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Write C++ source code for the following pseudocode:

Example 12.14: pseudocode

If age equal to 24

Display a message "You're the same age as Melinda."

Else

If age equal to 27

Display a message "You're the same age as Ruth."

Else

If age equal to 34

Display a message "You're the same age as Ben."

Else

Display a message "You're age is un-important."

Endif

Endif

Endif

12.5.7 Solutions to Exercises in Chapter 12
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 12.2.1

Answers:

1. 0
2. 1
3. 1
4. 0
5. 1
6. 0
7. 1
8. Error, there needs to be an operand between the operators > and &&.

Solutions to Practice 12: Multiway Selection

Solution to Exercise 12.5.1

Answers:

1. 0
2. 1

172

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3. 0
4. 1
5. 0
6. 1
7. 0
8. Error, there needs to be an operand between the operators < and &&.

173

Chapter 13 Test After Loops

13.1 Do While Loop

13.1.1 Introduction to Test After Loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two commonly used test after loops in the iteration (or repetition) category
of control structures. They are: do while and repeat until. This module covers the: do
while.

13.1.1.1 Understanding Iteration in General -do while

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The concept of iteration is connected to possibly wanting to repeat an action. Like all
control structures we ask a question to control the execution of the loop. The term
loop comes from the circular looping motion that occurs when using flowcharting. The
basic form of the do while loop is as follows:

do

some statements or action

some statements or action

some statements or action

update the flag

while the answer to the question is true

In every language that I know the question (called a test expression) is a Boolean
expression. The Boolean data type has two values _ true and false. Let's rewrite the
structure to consider this:

do

some statements or action

some statements or action

some statements or action

update the flag

while expression is true

Within the do while control structure there are three attributes of a properly working
loop. They are:

• Action or actions

174

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Update of the fag
• Test expression

The English phrasing is, "You do the action while the expression is true". This is
looping on the true. When the test expression is false, you stop the loop and go on
with the next item in the program. Notice, because this is a test after loop the action
will always happen at least once. It is called a test after loop because the test comes
after the action. It is also sometimes called a post-test loop, meaning the test is post
(or Latin for after) the action and update.

13.1.2 The do while Structure within C++

13.1.2.1 Syntax

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The syntax for the do while control structure within the C++ programming language is:

do

{

statement;

statement;

statement;

statement; // This statement updates the flag;

}

while (expression);

Note: The test expression is within the parentheses, but this is not a function
call. The parentheses are part of the control structure. Additionally, there is a
semicolon after the parenthesis following the expression.

13.1.2.2 An Example

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 13.1: C++ source code: do while loop

do

{

cout << "nnWhat is your age? ";

cin >> age_user;

cout << "nnWhat is your friend's age? ";

cin >> age_friend;

175

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

cout >> "nnTogether your ages add up to: ";

cout >> (age_user + age_friend);

cout << "nnDo you want to do it again? y or n ";

cin >> loop_response;

}

while (loop_response == 'y');

The three attributes of a test after loop are present. The action part consists of the 6
lines that prompt for data and then displays the total of the two ages. The update of
the fag is the displaying the question and getting the answer for the variable loop
response. The test is the equality relational comparison of the value in the fag variable
to the lower case character of y.

This type of loop control is called an event controlled loop. The fag updating is an
event where someone decides if they want the loop to execute again.

Using indentation with the alignment of the loop actions and fag update is normal
industry practice within the C++ community.

13.1.2.3 Infinite Loops

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

At this point it's worth mentioning that good programming always provides for a
method to insure that the loop question will eventually be false so that the loop will
stop executing and the program continues with the next line of code. However, if this
does not happen then the program is in an Infinite loop. Infinite loops are a bad thing.
Consider the following code:

Example 13.2: C++ source code: Infinite loop

loop_response = 'y';

do

{

cout << "\nWhat is your age? ";

cin >> age_user;

cout << "\nWhat is your friend's age? ";

cin >> age_friend;

cout >> "\nTogether your ages add up to: ";

cout >> (age_user + age_friend);

}

while (loop_response == 'y');

The programmer assigned a value to the fag before the loop and forgot to update the
fag. Every time the test expression is asked it will always be true. Thus, an Infinite loop

176

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

because the programmer did not provide a way to exit the loop (he forgot to update
the fag).

Consider the following code:

Example 13.3: C++ source code: Infinite loop

do

{

cout << "\nWhat is your age? ";

cin >> age_user;

cout << "\nWhat is your friend's age? ";

cin >> age_friend;

cout >> "\nTogether your ages add up to: ";

cout >> (age_user + age_friend);

cout << "\nDo you want to do it again? y or n ";

cin >> loop_response;

}

while (loop_response = 'y');

No matter what the user replies during the fag update, the test expression does not
do a relational comparison but does an assignment. It assigns 'y' to the variable and
asks if 'y' is true? Since all non-zero values are treated as representing true within the
Boolean concepts of the C++ programming language, the answer to the text question
is true. Viola, you have an Infinite loop.

13.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 13.1: do while

A test after iteration control structure available in C++.

Definition 13.2: action item

An attribute of iteration control structures.

Definition 13.3: update item

An attribute of iteration control structures.

Definition 13.4: test item

An attribute of iteration control structures.

Definition 13.5: at least once

Indicating that test after loops execute the action at least once.

Definition 13.6: infinite loop

177

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

No method of exit, thus a bad thing.

13.2 Flag Concept

13.2.1 Concept Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

For centuries flags have been used as a signal to let others know something about the
group or individual that is displaying, fying or waving the flag. There are country flags
and state flags. Ships at sea few the flag of their country. Pirates few the skull and
cross bones. A yellow flag was used for quarantine, usually the plague. Even pirates
stayed away. Today, some people might recognize the flag used by scuba divers. The
Presidents of most countries have a flag. At a race car event they use the checkered
flag to indicate the race is over.

Figure 13.1 Various Flags

Computer programming uses the concept of a flag in the same way that physical flags
are used. A fag is anything that signals some information to the person looking at it.

13.2.2 Computer Implementation
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Any variable or constant that holds data can be used as a flag. You can think of the
storage location as a flag pole. The value stored within the variable conveys some

178

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

meaning and you can think of it as being the flag. An example might be a variable
named: gender which is of the character data type. The two values normally stored in
the variable are: 'F' and 'M' meaning female and male. Then, somewhere within a
program we might look at the variable to make a decision:

Example 13.4: flag controling an if then control structure

if gender equals 'F'

display "Are you pregnant?"

get answer from user store in pregnant variable

Looking at the flag implies comparing the value in the variable to another value (a
constant or the value in another variable) using a relational operator (in our above
example: equality).

Control structures are "controlled" by using a test expression which is usually a
Boolean expression. Thus, the flag concept of "looking" at the value in the variable
and comparing it to another value is fundamental to understanding how all control
structures work.

13.2.3 Two Flags with the Same Meaning
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Sometimes we will use an iteration control structure of do while to allow us to decide
if we want to do the loop action again. A variable might be named "loop response"
with the user prompted for their answer of 'y' for yes or 'n' for no. Once the answer is
retrieved from the keyboard and stored in our flag variable of "loop response" the test
expression to control the loop might be:

Example 13.5: simple flag comparison

loop_response equals 'y'

This is fne but what if the user accidentally has on the caps lock. Then his response of
'Y' would not have the control structure loop and perform the action again. The
solution lies in looking at the flag twice. Consider:

Example 13.6: complex flag comparison

loop_response equals 'y' or loop response equals 'Y'

We look to see if the flag is either a lower case y or an upper case Y by using a more
complex Boolean expression with both relational and logical operators.

179

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

13.2.4 Multiple Flags in One Byte
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Within assembly language programming and in many technical programs that control
special devices; the use of a single byte to represent several flags is common. This is
accomplished by having each one of the 8 bits that make up the byte represent a flag.
Each bit has a value of either 1 or 0 and can represent true and false, on or of, yes or
no, etc.

13.2.5 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 13.7: flag

A variable or constant used to store information that will normally be used to control
the program.

13.3 Assignment vs Equality within C++

13.3.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Most control structures use a test expression that executes either selection (as in the:
if then else) or iteration (as in the while; do while; or for loops) based on the
truthfulness or falseness of the expression. Thus, we often talk about the Boolean
expression that is controlling the structure. Within many programming languages,
this expression must be a Boolean expression and is governed by a tight set of rules.
However, in C++ every data type can be used as a Boolean expression, because every
data type can be demoted into a Boolean value by using the rule/concept that zero
represents false and all non-zero values represent true.

Within C++ we have the potential added confusion of the equals symbol as an
operator that does not represent the normal math meaning of equality that we have
used for most of our life. The equals symbol with C++ means: assignment. To get the
equality concept of math within C++ we use two equal symbols to represent the
relational operator of equality. Let's consider:

if (pig = 'y')

{

cout « "\nPigs are good";

}

else

180

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

{

cout « "\nPigs are bad.";

}

The test expression of the control structure will always be true, because the
expression is an assignment (not the relational operator of ==). It assigns the 'y' to the
variable pig, then looks at the value in pig and determines that it is not zero; therefore
the expression is true. And it will always be true and the else part will never be
executed. This is not what the programmer had intended. Let's consider:

do

{

cout « "\nPigs are good";

cout « "\nDo it again, answer y or n: ";

cin » do it again

}

while (do it again = 'y');

The loop's test expression will always be true, because the expression is an
assignment (not the relational operator of ==). It assigns the 'y' to the variable
do_it_again, then looks at the value in do it again and determines that it is not zero;
therefore the expression is true. And it will always be true and you have just created
an Infinite loop. As a reminder, Infinite loops are not a good thing.

These examples are to remind you that you must be careful in creating your test
expressions so that they are indeed a question usually involving the relational
operators.

Don't get caught using assignment for equality.

13.4 Repeat Until Loop

13.4.1 Introduction to Test After Loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two commonly used test after loops in the iteration (or repetition) category
of control structures. They are: do while and repeat until. This module covers the:
repeat until.

181

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

13.4.1.1 Understanding Iteration in General -repeat until

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The concept of iteration is connected to possibly wanting to repeat an action. Like all
control structures we ask a question to control the execution of the loop. The term
loop comes from the circular looping motion that occurs when using fowcharting. The
basic form of the repeat until loop is as follows:

repeat

some statements or action

some statements or action

some statements or action

update the flag

until the answer to the question becomes true

In every language that I know the question (called a test expression) is a Boolean
expression. The Boolean data type has two values true and false. Let's rewrite the
structure to consider this:

repeat

some statements or action

some statements or action

some statements or action

update the flag

until expression becomes true

Within the repeat until control structure there are three attributes of a properly
working loop. They are:

• Action or actions
• Update of the fag
• Test expression

The English phrasing is, "You repeat the action until the expression becomes true".
This is looping on the false. When the test expression becomes true, you stop the loop
and go on with the next item in the program. Notice, because this is a test after loop
the action will always happen at least once. It is called a "test after loop" because the
test comes after the action. It is also sometimes called a post-test loop, meaning the
test is post (or Latin for after) the action and update.

182

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

13.4.2 The repeat until Structure within C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Well, it just does not exist. Most programming languages have either the do while or
the repeat until control structures, but not both.

13.4.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 13.8: repeat until

A test after iteration control structure that is not available in C++.

13.5 Practice 13: Test After Loops

13.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Identify which selection control structures are test after iteration.
3. Be able to write pseudo code or fowcharting for the do while control structure.
4. Be able to write C++ source code for a do while control structure.

13.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 13

(***
See the file at <http://cnx.org/content/m20642/latest/index.html>
***)

13.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 13.5.1

183

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Answer the following statements as either true or false:

1. The do while and repeat until structure act exactly the same.
2. Students sometimes confuse assignment and equality.
3. The repeat until looping control structure is available in all programming

languages.
4. Because fags are often used, they are usually a special data type.
5. The do while is a test before loop.

13.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Link to: Animated gif showing a do while loop 1

13.5.4.1 Lab Assignment

13.5.4.1.1 Creating a Folder or Sub-Folder for Chapter 13 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_13 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

13.5.4.1.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_13_Pseudocode (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5707/med
ia/Lab_13_Pseudocode.txt)

13.5.4.1.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

1. See the le at <http://cnx.org/content/m20642/latest/do_while_ow.gif>

184

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5707/media/Lab_13_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5707/media/Lab_13_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5707/media/Lab_13_Pseudocode.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Create a source code file from the Lab 13 Pseudocode.txt file. Name it: Lab 13.cpp
• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

13.5.4.2 Problems

13.5.4.2.1 Problem 13a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Flowchart the following pseudocode:

Example 13.7: pseudocode

Do

Display "I like cheese cake!"

Display "Do it again? y or n ---> "

Get answer from keyboard

While answer is 'y'

13.5.4.3 Solutions to Exercises in Chapter 13

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 13: Test After Loops

Solution to Exercise 13.5.1

Answers:

1. false
2. true
3. false
4. false
5. false

185

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 14 Test Before Loops

14.1 Increment and Decrement Operators

14.1.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The idea of increment or decrement is to either add or subtract 1 from a variable that
is usually acting as a fag. Using a variable named counter; in generic terms, for
example:

increment the counter

The concept is:

counter is assigned counter + l

That is you fetch the existing value of the counter and add one then store the answer
back into the variable counter. Many programming languages allow their increment
and decrement operators to only be used with the integer data type. Programmers
will sometimes use inc and dec as abbreviations for increment and decrement
respectively.

Operator symbols and/or names vary with different programming languages. The C++
programming language operators with their meanings are:

C++ Operator Meaning

++ increment, two plus signs

- decrement, two minus signs

Table 14.1 C++ Operators and their meanings

14.1.2 C++ Code Examples

14.1.2.1 Basic Concept

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Within the C++ programming language the increment and decrement are often used
in this simple generic way. The operator of increment is represented by two plus signs
in a row. Examples:

186

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

counter = counter + l;

counter += l;

counter++;

++counter;

As C++ statements, the four examples all do the same thing. They add 1 to the value of
whatever is stored in counter. The decrement opereator is represented by two minus
signs in a row. They would subtract 1 from the value of whatever was in the variable
being decremented. The precedence of increment and decrement depends on if the
operator is attached to the right of the operand (postfx) or to the left of the operand
(prefx). Within C++ postfx and prefx do not have the same precedence.

14.1.2.2 Postfix Increment

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Postfix increment says to use my existing value then when you are done with the
other operators; increment me. An example:

int oldest = 44; // variable set up with initialization

then later on in the code

age = oldest++;

The first use of the oldest variable is an Rvalue context where the existing value of 44
is pulled or fetched and then assigned to the variable age; then the variable oldest is
incremented with its value changing from 44 to 45. This seems to be a violation of
precedence because increment is higher precedence than assignment. But that is how
postfix increment works within the C++ programming language.

14.1.2.3 Prefix Increment

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Prefix increment says to increment me now and use my new value in any calculation.
An example:

int oldest = 44; // variable set up with initialization

then later on in the code

age = ++oldest;

The variable oldest is incremented with the new value changing it from 44 to 45; then
the new value is assigned to age.

In postfix age is assigned 44 in prefix age is assigned 45. One way to help remember
the difference is to think of postfix as being polite (use my existing value and return to

187

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

increment me after the other operators are done) where as prefix has an ego (I am
important so increment me first and use my new value for the rest of the evaluations).

14.1.2.4 Allowable Data Types

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Within some programming languages, increment and decrement can be used only on
the integer data type. C++ however, expands this not only to all of the integer family
but also to the floating-point family (float and double). Incrementing 3.87 will change
the value to 4.87. Decrementing 'C' will change the value to 'B'. Remember the ASCII
character values are really one byte unsigned integers (domain from 0 to 255).

14.1.2.5 Exercises

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 14.1.1

Evaluate the following items using increment or decrement:

1. True or false: x = x +1 and x+=1 and x++ all accomplish increment?
2. Given: int y = 19; and int z; what values will y and z have after: z = y ;
3. Given: double x = 7.77; and int y; what values will x and y have after: y = ++x;
4. Is this ok? Why or why not? 6 * ++(age -3)

14.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 14.1: increment

Adding one to the value of a variable.

Definition 14.2: decrement

Subtracting one from the value of a variable.

Definition 14.3: postfix

Placing the increment or decrement operator to the right of the operand.

Definition 14.4: prefix

Placing the increment or decrement operator to the left of the operand.

188

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

14.2 While Loop

14.2.1 Introduction to Test Before Loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two commonly used test before loops in the iteration (or repetition)
category of control structures. They are: while and for. This module covers the: while.

14.2.1.1 Understanding Iteration in General -while

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The concept of iteration is connected to possibly wanting to repeat an action. Like all
control structures we ask a question to control the execution of the loop. The term
loop comes from the circular looping motion that occurs when using fowcharting. The
basic form of the while loop is as follows:

initialization of the flag

while the answer to the question is true then do

some statements or action

some statements or action

some statements or action

update the flag

In almost all languages the question (called a test expression) is a Boolean
expression. The Boolean data type has two values true and false. Let's rewrite the
structure to consider this:

initialization of the flag

while the expression is true then do

some statements or action

some statements or action

some statements or action

update the flag

Within the while control structure there are four attributes to a properly working loop.
They are:

• Initializing the fag
• Test expression
• Action or actions
• Update of the fag

189

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The initialization of the fag is not technically part of the control structure, but a
necessary item to occur before the loop is started. The English phrasing is, "While the
expression is true, do the following actions". This is looping on the true. When the test
expression is false, you stop the loop and go on with the next item in the program.
Notice, because this is a test before loop the action might not happen. It is called a
test before loop because the test comes before the action. It is also sometimes called
a pre-test loop, meaning the test is pre (or Latin for before) the action and update.

14.2.1.2 Human Example of the while Loop

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider the following one-way conversation from a mother to her child.

Child: The child says nothing, but mother knows the child had Cheerios for breakfast
and history tells us that the child most likely spilled some Cheerios on the foor.

Mother says: "While it is true that you see (As long as you can see) a Cheerio on foor,
pick it up and put it in the garbage."

Note: All of the elements are present to determine the action (or fow) that the child
will be doing (in this case repeating). Because the question (can you see a Cheerios)
has only two possible answers (true or false) the action will continue while there are
Cheerios on the foor. Either the child 1) never picks up a Cheerio because they never
spilled any or 2) picks up a Cheerio and keeps picking up Cheerios one at a time while
he can see a Cheerio on the foor (that is until they are all picked up).

14.2.2 The while Structure within C++

14.2.2.1 Syntax

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The syntax for the while control structure within the C++ programming language is:

statement; // This statement initializes the flag;

while (expression)

{

statement;

statement;

statement;

statement; // This statement updates the flag;

}

Note: The test expression is within the parentheses, but this is not a function
call. The parentheses are part of the control structure. Additionally, there is
not a semicolon after the parenthesis following the expression.

190

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

14.2.2.2 An Example

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 14.1: C++ source code: while

loop response = 'y';

while (loop response == 'y')

{

cout « "\nWhat is your age? ";

cin » age user;

cout « "\nWhat is your friend's age? ";

cin _ age_friend;

cout _ "nnTogether your ages add up to: ";

cout _ (age_user + age_friend);

cout _ "nnDo you want to do it again? y or n ";

cin _ loop_response;

}

The four attributes of a test before loop are present. The initialization of the flag. The
test is the equality relational comparison of the value in the flag variable to the lower
case character of y. The action part consists of the 6 lines that prompt for data and
then displays the total of the two ages. The update of the flag is the displaying the
question and getting the answer for the variable loop response.

This type of loop control is called an event controlled loop. The flag updating is an
event where someone decides if they want the loop to execute again.

Using indentation with the alignment of the loop actions and flag update is normal
industry practice within the C++ community.

14.2.2.3 Infinite Loops

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

At this point it's worth mentioning that good programming always provides for a
method to insure that the loop question will eventually be false so that the loop will
stop executing and the program continues with the next line of code. However, if this
does not happen then the program is in an Infinite loop. Infinite loops are a bad thing.
Consider the following code:

Example 14.2: C++ source code: Infinite loop

loop response = 'y';

while (loop response == 'y')

191

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

{

cout « "\nWhat is your age? ";

cin » age user;

cout « "\nWhat is your friend's age? ";

cin » age friend;

cout » "\nTogether your ages add up to: ";

cout » (age user + age friend);

}

The programmer assigned a value to the fag before the loop which is correct.
However, he forgot to update the fag. Every time the test expression is asked it will
always be true. Thus, an Infinite loop because the programmer did not provide a way
to exit the loop (he forgot to update the fag). Consider the following code:

Example 14.3: C++ source code: Infinite loop

loop response = 'y'; while (loop response = 'y')

{

cout << "\nWhat is your age? ";

cin >> age user;

cout << "\nWhat is your friend's age? ";

cin >> age_friend;

cout >> "nnTogether your ages add up to: ";

cout >> (age_user + age_friend);

cout << "nnDo you want to do it again? y or n ";

cin >> loop_response;

}

No matter what the user replies during the fag update, the test expression does not
do a relational comparison but does an assignment. It assigns 'y' to the variable and
asks if 'y' is true? Since all non-zero values are treated as representing true within the
Boolean concepts of the C++ programming language, the answer to the test
expression is true. Viola, you have an Infinite loop.

Example 14.4: C++ source code: Infinite loop

loop response = 'y';

while (loop response == 'y');

{

cout << "\nWhat is your age? ";

cin >> age user;

cout << "\nWhat is your friend's age? ";

cin >> age friend;

cout >> "\nTogether your ages add up to: ";

192

cout >> (age user + age friend);

cout << "\nDo you want to do it again? y or n ";

cin >> loop response;

}

The undesirable semi-colon on the end of while line causes the action of the while
loop to be the "nothingness" between the closing parenthesis and the semi-colon. The
program will infnitely loop because there is no action (that is no action and no
update). If this is the first item in your program it will appear to start but there will be
no output.

14.2.3 Counting Loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The examples above are for an event controlled loop. The flag updating is an event
where someone decides if they want the loop to execute again. Often the initialization
sets the fag so that the loop will execute at least once.

Another common usage of the while loop is as a counting loop. Consider:

Example 14.5: C++ source code: while loop that is counting

counter = 0;

while (counter < 5)

{

cout « "\nI love ice cream!";

counter++;

}

The variable counter is said to be controlling the loop. It is set to zero (called
initialization) before entering the while loop structure and as long as it is less than 5
(five); the loop action will be executed. But part of the loop action uses the increment
operator to increase counter's value by one. After executing the loop five times (once
for counter's values of: 0, 1, 2, 3 and 4) the expression will be false and the next line of
code in the program will execute. A counting loop is designed to execute the action
(which could be more than one statement) a set of given number of times. In our
example, the message is displayed five times on the monitor. It is accomplished my
making sure all four attributes of the while control structure are present and working
properly. The attributes are:

• Initializing the fag
• Test expression
• Action or actions
• Update of the fag

193

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Missing an attribute might cause an Infinite loop or give undesired results (does not
work properly).

14.2.3.1 Infinite Loops

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider:

Example 14.6: C++ source code: Infinite loop

counter = 0;

while (counter < 5)

{

cout « "\nI love ice cream!";

}

Missing the flag update usually causes an Infinite loop.

14.2.3.2 Variations on Counting

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the following example, the integer variable age is said to be controlling the loop
(that is the flag). We can assume that age has a value provided earlier in the program.
Because the while structure is a test before loop; it is possible that the person's age is
0 (zero) and the first time we test the expression it will be false and the action part of
the loop would never be executed.

Example 14.7: C++ source code: while as a counting loop

while (0 < age)

{

cout « "\nI love candy!";

age--;

}

Consider the following variation assuming that age and counter are both integer data
type and that age has a value:

Example 14.8: C++ source code: while as a counting loop

counter = 0;

while (counter < age)

{

cout « "\nI love corn chips!";

194

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

counter++;

}

This loop is a counting loop similar to our first counting loop example. The only
diference is instead of using a literal constant (in other words 5) in our expression, we
used the variable age (and thus the value stored in age) to determine how many times
to execute the loop. However, unlike our first counting loop example which will always
execute exactly 5 times; it is possible that the person's age is 0 (zero) and the first time
we test the expression it will be false and the action part of the loop would never be
executed.

14.2.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 14.5: while

A test before iteration control structure available in C++.

Definition 14.6: loop attributes

Items associated with iteration or looping control structures.

Definition 14.7: initialize item

An attribute of iteration control structures.

Definition 14.8: might not happen

Indicating that test before loops might not execute the action.

Definition 14.9: event controlled

Using user input to control a loop.

Definition 14.10: counting controlled

Using a variable to count up or down to control a loop.

14.3 Practice 14: Test Before Loops

14.3.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Identify which selection control structures are test before iteration.

195

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3. Be able to write pseudo code or fowcharting for the while control structure.
4. Be able to write C++ source code for the while control structure.

14.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 14

(***
See the file at <http://cnx.org/content/m20643/latest/index.html>
***)

14.3.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 14.3.1

Evaluate the following items using increment or decrement:

1. True or false: x = x-l; and x -= l; and x-; and -x; all accomplish decrement.
2. Given: int y = 26; and int z; what values will y and z have after: z = y++;
3. Given: double x = 4.44; and int y; what values will x and y have after: y = -x;
4. As an expression: l0 / ++(money * 4) Is this ok? Why or why not?

14.3.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Link to: Animated gif showing a while loop 1

14.3.5 Lab Assignment

14.3.5.1 Creating a Folder or Sub-Folder for Chapter 14 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_14 within the folder named: Cpp_Source_Code_Files

1. See the le at <http://cnx.org/content/m20643/latest/while_ow.gif>

196

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

14.3.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_14_Pseudocode (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5741/med
ia/Lab_14_Pseudocode.txt)

14.3.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file from the Lab_14_Pseudocode.txt file. Name it: Lab
14.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

14.3.6 Problems

14.3.6.1 Problem 14a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Flowchart the following pseudocode:

Example 14.9: pseudocode

Assign counter a value of zero

While counter is less than 5

Display "I love cookies!"

Increment counter

Endwhile

197

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5741/media/Lab_14_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5741/media/Lab_14_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5741/media/Lab_14_Pseudocode.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

14.3.7 Solutions to Exercises in Chapter 14.
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 14.1.1

Answers:

1. true
2. y is: 18 and z is: 19
3. x is: 8.77 and y is: 8 Note: truncation of 8.77 to 8 upon demotion.
4. Not ok. Error, the item incremented must have Lvalue attributes, usually a

variable. It is an expression not a variable.

Solutions to Practice 1.: Test Before Loops

Solution to Exercise 14.3.1

Answers:

1. true
2. y is: 27 and z is: 26
3. x is: 3.44 and y is: 3 Note: truncation of 3.44 to 3 upon demotion to integer data

type.
4. Not ok. Error, the item incremented must have Lvalue attributes, usually a

variable. Because of the parentheses, it is an expression not a variable.

198

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 15 Counting Loops

15.1 For Loop

15.1.1 Introduction to Test Before Loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two commonly used test before loops in the iteration (or repetition)
category of control structures. They are: while and for. This module covers the: for.

15.1.1.1 Understanding Iteration in General - for

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In most programming languages the for loop is used exclusively for counting; that is to
repeat a loop action as it either counts up or counts down. There is a starting value
and a stopping value. The question that controls the loop is a test expression that
compares the starting value to the stopping value. This expression is a Boolean
expression and is usually using the relational operators of either less than (for
counting up) or greater than (for counting down). The term loop comes from the
circular looping motion that occurs when using fowcharting. The basic form of the for
loop (counting up) is as follows:

for

initialization of the starting value

starting value is less than the stopping value

some statements or action

some statements or action

some statements or action

increment the starting value

It might be best to understand the for loop by understanding a while loop acting like a
counting loop. Let's consider;

initialization of the starting value

while the starting value is less than the stopping value

some statements or action

some statements or action

some statements or action

increment the starting value

199

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Within the for control structure there are four attributes to a properly working loop.
They are:

• Initializing the fag done once
• Test expression
• Action or actions
• Update of the flag

The initialization of the flag is not technically part of the while control structure, but it
is usually part of the for control structure. The English phrasing is, "For x is 1; x less
than 3; do the following actions; increment x; loop back to the test expression". This is
doing the action on the true. When the test expression is false, you stop the loop and
go on with the next item in the program. Notice, because this is a test before loop the
action might not happen. It is called a test before loop because the test comes
before the action. It is also sometimes called a pre-test loop, meaning the test is pre
(or Latin for before) the action and update.

15.1.2 The for Structure within C++

15.1.2.1 Syntax

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The syntax of the for loop control structure within the C++ programming language is:

for (initializations; expression; updates)

{

statement;

statement;

statement;

}

Note: The initializations, test expression and updates are within the
parentheses (each separated by a semi-colon), but this is not a function call.
The parentheses are part of the control structure. Additionally, there is not a
semicolon after the parenthesis following the expression.

15.1.2.2 An Example

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 15.1: C++ source code: for

for (counter = 0; counter < 5; counter++)

{

200

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

cout << "\nI love ice cream!";

}

The four attributes of a test before loop (remember the for loop is one example of a
test before loop) are present.

• The initialization of the fag to a value of 0.
• The test is the less than relational comparison of the value in the fag variable to

the constant value of 5.
• The action part consists of the 1 line of output.
• The update of the fag is done with the increment operator.

Using indentation with the alignment of the loop actions is normal industry practice
within the C++ community.

15.1.2.3 Infinite Loops

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

At this point it's worth mentioning that good programming always provides for a
method to insure that the loop question will eventually be false so that the loop will
stop executing and the program continues with the next line of code. However, if this
does not happen then the program is in an Infinite loop. Infinite loops are a bad thing.
Consider the following code:

Example 15.2: C++ source code: infinite loop

for (counter = 0; counter < 5;)

{

cout « "\nI love ice cream!";

}

The programmer assigned a value to the flag during the initialization step which is
correct. However, he forgot to update the flag (the update step is missing). Every time
the test expression is asked it will always be true. Thus, an Infinite loop because the
programmer did not provide a way to exit the loop (he forgot to update the flag).

15.1.2.4 Multiple Items in the Initialization and Update

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The following shows the use of the sequence operator to separate the multiple
initializations and multiple updates. This is not available in most languages, thus is
more unique to the C++ programming language.

Example 15.3: C++ source code: for with multiple initializations and updates

201

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

for(x =0, y=l0; x < l0; x++, y--)

{

cout « x*y « endl;

}

15.1.3 Counting Loop Conversion -a while into a for
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Below is a color coded the conversion of a while loop that displays a message exactly
three times (which is a counting loop) into a for loop using C++ programming language
syntax. The four loop attributes are color highlighted as follows:

Figure 15.1 Counting loop

15.1.4 Miscellaneous Information about the for Structure
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many languages (Pascal, FORTRAN, and other) have a for loop structure that is used
exclusively for counting. The for loop in the C++ programming language is much more
versatile and can be used (and generally is used) in place of the while loop structure.
In reality a counting loop is just a particular use of a while loop.

The name for comes from mathematics' method of writing an iteration (or repetition).
In math we would say: "For the variable i starts at a given value and repeats an action

202

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

increasing the value of i until i is executed for the stopping value". Usually written in
math as:

for i = 1 to 5 do some action

Note: here the means equals not assignment. Another way to say it is that i
varies from 1 to 5.

15.1.5 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 15.1: for

A test before iteration control structure typically used for counting.

15.2 Circular Nature of the Integer Data Type Family

15.2.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are times when character and integer data types are lumped together because
they both act the same (often called the integer family). Maybe we should say they act
differently than the floating-point data types. The integer family values jump from one
value to another. There is nothing between 6 and 7 nor between 'A' and 'B'. It could be
asked why not make all your numbers floating-point data types. The reason is twofold.
First, some things in the real world are not fractional. A dog, even with only 3 legs, is
still one dog not three fourths of a dog. Second, the integer data type is often used to
control program flow by counting (counting loops). The integer family has a circular
wrap around feature. Using a two byte integer, the next number bigger than 32767 is
negative 32768 (character acts the same way going from 255 to 0. We could also
reverse that to be the next smaller number than negative 32768 is positive 32767. This
can be shown by using a normal math line, limiting the domain and then connecting
the two ends to form a circle.

203

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 15.2 Connect the two ends of line to form a circle

This circular nature of the integer family works for both integer and character data
types. In theory, it should work for the Boolean data type as well; but in most
programming languages it does not for various technical reasons.

"In mathematics, modular arithmetic (sometimes called clock arithmetic) is a system of
arithmetic for integers where numbers "wrap around" after they reach a certain value
the modulus. ...

A familiar use of modular arithmetic is its use in the 12 hour clock the arithmetic of
time-keeping in which the day is divided into two 12 hour periods. If the time is 7:00
now, then 8 hours later it will be 3:00. Usual addition would suggest that the later time
should be 7 + 8 15, but this is not the answer because clock time "wraps around" every
12 hours; there is no "15 o'clock". Likewise, if the clock starts at 12:00 (noon) and 21
hours elapse, then the time will be 9:00 the next day, rather than 33:00. Since the hour
number starts over when it reaches 12, this is arithmetic modulo 12.

Figure 15.3 Example of modular arithmetic

Time-keeping on a clock gives an example of modular arithmetic." (Modular arithmetic
from Wikipedia) The use of the modulus operator in integer division is tied to the
concepts used in modular arithmetic.

204

15.2.2 Implications When Executing Loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If a programmer sets up a counting loop incorrectly, usually one of three things
happen:

• Infinite loop usually caused by missing update attribute.
• Loop never executes usually the text expression is wrong with the direction of the

less than or greater than relationship needing to be switched.
• Loop executes more times than desired update not properly handled. Usually the

direction of counting (increment or decrement) need to be switched.

Let's give an example of the loop executing for what appears to be for infnity (the
third item on our list).

Example 15.4: C++ source code

for (int x = 0; x < l0; x--)

{

cout « x « endl;

}

The above code accidently decrements and the value of x goes in a negative way
towards -2147483648 (the largest negative value in a normal four byte signed integer
data type). It might take a while (thus it might appear to be in an Infinite loop) for it to
reach the negative 2 billion plus value, before fnally decrementing to positive
2147483647 which would, incidentally, stop the loop execution.

15.2.3 Demonstration Program in C++

15.2.3.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

205

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

15.2.3.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Circular_Nature_Integer.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/
5267/5763/media/Demo_Circular_Nature_Integer.cpp)

15.2.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 15.2: circular nature

Connecting the negative and positive ends of the domain of an integer family data
type.

Definition 15.3: loop control

Making sure the attributes of a loop are properly handled.

Definition 15.4: modular arithmetic

A system of arithmetic for integers where numbers "wrap around".

15.3 Formatting Output

15.3.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Formatting of output is handled in different ways in the various languages used today.
Many programming languages have different formatting instructions for the standard
output device which is usually the monitor (going to a DOS black screen output box)
versus using the monitor as a Graphical User Interface (GUI). File storage output is
often handled similarly to the standard output device. All of this makes formatting of
output very machine, output device and language dependent.

When teaching programming fundamentals, many professors prefer to use the
standard output device. For the C++ programming language this means going to the
monitor using a DOS black screen output box.

206

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5763/media/Demo_Circular_Nature_Integer.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5763/media/Demo_Circular_Nature_Integer.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5763/media/Demo_Circular_Nature_Integer.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

15.3.2 C++ Considerations using Standard Output (cout)

15.3.2.1 Text Wrapping and Vertical Spacing

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are two items used to keep output from flling up a line and wrapping on to the
next line. They are:

• Using the escape code sequence of \n within your strings (text between as set of
double quote marks).

• Using the item from the iostream named: endl; which is short for end line.

Thus the programmer is responsible for making text show reasonably on the screen.
Both of the above also allow for adequate vertical spacing when needed in your
output.

15.3.2.2 Handling Floating-point Data Type

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

It is nice to have your output displayed so humans can read it (most humans are not
use to scientifc notation). There are three lines often inserted near the start of your
code (first items in the function main) that can be used to direct the formatting of
floating-point data. They are:

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(n);

They do the following for the rest of your program:

• fixed - Do not use scientifc notation but show floating-point values like integer
values (numeral digits of 0 to 9 no exponent notation).

• showpoint - Always show a decimal point for floating-point values even if there is
no fractional part.

• precision - Always show this number of digits (change n to a number like 2) to the
right of the decimal point.

15.3.2.3 Setting the Width for Numbers

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Setting the width for integer family and floating-point family data types must be done
for the output of each value. Assume in the following example that age is an integer
data type and money is a floating-point data type.

207

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

cout « setw(4) « age « endl;

cout « setw(8) « money « endl;

Note that each value had to have its own setw(n) where n is an integer number telling
it how many positions to use for the output. The iomanip header file (immediately
shown) will need to be included in your program.

#include<iomanip> // needed for the setw

15.3.3 Demonstration Program in C++

15.3.3.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

15.3.3.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Formatting_Output.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/
5773/media/Demo_Formatting_Output.cpp)

15.3.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 15.5: formatting

Modifying the way the output is displayed.

Definition 15.6: wrapping

When output is not vertically spaced properly.

208

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5773/media/Demo_Formatting_Output.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5773/media/Demo_Formatting_Output.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5773/media/Demo_Formatting_Output.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

15.4 Nested For Loops

15.4.1 General Discussion

15.4.1.1 Nested Control Structures

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We are going to first introduce the concept of nested control structures. Nesting is a
concept that places one item inside of another. Consider:

if expression

true action

else

false action

This is the basic form of the if then else control structure. Now consider:

if age is less than l8

you can't vote

if age is less than l6

you can't drive else you can drive

else

you can vote

if age is less than 2l

you can't drink

else

you can drink

As you can see we simply included as part of the "true action" a statement and
another if then else control structure. We did the same (nested another if then else)
for the "false action". In our example we nested if then else control structures. Nesting
could have an if then else within a while loop. Thus, the concept of nesting allows the
mixing of the different categories of control structures.

Many complex logic problems require using nested control structures. By nesting
control structures (or placing one inside another) we can accomplish almost any
complex logic problem.

15.4.2 An Example -Nested for loops
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Here is an example of a 12 by 12 multiplication table:

209

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1 2 3 4 5 6 7 8 9 10 11 12

1! 1 2 3 4 5 6 7 8 9 10 11 12

2! 2 4 6 8 10 12 14 16 18 20 22 24

3! 3 6 9 12 15 18 21 24 27 30 33 36

4! 4 8 12 16 20 24 28 32 36 40 44 48

5! 5 10 15 20 25 30 35 40 45 50 55 60

7! 7 14 21 28 35 42 49 56 63 70 77 84

8! 8 16 24 32 40 48 56 64 72 80 88 95

9! 9 18 27 36 54 63 72 81 90 99 108 117

10! 10 20 30 40 50 60 70 80 90 100 110 120

11! 11 22 33 44 55 66 77 88 99 110 121 132

12! 12 24 36 48 60 72 84 96 108 120 132 144

We might also see that the answers could be designed as a collection of cells (each cell
being exactly six spaces wide). The C++ source code to produce the above is:

Example 15.5: C++ source code: nested for loops -multiplication table

cout << " ";

for(across=1; across <13; across++)

{

cout << setw(4) << across << " |";

}

cout << endl;

cout << " ";

for(across=1; across <13; across++)

{

cout << "------";

}

cout << endl;

210

for(down=1; down <13; down++)

{

cout << setw(4) << down << " !";

for(across=1; across <13; across++)

{

cout << setw(4) << down*across << " |";

}

cout << endl;

}

Figure 15.4 Colorized Code - multiplication table

211

Figure 15.5 Colorized Output -multiplication table

15.4.3 Demonstration Program in C++

15.4.3.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

15.4.3.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Nested_For_Loops (http://www.opentextbooks.org.hk/system/files/resource/5/5267/578
1/media/Demo_Nested_For_Loops.cpp)

212

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5781/media/Demo_Nested_For_Loops.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5781/media/Demo_Nested_For_Loops.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5781/media/Demo_Nested_For_Loops.cpp

15.4.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 15.7: complex logic

Often solved with nested control structures.

15.5 Practice 15: Counting Loops

15.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Identify which selection control structures are commonly used a counting loops.
3. Be able to write pseudo code or fowcharting for the for control structure.
4. Be able to write C++ source code for a for control structure.
5. When feasible, be able to convert C++ source code from while loop acting like a

counting loop to a for loop and and vice versa.

15.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 15

(***
See the file at <http://cnx.org/content/m20809/latest/index.html>
***)

15.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 15.5.1

Answer the following statements as either true or false:

1. Only for loops can be counting loops.
2. The integer data type has modular arithmetic attributes.
3. The escape code of \n is part of formatting output.

213

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4. Nested for loops is not allowed in the C++ programming language.
5. Counting loops use all four of the loop attributes.

15.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

15.5.5 Lab Assignment

15.5.5.1 Creating a Folder or Sub-Folder for Chapter 15 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 15 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

15.5.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab 15a.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5790/media/La
b_15a.cpp)

15.5.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Compile and run the Lab_15a.cpp source code file. Understand how it works.
• Copy the source code file Lab_15a.cpp naming it: Lab_15b.cpp
• Convert the code that is counting (all four attributes) to a for loop.
• Build (compile and run) your program.

214

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5790/media/Lab_15a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5790/media/Lab_15a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5790/media/Lab_15a.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• After you have successfully written this program, if you are taking this course for
college credit, follow the instructions from your professor/instructor for
submitting it for grading.

15.5.6 Problems

15.5.6.1 Problem 15a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Using proper C++ syntax, convert the following for loop to a while loop.

Example 15.6: C++ source code

for(x =0; x < l0; x++)

{

cout << "Having fun!";

}

15.5.7 Solutions to Exercises in Chapter 15
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 15: Counting Loops

Solution to Exercise 15.5.1

Answers:

1. false
2. true
3. true
4. false
5. true

215

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 16 String Class, Unary
Positive and Negative

16.1 String Class within C++

16.1.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In most programming languages a string is typically a string of characters (string them
along in a series). The rules for handling strings vary from language to language.
Technically, there is no string data type in the C++ programming language. However,
the concept of a string data type makes it easy to handle stings of character data.
Associated with object oriented programming the string class has been added to C++
as a standard part of the programming language.

Most data is more complex than just one character, integer, etc. Programming
languages develop other methods to represent and store data that are more complex.
A complex data type of array is first most students encounter. An array is a sequenced
collection of elements of the same data type with a single identifier name. This
definition perfectly describes our string data type concept. The simplest array is called
a one-dimensional array; also know as a list because we usually list the members or
elements vertically. However, strings are viewed as a one-dimensional array that
visualize as listed horizontally. Strings are an array of character data.

In the "C" programming language all strings were handled as an array of characters
that end in an ASCII null character (the value 0 or the first character in the ASCII
character code set). This changed with the implementation of the string class within
C++ where strings are stored as a length controlled array with a maximum length of
255 characters. This string class implementation also allowed programmers to use the
reserved word string as if it were a data type. Commonly used operators and some
alternatives for the string class are summarized in the following table:

216

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

C++
Operator

Operator
Name

String Class Implementation

= assignment Same as for standard data types

<, >, <= ,
>=, ==,
!=

six relational Same as for standard data types

+ addition Concatenation or Append

sizeof

Usage how
many bytes a
data type
occupies

Implemented using a class member
function named length. Format:
identifier_name. length()
NOTE: The period between the
identifier name and the function name
is the class member operator.

. the
period

class member
Used in conjunction with class
functions

Table 16.1 Summary of commonly used operators and some alternatives

Most other operators are not allowed and basically do not make sense for a string
data type. The above items are demonstrated in the following program.

16.1.2 Demonstration Program in C++

16.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

217

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

16.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_String_Class.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5800/
media/Demo_String_Class.cpp)

16.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 16.1: array

A sequenced collection of elements of the same data type with a single identifier
name.

Definition 16.2: concatenation

Combining two strings into one string.

Definition 16.3: string class

A complex data item that uses object oriented programming.

Definition 16.4: class member

An operator used to invoke functions associated with a class.

16.2 Unary Positive and Negative Operators

16.2.1 General Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Unary positive also known as plus and unary negative also known as minus are unique
operators. The plus and minus when used with a constant value represent the
concept that the values are either positive or negative. Let's consider:

+5 + -2

We have three operators in this order: unary positive, addition, and unary negative.
The answer to this expression is a positive 3. As you can see, one must differentiate
between when the plus sign means unary positive and when it means addition. Unary
negative and subtraction have the same problem. Let's consider:

218

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5800/media/Demo_String_Class.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5800/media/Demo_String_Class.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5800/media/Demo_String_Class.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

-2 -+5

The expression evaluates to negative 7. Let's consider:

7 - -2

First constants that do not have a unary minis in front of them are assumed (the
default) to be positive. When you subtract a negative number it is like adding, thus the
expression evaluates to positive 9.

16.2.2 C++ Code Examples
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The above examples work within the C++ programming language. What happens if we
put a unary positive or unary negative in front of a variable or a named constant?

16.2.2.1 Negation -Unary Negative

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The concept of negation is to take a value and change its sign, that is: fip it. If it
positive make it negative and if it is negative make it positive. Mathematically, it is the
following C++ code example, given that money is an integer variable with a value of 6:

-money

money * -l

The above two expressions evaluate to the same value. In the first line, the value in
the variable money is fetched and then it's negated to a negative 6. In the second line,
the value in the variable money is fetched and then it's multiplied by negative 1
making the answer a negative 6.

16.2.2.2 Unary Positive -Worthless

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Simply to satisfy symmetry, the unary positive was added to the C++ programming
language as on operator. However, it is a totally worthless or useless operator and is
rarely used. However don't be confused the following expression is completely valid:

6 + +5

219

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The second + sign is interpreted as unary positive. The first + sign is interpreted as
addition.

money

+money

money * +l

For all three lines, if the value stored in money is 6 the value of the expression is 6.
Even if the value in money was negative 77 the value of the expression would be
negative 77. The operator does nothing, because multiplying anything by 1 does not
change its value.

16.2.2.3 Possible Confusion

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Do not confuse the unary negative operator with decrement. Decrement changes the
value in the variable and thus is an Lvalue concept. Unary negative does not change
the value of the variable, but uses it in an Rvalue context. It fetches the value and then
negates that value. The original value in the variable does not change.

Because there is no changing of the value associated with the identifier name, the
identifier name could represent a variable or named constant.

16.2.2.4 Exercises

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 16.2.1

Evaluate the following items involving unary positive and unary negative:

1. +10 - -2
2. -18 + 24
3. 4 - +3
4. +8 + - +5
5. +8 + / +5

16.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 16.5: unary positive

A worthless operator almost never used.

Definition 16.6: unary negative

An operator that causes negation.

220

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 16.7: plus

Aka unary positive.

Definition 16.8: minus

Aka unary negative.

16.3 Practice 16: String Classf Unary Positive and
Negative

16.3.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Identify which operators are allowed with the string class.
3. Understand the unary positive and unary negative operators.

16.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 16

(***
See the file at <http://cnx.org/content/m20810/latest/index.html>
***)

16.3.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 16.3.1

Evaluate the following items involving unary positive and unary negative:

1. +13 --2
2. -10+14
3. 4+ -3
4. +8-*+5

221

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

16.3.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

16.3.5 Lab Assignment

16.3.5.1 Creating a Folder or Sub-Folder for Chapter 16 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 16 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

16.3.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_16_Pseudocode (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6101/med
ia/Lab_16_Pseudocode.txt)

16.3.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file from the Lab 16 Pseudocode.txt file. Name it: Lab 16.cpp
• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

222

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6101/media/Lab_16_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6101/media/Lab_16_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6101/media/Lab_16_Pseudocode.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

16.3.6 Problems

16.3.6.1 Problem 16a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Describe the normal C++ operators allowed with the string data type.

16.3.6.2 Problem 16b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Describe why unary positive is worthless.

16.3.6.3 Problem 16c -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Describe how unary negative works.

16.3.7 Solutions to Exercises in Chapter 16
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solution to Exercise 16.2.1

Answers:

1. 12
2. 6
3. 1
4. It's 3. Surprised, but it works. The middle plus sign is addition and the rest are

unary positive or unary negative.
5. Error, no operand between addition and division.

Solutions to Practice 16: String Class, Unary Positive and Negative

Solution to Exercise 16.3.1

Answers:

1. 15
2. 4
3. 1
4. Error, no operand between subtraction and multiplication.

223

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 17 Conditional Operator and
Recursion

17.1 Conditional Operator

17.1.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The conditional operator is unique in that it has three operands separated by two
unconnected operator symbols. All other C++ operators are either unary (one
operator and one operand) or binary (one operator and two operands). On the
"Abbreviated Precedence Chart for C++ Operators" the conditional operator has the
word "trinary" in the comments column. This prefix "tri" means three, thus three
operands.

C++
Operator

Meaning Comments

? : conditional
trinary - three operands with two
operators

As an operator it produces a value for the expression. An easy way to explain the
conditional operator is to convert an "if then else" control structure to an expression
using the conditional operator.

Example 17.1: if then else

if (age > 17)

{

cout << "You can vote.";

}

else

{

cout << "You can't vote.";

}

Example 17.2: conditional = option 1

age > 17 ? cout << "You can vote." : cout << "You can't vote.";

224

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Example 17.3: conditional = option 2

cout << (age > l7 ? "You can vote." : "You can't vote.");

Note: The use of parenthesizes is needed because of the precedence of
operators. The conditional expression is of lower precedence than the insertion
(writing) operator.

The first operand is a test expression similar to those that control program fow in
control structures. This type of expression is also known as a Boolean expression
because they create a Boolean answer of true or false. If the test is true the second
operand becomes the value of the expression. If false, the third operand becomes the
value of the expression. The operators of the question mark and colon separate the
three operands.

Example 17.4: general format

test expression ? expression true : expression false

17.1.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 17.1: conditional

A trinary C++ operator that acts like an if then else control structure.

17.2 Recursion vs Iteration

17.2.1 Repetitive Algorithms
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

"In general, there are two approaches to writing repetitive algorithms. One uses loops;
the other uses recursion. Recursion is a repetitive process in which a function calls
itself. Both approaches provide repetition, and either can be converted to the other's
approach."3 Iteration is one of the categories of control structures. It allows for the
processing of some action zero to many times. Iteration is also known as looping and
repetition. The math term "to iterate" means to perform the statement parts of the
loop. Many problems/tasks require the use of repetitive algorithms. With most
programming languages this can be done with either:

1. looping control structures, specifcally the for loop (an iterative approach)
2. recursive calling of a function

225

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Using repetitive algorithms as the solution method occurs in many mathematical
oriented problems. These in include factorial, Fibonacci numbers, and the Towers of
Hanoi problem. Solutions to these problems are often only presented in terms of
using the recursive method. However, "... you should understand the two major
limitations of recursion. First, recursive solutions may involve extensive overhead
because they use function calls. Second, each time you make a call you use up some
of your memory allocation. If the recursion is deep that is, if there is a large number of
recursive calls then you may run out of memory. Both the factorial and Fibonacci
numbers solutions are better developed iteratively." 1

Understanding how recursion or the iterative approaches work will be left to others.
They are usually covered in detail as part of studying data structures. Our goal in
covering them is to:

1. Provide you with a definition of recursion
2. Introduce the alternate solution approach of iteration

The following demonstration program shows both solutions for 8! (eight factorial).

17.2.2 Demonstration Program in C++

17.2.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

17.2.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Factorial.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5831/medi
a/Demo_Factorial.cpp)

1. Behrouz A. Forouzan and Richard F. Gilberg, Computer Science A Structured Approach using C++ Second Edition (United
States of America: Thompson Brooks/Cole, 2004) 272.

226

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5831/media/Demo_Factorial.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5831/media/Demo_Factorial.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5831/media/Demo_Factorial.cpp

17.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 17.2: recursion

A repetitive process in which a function calls itself.

Definition 17.3: factorial

A math problem that often is solved using recursion.

17.3 Practice 17: Conditional Operator and Recursion

17.3.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Understand the conditional operator and how it works.
3. Understand recursion as a problem solving technique.
4. When feasible, be able to convert C++ source code from a conditional expression

to an if then else and vice versa.

17.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 17

(***
See the file at <http://cnx.org/content/m20815/latest/index.html>
***)

17.3.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 17.3.1

Answer the following statements as either true or false:

1. The conditional expression acts like a case structure.

227

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2. The conditional operator is a two part operator with three operands.
3. Recursion is one method of implementing a repetitive algorithm.
4. Recursion is always preferred over an iterative approach to a repetitive problem.
5. Factorial is usually demonstrated with an iterative approach.

17.3.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

17.3.5 Lab Assignment

17.3.5.1 Creating a Folder or Sub-Folder for Chapter 17 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_17 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

17.3.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_17a (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5840/media/Lab_17
a.cpp)

17.3.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Compile and run the Lab 17a.cpp source code file. Understand how it works.
• Copy the source code file Lab 17a.cpp naming it: Lab 17b.cpp
• Convert the code that is using the if then else to a conditional expression.
• Convert the code that is using the conditional expression to an if then else.

228

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5840/media/Lab_17a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5840/media/Lab_17a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5840/media/Lab_17a.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

17.3.6 Problems

17.3.6.1 Problem 17a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Using proper C++ syntax, convert the following if then else to a conditional expression.

Example 17.5: if then else

if (x ==y)

{

z = l4;

}

else

{

z++;

}

17.3.6.2 Problem 17b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Using proper C++ syntax, convert the following conditional expression to an if then
else.

Example 17.6: conditional

answer = y < z ? 47 : 92;

17.3.7 Solutions to Exercises in Chapter 17
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 17: Conditional Operator and Recursion

Solution to Exercise 17.3.1

Answers:

1. false

229

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2. true
3. true
4. false
5. false

230

Chapter 18 Introduction to Arrays

18.1 Array Data Type

18.1.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

An array is a sequenced collection of elements of the same data type with a single
identifier name. As such, the array data type belongs to the "Complex" category or
family of data types. Arrays can have multiple axes (more than one axis). Each axis is a
dimension. Thus a single dimension array is also known as a list. A two dimension
array is commonly known as a table (a spreadsheet like Excel is a two dimension
array). In real life there are occasions to have data organized into multiple
dimensioned arrays. Consider a theater ticket with section, row and seat (three
dimensions). This module will only cover the single dimension array. Most single
dimension arrays are visualized vertically and are often called a list.

Most programmers are familiar with a special type of array called a string. Strings are
basically a single dimension array of characters. Unlike other single dimension arrays,
we usually envision a string as a horizontal stream of characters and not vertically as a
list. Within C++ the string data type is a length-controlled array and is a pre-defined
data class.

We refer to the individual values as members (or elements) of the array. Programming
languages implement the details of arrays differently. Because there is only one
identifier name assigned to the array, we have operators that allow us to reference or
access the individual members of an array. The operator commonly associated with
referencing array members is the index operator. It is important to learn how to
define an array and initialize its members. Additionally, the sizeof operator is often
used to calculate the number of members in an array.

18.1.2 Defning an Array in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example:

int ages[5] = {49,48,26,l9,l6};

This is the defining of storage space. The square brackets (left [and right]) are used
here to create the array with five integer members and the identifier name of ages.
The assignment with braces (that is a block) establishes the initial values assigned to
the members of the array. Note the use of the sequence or comma operator. We
could have done it this way:

231

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

int ages[] = {49,48,26,l9,l6};

By leaving out the five and having initial values assigned, the compiler will know to
create the array with five storage spaces because there are five values listed. This
method is preferred because we can simply add members to or remove members
from the array by changing the items inside of the braces. We could have also done
this:

int ages[5];

This would have declared the storage space of five integers with the identifier name of
ages but their initial values would have been unknown values (actually there would be
values there but we don't know what they would be and thus think of the values as
garbage). We could assign values later in our program by doing this:

ages[0] = 49;

ages[l] = 48;

ages[2] = 26;

ages[3] = l9;

ages[4] = l6;

Note: The members of the array go from 0 to 4; NOT 1 to 5. This is explained in
more detail in another Connexions module that covers accessing array
members and is listed in the supplemental links provided. See: Array Index
Operator.

18.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 18.1: dimension

An axis of an array.

Definition 18.2: list

A single dimension array.

Definition 18.3: table

A two dimension array.

232

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

18.2 Array Index Operator

18.2.1 Array Index Operator in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example:

int ages[5J = {49,48,26,l9,l6};

int my_age;

my_age = ages[2]

This second usage of the square brackets is as the array notation of dereference or
more commonly called the index operator. As an operator it either provides the value
held by the member of the array (Rvalue) or changes the value of member (Lvalue). In
the above example the member that is two offsets from the front of the array (the
value 26) is assigned to variable named my age. The dereference operator of [2]
means to go the 2nd offset from the front of the ages array and get the value stored
there. In this case the value would be 26. The array members (or elements) are
referenced starting at zero. The more common way for people to reference a list is by
starting with one. Many programming languages reference array members starting at
one, however for some languages (and C++ is one of them) you will need to change
your thinking. Consider:

Position C++
Miss
America

Other
Contests

zero offsets from the
front

ages
[0]

Winner 1st Place

one offsets from the
front

ages
[1]

1st Runner
Up

2nd Place

two offsets from the
front

ages
[2]

2nd Runner
Up

3rd Place

three offsets from the
front

ages
[3]

3rd Runner
Up

4th Place

four offsets from the
front

ages
[4]

4th Runner
Up

5th Place

233

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Saying that my cousin is the 2nd Runner Up in the Miss America contest sounds so

much better than saying that she was in 3rd Place. We would be talking about the
same position in the array of the five finalists.

ages[3] = 20;

This is an example of changing an array's value by assigning 20 to the 4th member of
the array and replacing the value 19 with 20. This is an Lvalue context because the
array is on the left side of the assignment operator.

The C++ operator name is called the array index or simply the index operator and it
uses the square brackets as the operator symbols.

18.2.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 18.4: array member

An element or value in an array.

Definition 18.5: index

An operator that allows us to reference a member of an array.

Definition 18.6: offset

The method of referencing array members by starting at zero.

18.3 Displaying Array Members

18.3.1 Accessing Array Members in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 18.1: accessing the members of an array

int ages[J = {49,48,26,l9,l6};

int counter;

for (counter = 0, counter < 5, counter++)

{

cout « ages[counterJ « endl;

}

This second usage of the square brackets is as the array notation of dereference or
more commonly called the index operator. As an operator it provides the value held
by the member of the array. For example, during one of the iterations of the for loop

234

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

the index (which is an integer data type) will have the value of 3. The expression
ages[counter] would in essence be: ages[3]. The dereference operator of means to go
the 3rd offset from the front of the ages array and get the value stored there. In this
case the value would be 19. The array members (or elements) are referenced starting
at zero. The more common way for people to reference a list is by starting with one.
Many programming languages reference array members starting at one, however for
some languages (and C++ is one of them) you will need to change your thinking.
Consider:

Position C++
Miss
America

Other
Contests

zero offsets from the
front

ages
[0]

Winner 1st Place

one offsets from the
front

ages
[1]

1st Runner
Up

2nd Place

two offsets from the
front

ages
[2]

2nd Runner
Up

3rd Place

three offsets from the
front

ages
[3]

3rd Runner
Up

4th Place

four offsets from the
front

ages
[4]

4th Runner
Up

5th Place

Saying that my cousin is the 2nd Runner Up in the Miss America contest sounds so
much better than saying that she was in 3rd Place. We would be talking about the
same position in the array of the five fnalists.

Rather than using the for loop to display the members of the array, we could have
written five lines of code as follows:

cout << ages[0] << endl;

cout << ages[1] << endl;

cout << ages[2] << endl;

cout << ages[3] << endl;

cout << ages[4] << endl;

235

18.3.2 Using the Sizeof Operator with Arrays in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Example 18.2: using the sizeof operator

int ages[] = {49,48,26,l9,l6};

int counter;

for (counter = 0, counter < sizeof ages 1 sizeof ages[0], counter++)

{

cout « ages[counterJ « endl;

}

Within the control of the for loop for the displaying of the grades, note that we
calculated the number of the members in the array by using the sizeof operator. The
expression is:

sizeof ages 1 sizeof ages[0]

When you ask for the sizeof an array identifier name the answer is how many total
bytes long is the array (or in other words how many bytes of storage does this array
need to store its values). This will depend on the data type of the array and the
number of elements. When you ask for the sizeof one of its members, it tells you how
many bytes one member needs. By dividing the total number of bytes by the size of
one member, we get the answer we want: the number of members in the array. This
method allows for fexible coding. By writing the for loop in this fashion, we can
change the declaration of the array by adding or subtracting members and we don't
need to change our for loop code.

18.3.3 Demonstration Program in C++

18.3.3.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

236

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

18.3.3.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Lab_17a.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5859/media/La
b_17a.cpp)

18.3.4 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 18.7: fexible coding

Using the sizeof operator to calculate the number of members in an array.

18.4 Practice 18: Introduction to Arrays

18.4.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Within C++ source code be able to define a single dimension array.
3. Within C++ source code be able to access array members using the index

operator.
4. Within C++ source code be able to calculate the number of members in an array

using the sizeof operator.

18.4.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 18

(***
See the file at <http://cnx.org/content/m21321/latest/index.html>
***)

237

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5859/media/Lab_17a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5859/media/Lab_17a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5859/media/Lab_17a.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

18.4.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 18.4.1

Answer the following statements as either true or false:

1. The array data type is one of the standard data types in C++.
2. Arrays can have more than one dimension.
3. For loops are often used to display the members of an array.
4. When defning an array, it is preferable to specify how many members are in the

array.
5. Arrays are rarely used to represent data.

18.4.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

18.4.5 Lab Assignment

18.4.5.1 Creating a Folder or Sub-Folder for Chapter 18 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 18 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

18.4.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_18_Narrative_Description (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5868/media/Lab_18_Narrative_Description.txt)

238

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5868/media/Lab_18_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5868/media/Lab_18_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5868/media/Lab_18_Narrative_Description.txt

18.4.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file following the directions in the
Lab_18_Narrative_Description.txt file. Name it: Lab_18.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

18.4.6 Problems

18.4.6.1 Problem 18a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Briefy explain what an array is and list the two common operators used with arrays.

18.4.7 Solutions to Exercises in Chapter 18
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 18: Introduction to Arrays

Solution to Exercise 18.4.1

Answers:

1. false
2. true
3. true
4. false
5. false

239

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 19 File I/O and Array
Functions

19.1 File Input and Output

19.1.1 Overview of File I/O in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We need to understand how to open, read, write and close text files. The following File
Input/Output terms are explained:

Text File - A file consisting of characters from the ASCII character code set. Text files
(also know an ASCII text files) contain character data. When we create a text file we
usually think of it consisting of a series of lines. On each line are several characters
(including spaces, punctuation, etc.) and we generally end the line with a return (this a
character within the ASCII character code set). The return is also known as the new
line character. You are most likely already familiar with the escape code of \n which is
used within C++ to indicate a return character when used with in a literal string with
the cout.

A typical text file consisting of lines can be created by text editors (Notepad) or word
processing programs (Microsoft Word). When using a word processor you must
usually specify the output file as text (.txt) when saving it. Most source code files are
ASCII text files with a unique file extension; such as C++ using .cpp, Pascal using .pas,
Cobol using .cob, etc. Thus, most compiler/Integrated Development Environment
software packages (such as the Bloodshed Dev-C++ 5 compiler/IDE) can be used to
create ASCII text files.

Filename - The name and its extension. Most operating systems have restrictions on
which characters can be used in filenames. Example for MS-DOS and Windows: Lab
05.txt

Because some operating systems do not allow spaces, we suggest that you use the
underscore where needed for spacing in a filename.

Filespec - The location of a file along with its filename. It is short for file specification.
Most operating systems have a set of rules on how to specify the drive and directory
(or path through several directory levels) along with the filename. Example for MS-
DOS and Windows: C:\myfles\cosc 1436\Lab 05.txt

Because some operating systems do not allow spaces, we suggest that you use the
underscore where needed when creating folders or sub-directories.

Open - Your program requesting the operating system to let it have access to an
existing file or to open a new file. Within C++ this is accomplished by including the
header file: <fstream> File Input/Output is handled in C++ by using a pre-defined class

240

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

of data objects, similar to the way string data type is handled. This class of objects has
both data type names and functions built to specifcally accomplish opening and
closing a file.

Within your program you create a local storage variable with the data type of fstream
like this:

fstream inData;

This variable will be used to store the device token that the operating system assigns
to the file being opened. Thus, opening a file uses a class member function call like
this:

inData.open("C:\\myfiles\\cosc l436\\Lab 05.txt", ios::in);

The two parameters passed to the function are the flespec and the method that you
want to use the file (in this example as input). The function provides a returning value
of a device token from the operating system and it is stored in the variable named
inData.

It is considered good programming practice to determine if the file was opened
properly. The device token should be a non zero value. It the operating system gives
you the value of zero it was not able to open the file. The reason it usually can't open a
file is because the flespec is wrong (misspelled or not typed case consistent in some
operating systems) or the file is not stored in the location specifed. We often test the
device token by using an if then control structure with the action consisting of
stopping the program if it is true that you got the zero. The first line of the if then
control structure looks like this:

if (!inData)

Don't be misled by the not operator. This reads "if it is true that the token stored in
inData is zero". If inData is zero, noting zero is 1 or true.

Read - Moving data from a device that has been opened into a memory location
defined in your program. When reading text files that have integer or floating-point
constants, the operating systems converts the text symbols to a binary number. The
operator used is the extraction or read operator. An example of reading is:

inData » next number

This expression is similar to reading from the standard input device (aka the
keyboard):

cin » next number

241

The "cin" is a predefined device token associated with the Standard Input and Output
devices. For our file reading example you might say, "Go to the device identifed by the
token stored in the inData variable and read in the next value storing it in the next
number variable within my program".

Write - Moving data from a memory location defined in your program to a device that
has been opened. When writing integer or floating-point data types, the operating
system converts the binary number into the proper text symbols. The operator used is
the insertion or write operator. An example of writing is:

outData « "Total is: " « total « endl;

This expression is similar to writing to the standard output device (aka the monitor):

cout « "Total is: " « total « endl;

The "cout" is a predefined device token associated with the Standard Input and
Output devices. For our file writing example you might say, "Go to the device identifed
by the token stored in the outData variable and write the items listed (the string
constant then the value stored in my program variable named total then the endl or
new line or the return character)".

Close - Your program requesting the operating system to release a file that was
previously opened. There are two reasons to close a file. First, it releases the file and
frees up the associated operation system resources. Second, if closing a file that was
opened for output; it will clear the out the operating system's bufer and insure that all
of the data is physically stored in the output file. Some examples of closing files:

inData.close();

outData.close();

You need to study this module in conjunction with the demo file provided.

19.1.2 Demonstration Program in C++

19.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo Programs

242

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

19.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo File IO.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/D
emo_File_IO.cpp)
 Demo File IO Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/me
dia/Demo_File_IO_Input.txt)

After you run the program use a text editor to examine the Demo File IO Output.txt
file created by the program. You should see the output as: Total is: 33.3

19.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 19.1: text file

A file consisting of characters from the ASCII character code set.

Definition 19.2: filename

The name and its extension.

Definition 19.3: filespec

The location of a file along with its filename.

Definition 19.4: open

Your program requesting the operating system to let it have access to an existing file
or to open a new file.

Definition 19.5: device token

A key value provided by the operating system to associate a device to your program.

Definition 19.6: read

Moving data from a device that has been opened into a memory location defined in
your program.

Definition 19.7: write

Moving data from a memory location defined in your program to a device that has
been opened.

Definition 19.8: close

243

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/Demo_File_IO.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/Demo_File_IO.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/Demo_File_IO.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/Demo_File_IO_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/Demo_File_IO_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5878/media/Demo_File_IO_Input.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Your program requesting the operating system to release a file that was previously
opened.

19.2 Arrays and Functions

19.2.1 Overview of Array Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Arrays are an important complex data type used in almost all programming. We
continue to concentrate on simple one dimension arrays also called a list. Most
programmers develop a series of user defined specific task functions that can be used
with an array for normal processing. These functions are usually passed the array
along with the number of elements within the array. Some of functions also pass
another piece of data needed for that particular functions task.

This module covers the displaying the array members on the monitor via calling an
array function dedicated to that task. You need to study this module in conjunction
with the demo file provided.

19.2.2 Demonstration Program in C++

19.2.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

19.2.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Array Display Function.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5884/media/Demo_Array_Display_Function.cpp)

244

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5884/media/Demo_Array_Display_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5884/media/Demo_Array_Display_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5884/media/Demo_Array_Display_Function.cpp

19.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 19.9: array function

A user defined specific task function designed to process an array.

19.3 Loading an Array from a File

19.3.1 Conceptual Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Loading an array from a file presents an interesting dilemma. The problem resolves
around how many elements you should plan for in the array. Let's say 100, but what if
the file has fewer or more than 100 values. How can the program handle it correctly?

The solution involves some simple steps:

1. We can read the file once to get the element count. Thus, we will know exactly
how many members (elements) we will need.

2. We can then create an array using dynamic memory allocation by defning the
array within a function so that it has local scope. Local scope variables are created
during the execution of the program and use the stack as the storage location
instead of the data area. If you define the array outside of a function (global
scope also known as static memory allocation) it stores it in the data area and
must know how much storage space to allocate to the array when you write the
source code. Since we don't know how many elements will be on the input file
when we write the source code defning an array with global scope will not work.
But, we can determine exactly how many members we need for the array by
having our program count them (step 1) so that we can then define the array with
local scope to the precise size needed.

3. We can then load the array by reading the file a second time and storing the
values read into the array just created.

This method is demonstrated in the demo file provided, thus you need to study this
material in conjunction with the demo program.

19.3.2 Demonstration Program in C++

19.3.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as

245

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

19.3.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Loading Array from File.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/5890/media/Demo_Loading_Array_from_File.cpp)
 Demo Farm Acres Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/589
0/media/Demo_Farm_Acres_Input.txt)

19.3.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 19.10: dynamic memory

Aka stack created memory associated with local scope.

Definition 19.11: static memory

Aka data area memory associated with global scope.

19.4 Math Statistics with Arrays

19.4.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Arrays are an important complex data type used in almost all programming. We
continue to concentrate on simple one dimension arrays also called a list. Most
programmers develop a series of user definedspecific task functions that can be
used with an array for normal processing. These functions are usually passed the
array along with the number of elements within the array. Some of functions also pass
another piece of data needed for that particular functions task.

This module covers the totaling of the members of an integer array member. The
Latin name for totaling is summa sometimes shortened to the word sum. The array
function is often called "sum" and it does some parameter passing. It passes into the
function the common two items of the array: its name along with the number of

246

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5890/media/Demo_Loading_Array_from_File.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5890/media/Demo_Loading_Array_from_File.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5890/media/Demo_Loading_Array_from_File.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5890/media/Demo_Farm_Acres_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5890/media/Demo_Farm_Acres_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5890/media/Demo_Farm_Acres_Input.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

elements; but it also returns a value representing sum or total of the values within the
array. You need to study this module in conjunction with the demo file provided.

Other mathematical functions often associated with statistics such as: average, count,
minimum, maximum, standard deviation, etc. are often developed for processing
arrays.

19.4.2 Demonstration Program in C++

19.4.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

19.4.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Sum Array Function.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5896/media/Demo_Sum_Array_Function.cpp)

 Demo Farm Acres Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/58
96/media/Demo_Farm_Acres_Input%281%29.txt)

19.4.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 19.12: sum

Latin for summa or a total.

247

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5896/media/Demo_Sum_Array_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5896/media/Demo_Sum_Array_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5896/media/Demo_Sum_Array_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5896/media/Demo_Farm_Acres_Input%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5896/media/Demo_Farm_Acres_Input%281%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5896/media/Demo_Farm_Acres_Input%281%29.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

19.5 Practice 19: File I/O and Array Functions

19.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Within C++ source code be able to understand basic file input and file output.
3. Understand why we test to see if a file was opened properly.
4. Understand why we close a file when we are done with it.
5. Within C++ source code be able to understand functions for arrays, specifcally

counting the number of elements in a file so you can define an array, load that
array with those elements, display the array and sum the array.

6. Within C++ source code be able to create functions for arrays, specifcally a
function for averaging.

19.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 19

(***
See the file at <http://cnx.org/content/m21630/latest/index.html>
***)

19.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 19.5.1

Answer the following statements as either true or false:

1. Text files are hard to create.
2. A filespec refers to a very small (like a spec dust) file.
3. A device token is a special non zero value the operating system gives your

program and is associated with the file that you requested to be opened.
4. Programmers should not worry about closing a file.
5. Where you define an item, that is global or local scope, is rarely important.

248

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

19.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

19.5.5 Lab Assignment

19.5.5.1 Creating a Folder or Sub-Folder for Chapter 19 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_19 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

19.5.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab 19 Narrative Description.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5905/media/Lab_19_Narrative_Description.txt)

19.5.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file following the directions in the Lab 19 Narrative
Description.txt file. Name it: Lab 19.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

249

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5905/media/Lab_19_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5905/media/Lab_19_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5905/media/Lab_19_Narrative_Description.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

19.5.6 Problems

19.5.6.1 Problem 19a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

For what purpose do we use the sizeof operator with an array.

19.5.6.2 Problem 19b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Why would we open a file and count its elements and then close the file.

19.5.7 Solutions to Exercises in Chapter 19
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 19: File I/O and Array Functions

Solution to Exercise 19.5.1

Answers:

1. false
2. false
3. true
4. false
5. false

250

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 20 More Array Functions

20.1 Finding a Specifc Member of an Arrayl

20.1.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Finding a specific member of an array means searching the array until the member is
found. It's possible that the member does not exist and the programmer must handle
that possibility within the logic of his algorithm. Two specific searches can be made for
the maximum (largest) values in the array or the minimum (smallest) value in the
array. Maximum and minimum are also know as max and min.

There are two basic ways of searching for a specific value:

1. Linear search
2. Binary search

"The linear search is a very simple algorithm. Sometimes called a sequential search, it
uses a loop to sequentially step through an array, starting with the first element. It
compares each element with the value being search for, and stops when either the
value is found or the end of the array is encountered. If the value being searched for is
not in the array, the algorithm will search to the end of the array."2

Binary search is not cover in this module. Linear search and searching for the
maximum is demonstrated in the demo file provided, thus you need to study this
material in conjunction with the demo program.

20.1.2 Demonstration Program in C++

20.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

251

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

20.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Finding Array Member.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/5916/media/Demo_Finding_Array_Member.cpp)

 Demo Farm Acres Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/59
16/media/Demo_Farm_Acres_Input%282%29.txt)

20.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 20.1: linear search

Using a loop to sequentially step through an array.

Definition 20.2: maximum

Aka max or the largest member of an array.

Definition 20.3: minimum

Aka min or the smallest member of an array.

20.2 Sorting an Array

20.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Sorting is the process through which data are arranged according to their values.
There are several sorting algorithms or methods that can be used to sort data. Some
include:

1. Bubble
2. Selection
3. Insertion

We will not be covering the selection or insertion sort methods in this module.

252

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5916/media/Demo_Finding_Array_Member.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5916/media/Demo_Finding_Array_Member.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5916/media/Demo_Finding_Array_Member.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5916/media/Demo_Farm_Acres_Input%282%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5916/media/Demo_Farm_Acres_Input%282%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5916/media/Demo_Farm_Acres_Input%282%29.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The bubble sort is an easy way to arrange data in ascending or descending
order. If an array is sorted in ascending order, it means the values in the
array are stored from lowest to highest. If values are sorted in descending
order, they are stored from highest to lowest. Bubble sort works by
comparing each element with its neighbor and swapping them it they are
not in the desired order. 1

”
There are several different methods of bubble sorting and some methods are more
efficient than others. Most use a pair of nested loops or iteration control structures.
One method sets a flag that indicates that the array is sorted, then does a pass and if
any elements are exchanged (switched); it sets the flag to indicate that the array is not
sorted. It is executed until it makes a pass and nothing is exchanged.

Figure 20.1 The bubble sort

The bubble sort gets its name from the lighter bubbles that move or "bubble up" to
the top of a glass of soda pop. We move the smaller elements of the array to the top
as the larger elements move to the bottom of the array. This can be viewed from a
different perspective. Using an Italian salad dressing with oil, water and herbs; once
shaken you can either:

1. envision the lighter oil rising to the top; OR
2. envision the heaver water and herbs sinking to the bottom

Either way is correct and this version of the code simply demonstrates the sinking to
the bottom the heaver or larger elements of the array.

“

1. Tony Gaddis, Judy Walters and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United States of
America: Pearson Addison Wesley, 2008) 569.

253

Bubble sorting is demonstrated in the demo file provided, thus you need to study this
material in conjunction with the demo program.

20.2.2 Demonstration Program in C++

20.2.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

20.2.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Sort Array Function.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/
5922/media/Demo_Sort_Array_Function.cpp)

 Demo Farm Acres Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/59
22/media/Demo_Farm_Acres_Input%283%29.txt)

20.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 20.4: sorting

Arranging data according to their values.

Definition 20.5: bubble sort

A method of swapping array members until they are in the desired sequence.

254

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5922/media/Demo_Sort_Array_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5922/media/Demo_Sort_Array_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5922/media/Demo_Sort_Array_Function.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5922/media/Demo_Farm_Acres_Input%283%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5922/media/Demo_Farm_Acres_Input%283%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5922/media/Demo_Farm_Acres_Input%283%29.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

20.3 Practice 20: More Array Functions

20.3.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Within C++ source code be able to understand functions for arrays, specifcally
searching a array's values to see if a given value exists, fnding the maximum value
in an array and sorting an array.

3. Within C++ source code be able to create functions for arrays, specifcally a
function for fnding the smallest value in an array.

4. Within C++ source code be able to modifying existing code to process different
types of arrays.

20.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 20

(***
See the file at <http://cnx.org/content/m21631/latest/index.html>
***)

20.3.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 20.3.1

Answer the following statements as either true or false:

1. Linear searches require complex algorithms.
2. Functions are often created for searching for the max and min values in an array.
3. The bubble sort is an easy way to arrange data an array.
4. There is only one method of bubble sorting.
5. Sorting an array is frequently done.

255

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

20.3.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

20.3.5 Lab Assignment

20.3.5.1 Creating a Folder or Sub-Folder for Chapter 20 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 20 within the folder named: Cpp Source Code Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

20.3.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_20_Narrative_Description (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5931/media/Lab_20_Narrative_Description.txt)

20.3.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file following the directions in the Lab 20 Narrative
Description.txt file. Name it: Lab 20.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

256

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5931/media/Lab_20_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5931/media/Lab_20_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5931/media/Lab_20_Narrative_Description.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

20.3.6 Problems

20.3.6.1 Problem 20a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Give a short explaination of bubble sorting.

20.3.7 Solutions to Exercises in Chapter 20
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 20: More Array Functions

Solution to Exercise 20.3.1

Answers:

1. false
2. true
3. true
4. false
5. true

257

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 21 More on Typedef

21.1 Versatile Code with Typedef

21.1.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Everyone seeks of ways to be more efcient in what they do. A farmer uses a tractor
instead of a horse. A construction worker uses an air powered nail gun instead of a
hammer. Programmers are no different than others, in that they are constantly
improving their ability to produce correctly working programs. Some aspect of this is
the use of modular/structured programming, proper documentation and following
industry rules for a specific programming language. One example of efcient coding is
letting the computer count the number of elements in an array. If we define an array:

int ages[J = {33,32,l0,3};

We can use the following expression to calculate the number of members in the array:

sizeof ages 1 sizeof ages[0]

This type of fexible coding allows us to change the members of the array by adding
or subtracting a values, like this:

int ages[J = {57,33,32,3,l};

Thus, we don't have to modify our code that uses the expression that calculates the
number of member in the array.

One use of the typedef is to allow us to write code that can be quickly changed to
handle different data types. There are several integer and floating-point data types
that all store number values with different domains. If we write our code using some
typedef statement, then our code becomes versatile. By changing only our typedef
commands, our code can be used to process data of a different data type. This is
demonstrated within the demo file provided, thus you need to study this material in
conjunction with the demo program.

258

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

21.1.2 Demonstration Program in C++

21.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

21.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Versatile Array Functions.cpp (http://www.opentextbooks.org.hk/system/files/resource/
5/5267/5941/media/Demo_Versatile_Array_Functions.cpp)

 Demo Farm Acres Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/59
41/media/Demo_Farm_Acres_Input%284%29.txt)

 Demo Deposit Checks Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5941/media/Demo_Deposit_Checks_Input.txt)

21.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 21.1: versatile

Easily modifying code to handle another data type.

Definition 21.2: flexible coding

Using the sizeof operator to calculate the number of members in an array.

Definition 21.3: typedef

Allows the programmer to create an alias, or synonym, for an existing data type.

259

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Versatile_Array_Functions.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Versatile_Array_Functions.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Versatile_Array_Functions.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Farm_Acres_Input%284%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Farm_Acres_Input%284%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Farm_Acres_Input%284%29.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Deposit_Checks_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Deposit_Checks_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5941/media/Demo_Deposit_Checks_Input.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

21.2 Practice 21: More on Typedef

21.2.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Understand how typedef is used within C++ source code be able make the code
versatile that is easy to change for different data types.

21.2.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 21

(***
See the file at <http://cnx.org/content/m21632/latest/index.html>
***)

21.2.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 21.2.1

Answer the following statements as either true or false:

1. Most programmers rarely worry about efficiency.
2. Modular/structured programming helps improve efficiency.
3. Flexible coding helps improve efciency.
4. Who cares about indentation and alignment within source code. It's a waste of

time.
5. Versatile code is a concept that is easy to understand.

21.2.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

260

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

21.2.5 Lab Assignment

21.2.5.1 Creating a Folder or Sub-Folder for Chapter 18 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_21 within the folder named: Cpp_Source_Cod_ Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

21.2.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab 21 Narrative Description.txt (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5950/media/Lab_21_Narrative_Description.txt)

 Lab 21 Input.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/L
ab_21_Input.txt)

21.2.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file following the directions in the
Lab_21_Narrative_Description.txt file. Name it: Lab_21.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

261

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/Lab_21_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/Lab_21_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/Lab_21_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/Lab_21_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/Lab_21_Input.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5950/media/Lab_21_Input.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

21.2.6 Problems

21.2.6.1 Problem 21a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Explain the difference between flexible coding and versatile coding.

21.2.7 Solutions to Exercises in Chapter 21
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 21: More on Typedef

Solution to Exercise 21.2.1

Answers:

1. false - Efficiency of code execution, no; efficiency of code production and
maintenance, yes.

2. true
3. true
4. false
5. maybe true and maybe false - It does require some efort to catch on to how it

works.

262

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 22 Pointers

22.1 Address Operator

22.1.1 Address Operator in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Every variable is assigned a memory location whose address can be
retrieved using the address operator &. The address of a memory location
is called a pointer. Every variable in an executing program is allocated a
section of memory large enough to hold a value of that variable's type. 1

”
Thus, whether the variables are global scope and use the data area for storage or
local scope and use the stack for storage; you can ask the question at what address in
the memory does this variable exist. Given an integer variable named age:

int age = 47;

We can use the address operator [which is the ampersand or &] to determine where
it exists (or its address) in the memory by:

&age

This expression is a pointer data type. The concept of an address and a pointer are
one in the same. A pointer points to the location in memory because the value of a
pointer is the address were the data item resides in the memory.

The address operator is commonly used in two ways:

1. To do parameter passing by reference
2. To establish the value of pointers

Both of these items are covered in the supplemental links to this module. You can
print out the value of the address with the following code:

cout « &age;

“

1. Tony Gaddis, Judy Walters and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United States of
America: Pearson Addison Wesley, 2008) 597.

263

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

This will by default print the value in hexadecimal. Some people prefer an integer
value and to print it as an integer you will need to cast the address into a long data
type:

cout « long(&age);

One additional tidbit, an array's name is by definition a pointer to the arrays first
element. Thus:

int iqs[] = {l22, l05, l3l, 97};

establishes " iqs " as a pointer to the array.

22.1.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 22.1: address operator

The ampersand or &.

Definition 22.2: pointer

A variable that holds an address as its value.

22.2 Parameter Passing by Reference

22.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When we pass parameters to functions we usually pass by value; that is the calling
function provides several values to the called function as needed. The called function
takes these values which have local scope and stores them on the stack using them as
needed for whatever processing the functions accomplishes. This is the preferred
method when calling user defined specific task functions. The called function passes
back a single value as the return item if needed. This has the advantage of a closed
communications model with everything being neatly passed in as values and any
needed item returned back as a parameter.

By necessity there are two exceptions to this closed communications model:

1. When we need more than one item of information returned by the function
2. When a copy of an argument cannot reasonably or correctly be made (example:

file stream objects).

These exceptions are handled by parameter passing by reference instead of passing a
value. The item passed is called a reference variable and it represents a concept of

264

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

an alias for the variable. Any change made to the reference variable is actually
performed on the variable that it represents. The symbol of the ampersand is used to
designate the reference variable (and it is associated with the address operator).

Example 22.1: parameter passing by reference

// prototype

void process values(int qty dimes, int qty quarters, double &value

dimes, double &value quarters);

// variable definitions

int dimes = 45;

int quarters = 33;

double value dimes;

double value quarters;

// somewhere in the function main

process values(dimes, quarters, value dimes, value quarters);

// definition of the function

void process values(int qty dimes, int qty quarters, double &value

dimes, double &value quarters);

{

value dimes = dimes * 0.l0;

value quarters = quarters * 0.25;

}

Note: The ampersand must appear in both the prototype and the function
definition but it does not appear in the function call.

The above example shows the basic mechanics of parameter passing by reference.
You should study the demonstration program in conjunction with this module.

22.2.2 Demonstration Program in C++

22.2.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

265

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

22.2.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Parameter Passing.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5
963/media/Demo_Parameter_Passing.cpp)

22.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 22.3: reference variable

Used with parameter passing by reference.

22.3 Pointer Data Type

22.3.1 Pointer Data Type in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A pointer variable is a variable that holds the address of a memory location.

Every variable is assigned a memory location whose address can be
retrieved using the address operator &. The address of a memory location
is called a pointer. 2

”
The pointer data type allows us to designate a variable to hold an address or a
pointer. The concept of an address and a pointer are one in the same. A pointer points
to the location in memory because the value of a pointer is the address were the data
item resides in the memory. Given an integer variable named age:

int age = 47;

We can create a pointer variable and establish its value which would be the done
using the address operator [which is the ampersand or &] by:

“

2. Tony Gaddis, Judy Walters and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United States of
America: Pearson Addison Wesley, 2008) 597.

266

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5963/media/Demo_Parameter_Passing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5963/media/Demo_Parameter_Passing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5963/media/Demo_Parameter_Passing.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

int * int pointer = &age;

The asterisk is used to designate that the variable int pointer is an integer pointer
[int *] . This means that whenever we use the variable int pointer that the compiler

will know that it is a pointer that points to an integer.

In order to use pointers you will need to understand the indirection operator which
is covered a supplemental link.

22.3.2 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 22.4: pointer

A variable that holds an address as its value.

22.4 Indirection Operator

22.4.1 Indirection Operator in C++
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

When we pass parameters to functions we usually pass by value; that is the calling
function provides several values to the called function as needed. The called function
takes these values which have local scope and stores them on the stack using them
as needed for whatever processing the functions accomplishes. This is the preferred
method when calling user defined specific task functions. The called function passes
back a single value as the return item if needed. This has the advantage of a closed
communications model with everything being neatly passed in as values and any
needed item returned back as a parameter.

By necessity there are two exceptions to this closed communications model:

1. When we need more than one item of information returned by the function
2. When a copy of an argument cannot reasonably or correctly be made (example:

file stream objects).

These exceptions could be handled by parameter passing by reference instead of
passing a value. Although different syntax than parameter passing when using a
reference variable; using a pointer variable and the indirection operator can
accomplish the same effect. The indirection operator is the asterisk or the character
that we also use for multiplication. The concept of indirection is also known as
dereferencing, meaning that we are not interested in the pointer but want the item
to which the address is referring or referencing.

Example 22.2: parameter passing with pointers

267

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

// prototype

void process values(int qty dimes, int qty quarters, double * ptr

value dimes, double * ptr value quarter

// variable definitions

int dimes = 45;

int quarters = 33;

double value dimes;

double value quarters;

double * ptr value dimes = &value dimes;

double * ptr value quarters = &value quarters;

// somewhere in the function main

process values(dimes, quarters, ptr value dimes, ptr value quarters);

// definition of the function

void process values(int qty dimes, int qty quarters, double * ptr

value dimes, double * ptr quarters);

{

* ptr value dimes = dimes * 0.l0;

* ptr value quarters = quarters * 0.25;

}

Note: The asterisk and must appear in both the prototype and the function
definition when

defning the pointer variables but it does not appear in the function call when the
pointers are passed into the function.

The above example shows the basic mechanics of the indirection operator.

The use of pointers with indirection is often preferred for processing arrays. The array
index operator is also known as the array method of dereferencing. The following
couts are equivalent:

int ages[J = {47, 45, l8, ll, 9};

cout « ages[3J;

cout « *(ages + 3);

The both say, "The name of an array is a pointer; take the pointer and calculate a new
address that points to the 3rd offset by adding the correct number of bytes onto the
pointer (integer data type is normally 4 bytes long 3 offsets times 4 bytes is 12 bytes);
then dereference that pointer (since this is an Rvalue context - fetch me the value that
you are pointing at) and send it to the standard output device."

You should study the demonstration programs in conjunction with this module.

268

22.4.2 Demonstration Program in C++

22.4.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

22.4.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo Pointer Passing.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/597
2/media/Demo_Pointer_Passing.cpp)

 Demo Array Pointer Processing.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/
5267/5972/media/Demo_Array_Pointer_Processing.cpp)

22.4.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 22.5: indirection operator

The asterisk used for dereferencing a pointer.

Definition 22.6: dereferencing

The concept of using the item to which a pointer or address is pointing at.

269

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5972/media/Demo_Pointer_Passing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5972/media/Demo_Pointer_Passing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5972/media/Demo_Pointer_Passing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5972/media/Demo_Array_Pointer_Processing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5972/media/Demo_Array_Pointer_Processing.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5972/media/Demo_Array_Pointer_Processing.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

22.5 Practice 22: Pointers

22.5.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Acquire a general understanding of the pointer data type, the address and
indirection operators, the concept of dereferencing.

3. Given pseudocode, write the C++ code for a program that uses reference
variables.

22.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 22

(***
See the file at <http://cnx.org/content/m22153/latest/index.html>
***)

22.5.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 22.5.1

Answer the following statements as either true or false:

1. The address operator is the @ symbol.
2. Passing by reference should be used when there is only one item to be modifed.
3. Variables of pointer data type are defined using an asterisk.
4. Using pointers with the indirection operator can be used instead of passing

variables by reference.
5. There are two kinds of dereferencing -- one with the indirection operator and the

other with the index operator.

270

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

22.5.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

22.5.5 Lab Assignment

22.5.5.1 Creating a Folder or Sub-Folder for Chapter 22 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 22 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

22.5.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab 22 Pseudocode.txt (http://www.opentextbooks.org.hk/system/files/resource/5/5267/5981/med
ia/Lab_22_Pseudocode.txt)

22.5.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file from the Lab_22_Pseudocode.txt file. Name it:
Lab_22.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

271

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5981/media/Lab_22_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5981/media/Lab_22_Pseudocode.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5981/media/Lab_22_Pseudocode.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

22.5.6 Problems

22.5.6.1 Problem 22a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Give a general explaination of the pointer data type and the use of addresses and
dereferencing. Include both the indirection operator and the index operator in your
discussion.

22.5.7 Solutions to Exercises in Chapter 22
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 22: Pointers

Solution to Exercise 22.5.1

Answers:

1. false
2. false
3. true
4. true
5. true

272

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 23 More Arrays & Compiler
Directives

23.1 Multidimensional Arrays

23.1.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

An array is a sequenced collection of elements of the same data type with a single
identifier name. As such, the array data type belongs to the "Complex" category or
family of data types. Arrays can have multiple axes (more than one axis). Each axis is a
dimension. Thus a single dimension array is also known as a list. A two dimension
array is commonly known as a table (a spreadsheet like Excel is a two dimension
array). In real life there are occasions to have data organized into multiple
dimensioned arrays. Consider a theater ticket with section, row and seat (three
dimensions).

We refer to the individual values as members (or elements) of the array. Programming
languages implement the details of arrays differently. Because there is only one
identifier name assigned to the array, we have operators that allow us to reference or
access the individual members of an array.

The operator commonly associated with referencing an array member is the index
operator. It is important to learn how to define an array and initialize its members.
The index operator is a set of square brackets with an integer value between the
brackets that represents the offset from the front of the array.

Multidimensional arrays use one set of square brackets per dimension or axis of the
array. For example a table which has two dimensions would use two sets of square
brackets to define the array variable and two sets of square brackets for the index
operators to access the members of the array.

Because of the complexity for multidimensional arrays, the demonstration program
shows a two dimension array and you should study it in conjunction with this module.

23.1.2 Demonstration Program in C++

23.1.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as

273

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

23.1.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Multidimension_Arrays.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5
267/5991/media/Demo_Multidimension_Arrays.cpp)

23.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 23.1: dimension

An axis of an array.

Definition 23.2: list

A single dimension array.

Definition 23.3: table

A two dimension array.

Definition 23.4: array member

An element or value in an array.

Definition 23.5: index

An operator that allows us to reference a member of an array.

Definition 23.6: offset

The method of referencing array members by starting at zero.

274

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5991/media/Demo_Multidimension_Arrays.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5991/media/Demo_Multidimension_Arrays.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5991/media/Demo_Multidimension_Arrays.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

23.2 Conditional Compilation

23.2.1 Overview
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

As you proceed in your programming career, the problems/tasks that need solving
become more complex. The documentation of the algorithm done in pseudo code (or
some other method) will still need to be converted into a programming solution.
Inevitably, when writing that source code mistakes will be introduced. When learning
the syntax of a new programming language, programmers sometimes automatically
think in their old language syntax, and make mistakes that are sometimes hard to
detect.

The concept of using a fag to either activate or have remain dormant certain lines of
code designed solely to help with the debugging of a program has existed since
almost the beginning of modern computer programming (1950's). One of the
debugging tools available within C++ is conditional compilation. For our fag, we would
use a defined constant like:

#define DEBUG l

Then using another compiler directive pair, the if and endif, we can have the compiler
during the pre-processor either include or not include one or more lines of code.

#if DEBUG

cout « "\n***** DEBUG Code ** Hi mom!";

#endif

Of course saying "Hi mom!" is not very useful for debugging your code. However, you
can use test data with conditional compilation. A series of input data values and a
series of output predictors can be placed in the program. Then you can turn on the
debug feature or turn them of with your debugging fag.

You should study the demonstration program in conjunction with this module.

23.2.2 Demonstration Program in C++

23.2.2.1 Creating a Folder or Sub-Folder for Source Code Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as

275

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

23.2.2.2 Download the Demo Program

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s). Following the methods of your compiler/IDE, compile and run the
program(s). Study the source code file(s) in conjunction with other learning materials.

 Demo_Conditional_Compilation (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/5997/media/Demo_Conditional_Compilation.cpp)

23.2.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 23.7: conditional compilation

A compiler directive that includes or excludes lines of code based on a Boolean
expression.

23.3 Practice 23: More Arrays & Compiler Directives

23.3.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Have an exposure to multidimensional arrays.
3. Understand conditional compilation as a testing technique.
4. When supplied with test data, add conditional compilation lines to an existing C++

source code.

276

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5997/media/Demo_Conditional_Compilation.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5997/media/Demo_Conditional_Compilation.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/5997/media/Demo_Conditional_Compilation.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

23.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 23

(***
See the file at <http://cnx.org/content/m22205/latest/index.html>
***)

23.3.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 23.3.1

Answer the following statements as either true or false:

1. Very few arrays need more than one axis.
2. Multidimensional arrays use multiple square brackets, one set per axis.
3. Using a fag to activate debugging lines of code has been around since the 1950s.
4. Within C++ we can use the conditional compilation compiler directives to

implement debugging line of code.

23.3.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

23.3.5 Lab Assignment

23.3.5.1 Creating a Folder or Sub-Folder for Chapter 23 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter 23 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

277

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

23.3.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab 23a.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6006/media/La
b_23a.cpp)

23.3.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Compile and run the Lab_23a.cpp source code file. Understand how it works.
• Copy the source code file Lab_23a.cpp naming it: Lab_23b.cpp
• Add conditional compilation statements similar to the demonstration program

used in the Conditional Compilation Connexions module. Specifcally use: 157
pennies, 92 nickels, 23 dimes and 31 quarters as your test data.

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

23.3.6 Problems

23.3.6.1 Problem 23a - Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Give three examples in the real world where data might be structured into a
multidimensional array. One example (and you can't count it) is a theatre ticket which
might have a section, row and seat number on it.

23.3.7 Solutions to Exercises in Chapter 23
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 23: More Arrays & Compiler Directives

Solution to Exercise 23.3.1

Answers:

1. false

278

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6006/media/Lab_23a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6006/media/Lab_23a.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6006/media/Lab_23a.cpp
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

2. true
3. true
4. true

279

Chapter 24 OOP & HPC

24.1 Object Oriented Programming

24.1.1 Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In procedural programming, the programmer constructs procedures (or
functions, as they are called in C++). The procedures are collections of
programming statements that perform a specific task. The procedures
each contain their own variables and commonly share variables with
other procedures. Procedural programming is centered on the procedure or
function. 1

”
For decades (1950s to through the 1980s) most programming was taught as
procedural programming. Coupled with the imposition of using standardized control
structures in the late 1960s, we have what is typically called modular structured
programming.

Another, equally valid approach to programming is object-oriented programming or
OOP. It was introduced in the mid 1980s and was widely accepted as a programming
approach by the early 1990s. The first languages to introduce OOP to the masses were
C++ and Java. Shortly after their introduction, there were American National Standards
Institute (ANSI) standards established for those languages. Today, C++ and Java are
widely used.

The primary diferences between the two approaches is their use of data. In
a procedural program, the design centers around the rules or procedures
for processing the data. The procedures, implemented as functions in C++,
are the focus of the design. The data objects are passed to the functions as
parameters. The key question is how the functions will transform the data
they receive for either storage or further processing. Procedural
programming has been the mainstay of computer science since its
beginning and is still heavily used today.

In an object-oriented program, abbreviated OOP, the design centers
around objects that contain (encapsulate) the data and the necessary
functions to process the data. In OOP, the objects own the functions that
process the data. 2

”

“

“

1. Tony Gaddis, Judy Walters and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United States of
America: Pearson Addison Wesley, 2008) 22.

280

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Object-oriented programming ... is centered on the object. An object is a
programming element that contains data and the procedures that operate
on the data. The objects contain, within themselves, both the information
and the ability to manipulate the information. 3

”
To help complicate the picture, the C++ programming language can be used (and is
used) to write either a procedural program (modular structured program) or an
object-oriented program. Some items used by those writing procedural programs in
C++ are in fact objects. Examples include:

1. Standard input and output items of: cout and cin; example: cout.setf(ios::fixed)
2. Strings; calculating the length with: identifier name.length()
3. File input/output; example: inData.open (filespec, ios::in)

Objects are implemented with a "class" data type; which is a complex or derived data
type. Implementation details will not be presented in the module.

24.1.2 Transition
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Many students will learn modular structured programming before learning object-
oriented programming. The common way of teaching programming fundamentals is
to cover them or divide them into three courses, usually covered in this order:

1. Modular structured
2. Object-oriented
3. Data structures

The following items learned in modular structured programming fow into the learning
of object-oriented programming:

1. The standard and complex data types are the same
2. The operators are the same, thus data manipulation is the same
3. The control structures are the same
4. Concepts of documentation and making code readable are the same
5. The use of test data to verify logical thinking and program results is similar

24.1.3 Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 24.1: procedural programming

Aka modular structured programming.

“

2. Behrouz A. Forouzan and Richard F. Gilberg, Computer Science A Structured Approach using C++ Second Edition (United
States of America: Thompson Brooks/Cole, 2004) 156.

3. Tony Gaddis, Judy Walters and Godfrey Muganda, Starting Out with C++ Early Objects Sixth Edition (United States of
America: Pearson Addison Wesley, 2008) 22.

281

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Definition 24.2: object oriented

A programming approach that encapsulates data with functions.

24.2 Understanding High Performance Computing

24.2.1 Preface -November 13, 2009
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This module was created as an entry for the 2008-'09 Open Education Cup: High
Performance Computing competition. The competition was supervised by Dr. Jan
Erik Odegard, Executive Director of the Ken Kennedy Institute for Information
Technology at Rice University. It was submitted to the "Parallel Algorithms and
Applications" category and specifcally designed as an introduction to the subject
targeting intermediate grade school students to collegiate undergraduates who have
little knowledge of High Performance Computing (HPC).

This module received the "Best Module" award for the "Parallel Algorithms and
Applications" category which included a US $500 prize.

Those who reviewed the entries for the competition made some suggestions for
improvement and most have been incorporated into this revised edition of the
module. As always; my thanks to them and all others who make suggestions for
improving educational materials.

Kenneth Leroy Busbee

24.2.2 Introduction to High Performance Computing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Grouping multiple computers or multiple computer processors to accomplish a task
quicker is referred to as High Performance Computing (HPC). We want to explain
how this is accomplished using parallel programming algorithms or concepts.

24.2.2.1 The Shift from a Single Processor to Parallel

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We are going to start our explaination by giving two simple examples.

Example 24.1

After eating all you can, you toss your chicken leg bone out of the car window (shame
on you for trashing up the highway), but in short order an ant fnds your tossed
chicken bone. One single ant could bite of the left over on the bone and transport it to
the colony, one bite at a time; but, it might take him 1 whole day (24 hours) of work.
But, what if he gets help? He signals some buddies and being a small colony of ants

282

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

they allocate a total of 10 ants to do the task. Ten times the workers take one tenth
the time. The ten ants do the task in 2 hours and 24 minutes.

I toss another bone out the window. An ant fnds it and the colony allocates 50 ants to
do the task of picking the bone clean. In less than 30 minutes (28.8 to be exact) the 50
ants working in parallel complete the task.

Example 24.2

One painter might take 8 hours to paint the exterior of an average sized house. But, if
he can put a crew of 10 painters working simultaneously (or in other words in parallel)
it takes only 48 munities. What about a crew of 50 painters assuming that they can do
work and not get in the way of each other; well how about less than 10 minutes (9.6 to
be exact).

Now let's make sure we understand that the same amount of work was done in the
examples given. The work was only completed in a shorter amount of time because
we put more workers on the task. Not all tasks can be divided up in this way, but when
it can be divided between multiple workers, we can take advantage of the workers
doing their sub part of the task in parallel. Let's look at another example.

Example 24.3

I want to drive from Houston, Texas to Dallas, Texas; a distance of about 250 miles.
For easy calculations let's say I can travel 50 miles in one hour. It would take me 5
hours. Well, I could divide the task between 5 cars and have each car travel 50 miles
and arrive in Dallas in 1 hour. Right?

Well, wrong. The task of driving from Houston to Dallas cannot be divided into tasks
that can be done in parallel. The task can only be done by one person driving in a line
from Houston to Dallas in 5 hours. I used the word "line" because it helps connect us
to the word: linear. A linear task cannot be broken-up into smaller tasks to be done in
parallel by multiple workers. Within the computer world, the word associated with
linear concept is sequential processing. I must drive one mile at a time in sequence
to get to Dallas.

Our natural tendency is to share the work that is to work in parallel whenever it is
possible. As a group we can accomplish many tasks that can be done in parallel in less
time.

24.2.2.2 The Birth of Computers -A "Parallel" to Central Processing Unit
(CPU) Story

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

"ENIAC, short for Electronic Numerical Integrator And Computer, was the first general-
purpose electronic computer (July 1946). It was the first Turing-complete, digital
computer capable of being reprogrammed to solve a full range of computing
problems. ENIAC had twenty ten-digit signed accumulators which used ten's
complement representation and could perform 5,000 simple addition or subtraction
operations between any of them and a source (e.g., another accumulator, or a

283

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

constant transmitter) every second. It was possible to connect several accumulators to
run simultaneously, so the peak speed of operation was potentially much higher due
to parallel operation." (ENIAC from Wikipedia)

Often not understood by many today, the first computer used base 10 arithmetic in
the electronics and was a parallel processing machine by using several accumulators
to improve the speed. However, this did not last for long. During its construction:

"The First Draft of a Report (commonly shortened to First Draft) on the EDVAC
Electronic Discrete Variable Automatic Computer was an incomplete 101 page
document written by John von Neumann and distributed on June 30, 1945 by Herman
Goldstine, security ofcer on the classifed ENIAC project. It contains the first published
description of the logical design of a computer using the stored-program concept,
which has come to be known as the von Neumann architecture." (First Draft of a
Report on the EDVAC from Wikipedia)

"The von Neumann architecture is a design model for a stored-program digital
computer that uses a [central] processing [unit] and a single separate storage
structure to hold both instructions and data. It is named after the mathematician and
early computer scientist John von Neumann. Such computers implement a universal
Turing machine and have a sequential architecture." (Von Neumann architecture from
Wikipedia)

Von Neumann also proposed using a binary (base 2) numbering system for the
electronics. One of the characteristics of the von Neumann architecture was the trade
of of multiple processors using base 10 electronics to a single central processor using
base 2 (or digital) electronics. To compare to our ant example, the idea was to use one
real fast ant versus 10 slow ants. If one real fast ant can do 1,000 tasks in an hour; it
would be more powerful (be able to do more tasks) than 10 ants doing 10 tasks an
hour or the equivalent of 100 tasks per hour.

The rest is history most commercially built computers for about the first forty years
(1951 to 1991) followed the von Neumann architecture. The electronic engineers keep
building more reliable and faster electronics. From vacuum tube, to transistor, to
integrated circuit to what we call today "chip" technology. This transformation made
computers break down less frequently (they were more reliable), physically smaller,
needing less electric power and faster. Personal computers were introduced in the
late 1970's and within ten years became more commonly available and used.

One short coming was that most programming eforts were towards improving the
linear (or sequential) way of thinking or solving a problem. After all, the computer
electronic engineers would be making a faster computer next year. Everyone
understood that the computer had only one central processing unit (CPU). Right?

24.2.2.3 The Need for Power

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Well, wrong. Computer scientists and electronic engineers had been experimenting
with multi-processor computers with parallel programming since 1946. But it's not

284

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

until the 1980's that we see the first parallel processing computers (built by Cray and
other computer companies) being sold as commercial built computers. It's time for
another example.

Example 24.4

The circus traveling by train from one city to the next has an elephant that dies. They
decide to toss the elephant of the train (shame on them for trashing up the country
side), but in short order a "super" ant (faster than most regular ants) fnds the
elephant. This project is much larger than your tossed chicken bone. One single
"super" ant could do the task (bite of a piece of the elephant and transport it to the
colony, one bite at a time); but, it might take one whole year. After all this requires a
lot more work than a chicken bone. But, what if he gets help? He signals some buddies
and being a large colony of "super" ants they allocate a total of 2,190 ants to do the
task. Wow, they devour the elephant in six hours.

This elephant example is exactly where the computer scientists had arrived. The
electronic engineers were going to continue to make improvements in the speed of a
single central processing unit computer, but not soon enough to satisfy the "need for
power" to be able to solve tasks requiring immense computing power. Some of the
new tasks that would require immense computer power included the human genome
project, searching for oil and gas by creating 3 dimensional images of geological
formations and the study of gravitational forces in the universe; just to mention a few.
The solution: parallel processing to the rescue. Basically the only way to get this
immense computer power was to implement parallel processing techniques. During
the late 1970's and early 1980's scientists saw the need to explore the parallel
processing paradigm more fully and thus the birth of High Performance Computing.
Various national and international conferences started during the 1980's to be able to
further the cause of High Performance Computing. For example in November of 2008
the "SC08" supercomputing conference celebrated their 20th anniversary.

The predicting of the weather is a good example for the need of High Performance
Computing. Using the fastest central processing unit computer it might take a year to
predict tomorrow's weather. The information would be correct but 365 days late.
Using parallel processing techniques and a powerful "high performance computer",
we might be able to predict tomorrow's weather in 6 hours. Not only correct, but in
time to be useful.

24.2.2.4 Measuring Computer Power

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Most people are familiar with the giga hertz (billions of instructions per second)
measure to describe how fast a single CPU's processor is running. Most
microcomputers of today are running around 3 GHz or 3 billion instructions a second.
Although 3 billion sounds fast, many of these instructions are simple operations.

Supercomputing uses a measurement involving floating point arithmetic calculations
as the benchmark for comparing computer power. "In computing, FLOPS (or flops or
flop/s) is an acronym meaning FLoating point Operations Per Second." and again "On

285

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

May 25, 2008, an American military supercomputer built by IBM, named 'Roadrunner',
reached the computing milestone of one petafop by processing more than 1.026
quadrillion calculations per second." (FLOPS from Wikipedia) For those of us not
familiar:

Example 24.5: Getting a Sense of Power

3 billion or 3 GHz is: 3,000,000,000

l quadrillion or l pedaflop is: l,000,000,000,000,000

You also should realize that your personal computer is not doing 3 gigafolp worth of
calculations, but something slower when using the FLOPS measurement.

24.2.2.5 High Performance Computing Made Personal

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

It took several years (about 30) to get computers to a personal level (1951 to 1981). It
took about twenty years (late 1980's to present 2009) to get multi-processor
computers to the personal level. Currently available to the general public are
computers with "duo core" and "quad core" processors. In the near future, micro
computers will have 8 to 16 core processors. People ask, "Why would I need that much
computer power?" There are dozens of applications, but I can think of a least one item
that almost everyone wants: high quality voice recognition. That's right! I want to talk
to my computer. Toss your mouse, toss your keyboard, no more touch pad -- talk to it.

Again, one short coming is that most programming eforts have been towards teaching
and learning the sequential processing way of thinking or solving a problem.
Educators will now need to teach and programmers will now need to develop skills in
programming using parallel concepts and algorithms.

24.2.2.6 Summary

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We have bounced you back and forth between sequential and parallel concepts. We
covered our natural tendency to do work in parallel. But with the birth of computers
the parallel concepts were set to the side and the computer industry implemented a
faster single processor approach (sequential). We explained the limitations of
sequential processing and the need for computing power. Thus, the birth of High
Performance Computing. Parallel processing computers are migrating into our homes.
With that migration, there is a great need to educate the existing generation and
develop the next generation of scientists and programmers to be able to take
advantage of High Performance Computing.

286

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

24.2.3 Learner Appropriate Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

High Performance Computing is impacting how we do everything. Learning, working,
even our relaxation and entertainment are impacted by HPC. To help more people
understand HPC, I have listed appropriate activities based on where a learner is in
relation to their programming skills.

24.2.3.1 Computer Literacy but No Programming Skills

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

We have provided two computer programs that help students see the impact of
parallel processing. The first is a "Linear to Parallel Calculator" where the student
enters how long it would take one person to complete a task, asks how many people
will work as a group on the task, then calculates how long it will take the group to
complete the task. The second is a "Parallel Speed Demonstration Program" that
simulates parallel processing. It displays to the monitor the first 60 factorial numbers
in 60 seconds, then shows as if 10 processors are doing it in 6 seconds, then as if 100
processors are doing it in less than 1 second. Both are compiled and ready for use on
an Intel CPU machine (compiled for use on Windows OS).

Download the executable files here:

 Linear to Parallel Calculator (http://www.opentextbooks.org.hk/system/files/resource/5/5267/60
26/media/Demo_Linear_to_Parallel.exe)

 Parallel Speed Demonstration Program (http://www.opentextbooks.org.hk/system/files/resourc
e/5/5267/6026/media/Demo_Parallel_Speed.exe)

An interesting activity would be to join a group that is using thousands of personal
microcomputers via Internet connections for parallel processing. Several distributed
processing projects are listed in the "FLOPS" article on Widipedia. One such group is
the "Great Internet Mersenne Prime Search -GIMPS".

A link to the GIMPS web site is here (http://www.mersenne.org/)

Another activity is to "Google" some keywords. Be careful -"Googling" can be
confusing and often can be difficult to focus on the precise subject that you want.

• high performance computing
• computational science
• supercomputing
• distributed processing

287

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6026/media/Demo_Linear_to_Parallel.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6026/media/Demo_Linear_to_Parallel.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6026/media/Demo_Linear_to_Parallel.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6026/media/Demo_Parallel_Speed.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6026/media/Demo_Parallel_Speed.exe
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6026/media/Demo_Parallel_Speed.exe
http://www.mersenne.org/
http://www.mersenne.org/

24.2.3.2 Learning Programming Fundamentals

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Students learning to program that are currently taking courses in Modular/Structured
programming and/or Object Oriented programming might want to review the source
code files for the demonstration programs listed above. These programs do not do
parallel programming, but the student could modify or improve them to better explain
parallel programming concepts.

 Demo_Linear_to_Parallel (http://www.opentextbooks.org.hk/system/files/resource/5/5267/602
7/media/Demo_Linear_to_Parallel.cpp)

 Demo_Parallel_Speed.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/602
7/media/Demo_Parallel_Speed.cpp)

Another appropriate activity is to "Google" some of the key words listed above. With
your fundamental understanding of programming, you will understand more of the
materials than those with no programming experience. You should get a sense that
parallel programming is becoming a more important part of a computer professional's
work and career.

Review the "Top 500 Super Computers" here (http://www.top500.org/).

Look at the source code listings provided in the next section, but remember, you
cannot compile or run these on your normal computer.

24.2.3.3 Upper Division Under-Graduate College Students

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The challenge is to try parallel computing, not just talk about it.

During the week of May 21st to May 26th in 2006, this author attended a workshop on
Parallel and Distributed Computing. The workshop was given by the National
Computational Science Institute and introduced parallel programming using multiple
computers (a group of micro computers grouped or clustered into a super-micro
computer). The conference emphasized several important points related to the
computer industry:

1. During the past few years super-micro computers have become more powerful
and more available.

2. Desk top computers are starting to be built with multiple processors (or cores)
and we will have multiple (10 to 30) core processors within a few years.

3. Use of super-micro computing power is wide spread and growing in all areas:
scientifc research, engineering applications, 3D animation for computer games
and education, etc.

4. There is a shortage of educators, scientifc researchers, and computer
professionals that know how to manage and utilize this developing resource.
Computer professionals needed include: Technicians that know how to create

288

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6027/media/Demo_Linear_to_Parallel.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6027/media/Demo_Linear_to_Parallel.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6027/media/Demo_Linear_to_Parallel.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6027/media/Demo_Parallel_Speed.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6027/media/Demo_Parallel_Speed.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6027/media/Demo_Parallel_Speed.cpp
http://www.top500.org/
http://www.top500.org/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

and maintain a super-micro computer; and Programmers that know how to
create computer applications that use parallel programming concepts.

This last item was emphasized to those of you beginning a career in computer
programming that as you progress in your education, you should be aware of the
changing nature of computer programming as a profession. Within a few years all
professional programmers will have to be familiar with parallel programming.

During the conference this author wrote a program that sorts an array of 150,000
integers using two different approaches. The first way was without parallel processing.
When it was compiled and executed using a single machine, it took 120.324 seconds
to run (2 minutes). The second way was to redesign the program so parts of it could
be run on several processors at the same time. When it was compiled and executed
using // machines within a cluster of micro-computers, it took 20.974 seconds to run.
That's approximately 6 times faster. Thus, parallel programming will become a
necessity to be able to utilize the multi-processor hardware of the near future.

A distributed computing environment was set up in a normal computer lab using a
Linix operating system stored on a CD. After booting several computers with the CD,
the computers can communicate with each other with the support of "Message
Passing Interface" or MPI commands. This model known as the Bootable Cluster CD
(BCCD) is available from:

Bootable Cluster CD University of Northern Iowa here (http://www.bccd.net/).

The source code files used during the above workshop were modifed to a version 8,
thus an 8 is in the filename. The non-parallel processing "super" code was named:
nonps8.cpp with the parallel processing "super" code named: ps8.cpp (Note: The
parallel processing code contains some comments that describe that part of the code
being run by a machine identifed as the "SERVER NODE" with a part of the code being
run by the 10 other machines (the Clients). The client machines communicate critical
information to the server node using "Message Passing Interface" or MPI commands.)

Download the source code files here:

 nonps8.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/nonps
8.cpp)

 ps8.cpp (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/ps8.cpp)

Two notable resources with super computer information were provided by presenters
during the workshop:

Oklahoma University Supercomputing Center for Education & Research here (http://w
ww.oscer.ou.edu/education.php).

Contra Costa College High Performance Computing here (http://contracosta.edu/hpc/r
esources/presentations/). You can also "Google" the topic's key words and spend
several days reading and experimenting with High Performance Computing.

Consider reviewing the "Educator Resources" links provided in the next section.

289

http://www.bccd.net/
http://www.bccd.net/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/nonps8.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/nonps8.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/nonps8.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/ps8.cpp
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6028/media/ps8.cpp
http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php
http://www.oscer.ou.edu/education.php
http://contracosta.edu/hpc/resources/presentations/
http://contracosta.edu/hpc/resources/presentations/
http://contracosta.edu/hpc/resources/presentations/

24.2.4 Educator Resources
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

There are many sites that provide materials and assistance to those teaching the
many aspects of High Performance Computing. A few of them are:

Shodor (http://www.shodor.org/home/) - A National Resource for Computational
Science Education

CSERD (http://www.shodor.org/refdesk/) - Computational Science Education
Reference Desk

National Computational Science Institute (http://www.computationalscience.org/)
Association of Computing Machinery (http://www.acm.org/)
Super Computing Education (http://sc09.sc-education.org/about/index.php)

24.2.5 Simple Definitions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Definition 24.3: high performance computing

Grouping multiple computers or multiple computer processors to accomplish a task in
less time.

Definition 24.4: sequential processing

Using only one processor and completing the tasks in a sequential order.

Definition 24.5: parallel processing

Dividing a task into parts that can utilize more than one processor.

Definition 24.6: central processing unit

The electronic circuitry that actually executes computer instructions.

Definition 24.7: parallel programming

Involves developing programs that utilize parallel processing algorithms that take
advantage of multiple processors.

24.3 Practice 2: OOP & HPC

24.3.1 Learning Objectives
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With 100% accuracy during a: memory building activity, exercises, lab assignment,
problems, or timed quiz/exam; the student is expected to:

290

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.shodor.org/home/
http://www.shodor.org/home/
http://www.shodor.org/refdesk/
http://www.shodor.org/refdesk/
http://www.computationalscience.org/
http://www.computationalscience.org/
http://www.acm.org/
http://www.acm.org/
http://sc09.sc-education.org/about/index.php
http://sc09.sc-education.org/about/index.php
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1. Define the terms on the definitions as listed in the modules associated with this
chapter.

2. Gain an exposure to object-oriented programming.
3. Gain an exposure to high performance computing.
4. Given general instructions, write the C++ code for a program that includes a

general review of the textbook/collection/course.

24.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA 24

(***
See the file at <http://cnx.org/content/m22194/latest/index.html>
***)

24.3.3 Exercises
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exercise 24.3.1

Answer the following statements as either true or false:

1. Procedural programming and object-oriented programming cannot be done with
the same compiler/IDE.

2. Object-oriented programming encapsulates data and functions.
3. High Performance Computing is a new topic on the computer scene.
4. The concepts and examples of High Performance Computer are difficult to

explain.
5. All programmers will need to know about parallel programming in the near

future.

24.3.4 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

291

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

24.3.5 Lab Assignment

24.3.5.1 Creating a Folder or Sub-Folder for Chapter 24 Files

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Depending on your compiler/IDE, you should decide where to download and store
source code files for processing. Prudence dictates that you create these folders as
needed prior to downloading source code files. A suggested sub-folder for the
Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Chapter_24 within the folder named: Cpp_Source_Code_Files

If you have not done so, please create the folder(s) and/or sub-folder(s) as
appropriate.

24.3.5.2 Download the Lab File(s)

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Download and store the following file(s) to your storage device in the appropriate
folder(s).

 Lab_24_Narrative_Description (http://www.opentextbooks.org.hk/system/files/resource/5/526
7/6038/media/Lab_24_Narrative_Description.txt)

24.3.5.3 Detailed Lab Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Read and follow the directions below carefully, and perform the steps in the order
listed.

• Create a source code file following the directions in the Lab_24_Narrative
Description.txt file. Name it: Lab_24.cpp

• Build (compile and run) your program.
• After you have successfully written this program, if you are taking this course for

college credit, follow the instructions from your professor/instructor for
submitting it for grading.

24.3.6 Problems

24.3.6.1 Problem 24a -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Describe the fundamental diferences between procedural (modular structured)
programming and object-oriented programming.

292

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6038/media/Lab_24_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6038/media/Lab_24_Narrative_Description.txt
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6038/media/Lab_24_Narrative_Description.txt
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

24.3.6.2 Problem 24b -Instructions

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Explain why High Performance Computing is needed to predict tomorrow's weather.

24.3.7 Solutions to Exercises in Chapter 2.
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Solutions to Practice 2.: OOP & HPC

Solution to Exercise 24.3.1

Answers:

1. false
2. true
3. false
4. false
5. true

293

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 25 Review Materials

25.1 Review: Foundation Topics Group: 1-5

25.1.1 Strategy Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exams vary depending on your instructor. Many will use the following:

1. Definitions
2. Self-grading questions including true/false, multiple choice, short answer, etc.
3. Problems

The materials in this textbook/collection have covered these items at the end of every
chapter within the Practice module for that chapter. We suggest the following test
preparation strategies:

1. If your professor is testing the definitions and expecting you to have them
memorized, you should review the "Using the Flash Card Activity" within the
"Study Habits that Build the Brain" module within the Appendix materials.
Practice writing your definitions using the Flash Card Activity in the Memory
Building Activities (MBAs) available within the Practice modules or in the Memory
Building Activities within this Review module.

2. Do a quick review of any exercises within the Connexions modules or the
Practice modules. Also review quizzes or exams that you have taken and pay
special attention to making sure you understand why you missed a question.

3. If your professor has indicated that they might include a few of the problems
presented within the Practice modules, make sure you have formulated a good
answer for each problem. If authorized, collaborate with other students to
improve your answers to the problems. Spend a moderate amount of time
reviewing each problem with its answer before the exam.

25.1.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA Review: Foundation Topics Group: 1-5

(***
See the file at <http://cnx.org/content/m22418/latest/index.html>
***)

294

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

25.1.3 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Link to: Manipulation of Data Part 1

25.2 Review: Modular Programming Group: 6-9

25.2.1 Strategy Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exams vary depending on your instructor. Many will use the following:

1. Definitions
2. Self-grading questions including true/false, multiple choice, short answer, etc.
3. Problems

The materials in this textbook/collection have covered these items at the end of every
chapter within the Practice module for that chapter. We suggest the following test
preparation strategies:

1. If your professor is testing the definitions and expecting you to have them
memorized, you should review the "Using the Flash Card Activity" within the
"Study Habits that Build the Brain" module within the Appendix materials.
Practice writing your definitions using the Flash Card Activity in conjunction with
the Memory Building Activities (MBAs) available within the Practice modules or in
the Memory Building Activities within this Review module.

2. Do a quick review of any exercises within the Connexions modules or the
Practice modules. Also review quizzes or exams that you have taken and pay
special attention to making sure you understand why you missed a question.

3. If your professor has indicated that they might include a few of the problems
presented within the Practice modules, make sure you have formulated a good
answer for each problem. If authorized, collaborate with other students to
improve your answers to the problems. Spend a moderate amount of time
reviewing each problem with its answer before the exam.

25.2.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA Review: Modular Programming Group: 6-9

(***
See the file at <http://cnx.org/content/m22421/latest/index.html>
***)

295

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

25.2.3 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

25.3 Review: Structured Programming Group: 10-16

25.3.1 Strategy Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exams vary depending on your instructor. Many will use the following:

1. Definitions
2. Self-grading questions including true/false, multiple choice, short answer, etc.
3. Problems

The materials in this textbook/collection have covered these items at the end of every
chapter within the Practice module for that chapter. We suggest the following test
preparation strategies:

1. If your professor is testing the definitions and expecting you to have them
memorized, you should review the "Using the Flash Card Activity" within the
"Study Habits that Build the Brain" module within the Appendix materials.
Practice writing your definitions using the Flash Card Activity in conjunction with
the Memory Building Activities (MBAs) available within the Practice modules or in
the Memory Building Activities within this Review module.

2. Do a quick review of any exercises within the Connexions modules or the
Practice moudles. Also review quizzes or exams that you have taken and pay
special attention to making sure you understand why you missed a question.

3. If your professor has indicated that they might include a few of the problems
presented within the Practice modules, make sure you have formulated a good
answer for each problem. If authorized, collaborate with other students to
improve your answers to the problems. Spend a moderate amount of time
reviewing each problem with its answer before the exam.

25.3.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA Review: Structured Programming Group: 10-16

(***
See the file at <http://cnx.org/content/m21653/latest/index.html>
***)

296

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

25.3.3 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Animated gif showing an if then else

Click this link to watch the video:
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/video.m
p4

Animated gif showing a do while loop

Click this link to watch the video:
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Do%20w
hile%20loop.mp4

Animated gif showing a while loop

Click this link to watch the video:
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/While.m
p4

Manipulation of Data Part 2

 Download (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipu
lation_Data_Part_2%281%29.pdf)

Manipulation of Data Part 3

 Download (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipu
lation_Data_Part_3%281%29.pdf)

25.4 Review: Intermediate Topics Group: 17-21

25.4.1 Strategy Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exams vary depending on your instructor. Many will use the following:

1. Definitions
2. Self-grading questions including true/false, multiple choice, short answer, etc.
3. Problems

The materials in this textbook/collection have covered these items at the end of every
chapter within the Practice module for that chapter. We suggest the following test
preparation strategies:

1. If your professor is testing the definitions and expecting you to have them
memorized, you should review the "Using the Flash Card Activity" within the
"Study Habits that Build the Brain" module within the Appendix materials.
Practice writing your definitions using the Flash Card Activity in conjunction with

297

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/video.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/video.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Do%20while%20loop.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Do%20while%20loop.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/While.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/While.mp4
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipulation_Data_Part_2%281%29.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipulation_Data_Part_2%281%29.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipulation_Data_Part_2%281%29.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipulation_Data_Part_3%281%29.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipulation_Data_Part_3%281%29.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6056/media/Manipulation_Data_Part_3%281%29.pdf
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

the Memory Building Activities (MBAs) available within the Practice modules or in
the Memory Building Activities within this Review module.

2. Do a quick review of any exercises wtihin the Connexions modules or Practice
modules. Also review quizzes or exams that you have taken and pay special
attention to making sure you understand why you missed a question.

3. If your professor has indicated that they might include a few of the problems
presented within the Practice modules, make sure you have formulated a good
answer for each problem. If authorized, collaborate with other students to
improve your answers to the problems. Spend a moderate amount of time
reviewing each problem with its answer before the exam.

25.4.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA Review: Intermediate Topics Group: 17-21

(***
See the file at <http://cnx.org/content/m21642/latest/index.html>
***)

25.4.3 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

25.5 Review: Advanced Topics Group: 22-24

25.5.1 Strategy Discussion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Exams vary depending on your instructor. Many will use the following:

1. Definitions
2. Self-grading questions including true/false, multiple choice, short answer, etc.
3. Problems

The materials in this textbook/collection have covered these items at the end of every
chapter within the Practice module for that chapter. We suggest the following test
preparation strategies:

1. If your professor is testing the definitions and expecting you to have them
memorized, you should review the "Using the Flash Card Activity" within the
"Study Habits that Build the Brain" module within the Appendix materials.

298

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Practice writing your definitions using the Flash Card Activity in conjunction with
the Memory Building Activities (MBAs) available within the Practice modules or in
the Memory Building Activities within this Review module.

2. Do a quick review of any exerecises within the Connexions modules or the
Practice modules. Also review quizzes or exams that you have taken and pay
special attention to making sure you understand why you missed a question.

3. If your professor has indicated that they might include a few of the problems
presented within the Practice modules, make sure you have formulated a good
answer for each problem. If authorized, collaborate with other students to
improve your answers to the problems. Spend a moderate amount of time
reviewing each problem with its answer before the exam.

25.5.2 Memory Building Activities
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

MBA Review: Advanced Topics Group: 22-24

(***
See the file at <http://cnx.org/content/m22215/latest/index.html>
***)

25.5.3 Miscellaneous Items
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

None at this time.

299

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 26 Appendix

26.1 Abbreviated Precedence Chart for C++ Operators
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

An operator is a language-specific syntactical token (one or more symbols) that
causes an action to be taken on one or more operands. The following item provides
an abbreviated list of those C++ operators that are typically taught in a programming
fundamentals course that teaches modular structured programming concepts.

The first column shows the precedence (the higher precedence is 1 or it goes first) and
operators that have the same precedence also have the same associativity (the
associativity is only listed once for the group of operators). Decrement is two minus
signs, but some word processing software programs might have problems printing
two minus signs and convert it to a double dash. Insertion (two < signs) and extraction
(two > signs) might also have printing problems. These printing problems are noted in
the comments with emphasized text.

300

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

PR
OPERATOR
NAME

SYMBOL(S) COMMENTS ASSOICIATIVITY

1 function call () Left to Right

1 index []
aka array
index

2 class member . a period Right to Left

2
postfx
increment

++ unary

2
postfx
decrement

-
unary, two
minus signs

3 indirection *
unary, aka
dereference

Right to Left

3 address & unary

3 unary positive +
unary, aka
plus

3
unary
negative

-
unary, aka
minus

3
prefx
increment

++ unary

3
prefx
decrement

-
unary, two
minus signs

3 cast (type) unary

3 sizeof
sizeof
(type)

unary

3 logical NOT ! unary

Table 26.1 Operators

301

4 multiply * Left to Right

4 divide /

4 modulus % remainder

5 add + Left to Right

5 subtract -

6 insertion «
writing, two
less than
signs

Left to Right

6 extraction »
reading,
two greater
than signs

7 less than < Left to Right

7 greater than >

7
less than or
equal to

<=

7
greater than
or equal to

>=

8 equality == equal to Left to Right

8 inequality != not equal to

9 logical AND && Left to Right

10 logical OR || Left to Right

11 conditional ? : trinary Left to Right

12 assignment = Right to Left

Table 26.1 Operators

302

12
addition
assignment

+=

12
subtraction
assignment

-=

12
multiplication
assignment

*=

12
division
assignment

/=

12
modulus
assignment

%=

13
sequence or
comma

, Left to Right

Table 26.1 Operators

26.2 C++ Reserved Keywords
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

All programming languages have "reserved words". There are usually less than 50 of
these reserved words in any given programming language. They are reserved because
they have been pre-assigned a specific meaning within that programming language,
thus the compiler recognizes those words to mean a specific thing or action. Within
C++ the reserved words are also known as "keywords".

Programmers use identifier names for a variety of items, to include: functions,
variables, named constants, alias names, etc. But, they can't use as identifier names
the words that are "reserved to the language".

For the C++ language all "reserved keywords" are typed in lower case. The list that
follows includes the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO) lists of reserved words for the C++
programming language. The ISO reserved words may not be implemented in the
compiler that you are using, however they may be adopted in future releases of C++
compilers. Wisdom dictates to avoid using them at this point so that there will not be a
problem compiling your source code in future releases of compilers. There has been
no distinction made in the ANSI or ISO reserved word lists. A search of the Internet for
C++ reserved words will reveal several different lists. Some are more unique to a
specific compiler. Some will be incomplete because the list has been enlarged. The

303

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

talbe that follows should work for any beginning programming course using C++. The
reserved keywords are:

304

and double not eq throw

and eq dynamic cast operator true

asm else or try

auto enum or eq typedef

bitand explicit private typeid

bitor extern protected typename

bool false public union

break float register unsigned

case fro reinterpret-cast using

catch friend return virtual

char goto short void

class if signed volatile

compl inline sizeof wchar t

const int static while

const-cast long static cast xor

continue mutable struct xor eq

default namespace switch

delete new template

do not this

Table 26.2 C++ Reserved Keywords

305

26.3 ASCII Character Set
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

ASCII stands for American Standard Code for Information Interchange (pronounced
"ask-key"). Computers can only understand numbers, so an ASCII code is the
numerical representation of a character such as 'a' or '@' or an action of some sort.
ASCII was developed a long time ago and now the non-printing characters are rarely
used for their original purpose. The first 32 values (0 to 31) and the last value (127) are
the non-printing characters.

Several software products can be used to create an ASCII text file.

• Notepad within Windows OS and it uses by default the .txt extension.
• Microsoft Word by saving the file as 'text only' and it uses by default the .txt

extension.
• Integrated Development Environment (IDE) compliers for most programming

languages usually save source code as ASCII text files but they will use an
extension that describes the content of the text file. Example: C++ usually uses
.cpp as the extension.

The following web links provide more information and tables listing the ASCII
Character Set:

http://asciiset.com/

http://www.asciitable.com/

http://en.wikipedia.org/wiki/ASCII

26.4 Show Hide File Extensions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

By default, file extensions for known file types are hidden in Windows operating
systems. However, you can change this setting so that file extensions are shown for all
file types. Being able to see file extensions can be very helpful for students taking
computer courses because those course instructions often refer to file extensions.

All Windows operating systems navigate you to the "Folder Options" menu, then have
you select the "View" tab. Indeed the box is identical in Windows XP, Windows Vista
and Windows 7.

306

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://asciiset.com/
http://www.asciitable.com/
http://en.wikipedia.org/wiki/ASCII
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 26.1 "Folder Options" menu

The check in the box acts like a toggle switch. With a check present, it will hide known
file types. Without the check present, it will show all file types. Click on the box to
make the check appear [hide file extensions] or disappear [show file extensions] and
then select "OK".

Instructions for navigating to the "Folder Options" for various Windows operating
systems along with an Internet link for additional help are provided below.

26.4.1 Windows XP
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

With the Windows Explorer open, slect the "Tools" tab and then "Folder Options".

Link for additional help: Here (http://www.fleinfo.net/help/windows-show-extension
s.html8%20or%20http://dotwhat.net/page/displayextensions/)

307

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.fleinfo.net/help/windows-show-extensions.html8%20or%20http://dotwhat.net/page/displayextensions/
http://www.fleinfo.net/help/windows-show-extensions.html8%20or%20http://dotwhat.net/page/displayextensions/
http://www.fleinfo.net/help/windows-show-extensions.html8%20or%20http://dotwhat.net/page/displayextensions/

26.4.2 Windows Vista
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Select the "Start" button, then "Control Panel", then "Appearance and Personalization"
and then "Folder Options".

Link for additional help: Here (http://windows.microsoft.com/en-us/windows-vista/Sho
w-or-hide-file-nameextensionsl)

26.4.3 Windows 7
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Select the "Start" button, then "Control Panel" and then "Folder Options".

Link for additional help: Here (http://maximumpcguides.com/windows-7/hide-file-exte
nsions/)

26.5 Academic or Scholastic Dishonesty

26.5.1 Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The relationship between faculty and students has always been one of open and
honest communication. The faculty member carries the responsibility of presenting
course materials via reading assignments, lectures, labs, etc. The student is to learn
and understand these materials. Additionally, the faculty members employ various
methods to assess the student's mastery of the course materials. Frequently this is
done via quizzes, tests, writing assignments, the completion of lab materials, etc.
Academic dishonesty (sometimes called "Scholastic Dishonesty") is the violation of
that trust.

Cheating on quizzes and tests as well as plagiarism is usually well understood by
students before arriving at the collegiate level of education. Most colleges include
adequate explanation in their student handbook explaining well what constitutes
cheating on exams and plagiarism. Academic dishonesty often carries some stiff
penalties. Usually, the student receives the grade of "F" from the professor in the
course in which he is enrolled. The student might be expelled from all of their classes
for which they are currently enrolled ("F" in all of your classes) and expelled from the
institution (may not register for classes in the future). Sounds harsh, but it is a
violation of the bond of trust between the student and the educational institution.

308

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://windows.microsoft.com/en-us/windows-vista/Show-or-hide-file-nameextensionsl
http://windows.microsoft.com/en-us/windows-vista/Show-or-hide-file-nameextensionsl
http://windows.microsoft.com/en-us/windows-vista/Show-or-hide-file-nameextensionsl
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://maximumpcguides.com/windows-7/hide-file-extensions/
http://maximumpcguides.com/windows-7/hide-file-extensions/
http://maximumpcguides.com/windows-7/hide-file-extensions/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

26.5.2 Collusion
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Another category of academic dishonesty is collusion which is the unauthorized
collaboration with another person in preparing written work (including lab
assignments) offered for credit (counting towards your grade calculation). To better
understand collusion, students need to realize that as part of the learning and
evaluation of that learning, many professors use group projects; a directed or
authorized collaboration. Often students are encouraged to form study groups to help
discuss the course materials thus improving the learning process. These authorized
and sometimes directed activities are not collusion.

The following discussion is to help the student understand collusion (unauthorized
collaboration) with specific reference to courses that use computers. This is not an all
inclusive list, but will cover the common situations that faculty have encountered over
the years. Unless your specific professor informs you differently, you are to assume
that the following items discussed are collusion.

26.5.3 Type it Yourself
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Lab assignments are to be your own personal typing efforts. That is you are to type
them or make the modifications yourself to the files (documents, spreadsheets,
databases, programming source code, etc.) If your course is a programming subject,
you are to run the source code file on your compiler, making corrections as need to
complete the lab assignment. If the directions for an assignment include starting a
new file then don't use an existing file and modify it to complete the assignment.
Unless specifically authorized by your professor, students should not complete
computerized course work as a team or group and then share the final
completed product.

Students have said that they worked as a team or group and that all participated and
all learned the materials. Don't try this excuse because professors don't buy it. Here is
the problem: Part of the learning process is in you doing it yourself. Example: I ask two
students to make me some pancakes for breakfast; I expect two individually prepared
plates of pancakes (one from each of them) for my breakfast. The professor really
does not want to eat two plates of pancakes (or 50 to 100 plates of pancakes,
depending on how many students they are teaching), but part of your directed
learning activity for the course is to demonstrate that you can make pancakes (not
watch someone else make pancakes or participate as a group to make pancakes).

309

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

26.5.4 Control Access to Your Files
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Controlling the files you create (or are directed to modify) means that others will not
have access to copy your work. In other words, don't share your files.

Students have said that they shared the file so they the other student could see how
the completed assignment should look. Don't try this excuse because professors don't
buy it. Here is the problem: When you share the file you share your typing efforts (or
your original work and your efforts to create that original work). Back to our pancake
example: "I only gave the other student a plate of completed pancakes, so he could
see what the end product should be." All the other student does is add some blue
berries and whip cream. If a student makes minor modifications to your work
(changes the spots where his name is at) and turns it in as his work you will be
included in the charge of academic dishonesty. Unless specifically authorized by
your professor, don't share any files that you create or modify with another
student -ever, not now and not in the future.

Here are two suggestions for controlling access to your files:

When using a course delivery software product or learning system, such as
Blackboard Vista, don't give another person your password. With the password, they
will have access to your submitted assignments including the files that you created.

Don't leave your files on a machine where others may have access to them. If multiple
students are using or have access to the same machine (often happens with students
living in the same household husband/wife, siblings or roommates) or in an on-
campus course where many students will have access to the machine store your files
on a flash drive. Physicially control who gets access to your flash drive

26.5.5 Ask for a Clarification of the Collaboration
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If you have any question about an activity that might be construed as unauthorized
collaboration, ask your professor. They will provide clarification and direction to you
about the activity.

Students have said that they did not understand or think that it was unauthorized
collaboration. Don't try this excuse because professors don't buy it. Here is the
problem: We can't, and won't list every minor way in which students can collude. The
burden is for you to ask for any clarification for the specific course from your
professor. Don't assume that what another instructor allowed in another course will
be allowed by this professor in this course.

310

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

26.5.6 Detecting Academic Dishonesty
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Professors weren't born yesterday. The faculty members of most institutions have
individually years and collectively thousands of years at understanding academic
dishonesty. Cheating on tests, plagiarism and collusion are not new to us. We share
our expertise with each other at detecting academic dishonesty. Additionally, the
years of technical computer experience of professors who teach using computers in
lab settings is often astounding.

Students have said that they did not think they could be detected or that academic
dishonesty could not be proved. Don't try this approach because professors believe
that they are slightly smarter. Actually, we know that we are a lot smarter. It amazes
us that student don't realize that professors are a formidable force. Don't gamble
that you can beat us at the "Academic Dishonesty Game". Please don't take this as
a challenge and use it as an excuse to see if you can be academically dishonest and
not get caught. We are warning you, not challenging you.

26.5.7 Serious Consequences
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The consequences will vary from instructor to instructor and from institution to
institution. They range from a simple slap on the hand (don't do it again) to complete
explusion from the institution (expelled from all of your courses). Because the bond of
trust is broken, many instructors will simply expel you from the course you are taking.
As an example: Within the BCIS1405 course at Houston Community College, we
expelled 8 students (along with giving them the grade of "F") from Distance Educations
sections during the Spring 2008 term for Academic Dishonesty.

Be ready for what ever the consequences your instructor will deliver if you are
dishonest.

26.5.8 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

• The ethics of academic honesty; there is a bond of trust that whatever the
student does in relationship to the evaluation process are their own work and
eforts.

• Collusion is the unauthorized collaboration of students on work submitted for
evaluation.

• First directive: Type if yourself
• Second directive: Don't share your files
• Seek clarifcation from your professor if you have any doubt that the collaborative

activity might be considered collusion.

311

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Professors are very capable at detecting academic dishonesty.
• There are usually consequences to your dishonest behavior.

26.6 Successful Learning Skills

26.6.1 Realize the Time Commitment
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

College computer courses often are listed in the catalog of courses with both lecture
and lab hours. But unlike the natural and biological sciences (chemistry, physics and
biology) that must meet in a specific lab room designed for those courses, students
can usually complete their lab portions at a variety of locations (the college's computer
lab, home, work, public library, friend's house, etc.).

The normal rule of thumb is 1 to 1.5 hours out of class studying for every hour in class
and for computer courses this normally means both the lecture and lab hours.
Students with learning disabilities or those whose primary language is not English will
want to plan for more study time and should use a larger ratio. Thus, you should
calculate the weekly hours of commitment needed for a course depending on your
circumstances. Example:

If a student is taking a 4 credit hour computer course that the college catalog says
contains a combination of 6 hours (adding your lecture and lab hours) during a regular
16 week semester; the weekly classroom and study time for that course would be 12
to 15 hours a week.

But many students take courses at a faster pace by either taking a course between
semesters in a very concentrated mode, starting a course after the regular start of a
semester or during the summer. To calculate the weekly study time needed you will
need to calculate the total regular semester instructional time and divide by the
number of weeks in the faster pace delivery. Example:

Our 4 credit hour course is to be taken during a summer term that has 9 weeks of
instruction time. The total regular semester time would be 15 times the normal
semester commitment (180 to 225 hours). Dividing it by 9 would mean 20 to 25 hours
per week.

26.6.2 Understand Your Capacity to Concentrate
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

You cannot expect to spend long periods of time working on computer course
materials. After 3 to 4 hours of working on course materials, your ability to learn drops
significantly (and for most to near zero). This problem is compounded by the nature of
the material which is cumulative in nature. This means that you must understand item
a before you try to learn item b. All of the math and sciences courses of study are of
this nature.

312

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

26.6.3 Plan Regular Study Times
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The combination of the time commitment and your ability to concentrate leads to the
conclusion that you cannot cram your study time into a week-end of concentrated
study. You must break up your study time into 3 to 4 hour study periods doing only
one study period per day. You must establish a regular routine for each week.
Students taking a regular semester course on-campus will count their class (lecture
and lab) time and plan 2 to 3 additional study periods.

If taking a course via distance education, students need to plan for all of the course
time, thus during a regular semester term, our 4 credit hour course example would
require 3 to 4 study periods with 3 to 4 hours for each study period per week. If taking
the course at faster pace (9 week summer term) you will need to schedule more
study times. This may mean a 3 to 4 hour study period daily for 6 days a week (with
only one day of as a day of rest).

You need to stay on top of a course to successfully complete it. Pacing yourself with
multiple study times allows for effective learning. Students who procrastinate until
close to an exam and then try cramming through course materials are rarely "A"
students.

26.6.4 Learning Requires Variety and Repetition
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Variety comes in many forms and includes lecture, lab assignments, studying
textbooks, multi-media materials, quizzes, writing a research papers, learning
activities such as group discussions, crossword puzzles, flash cards, etc. This variety
actually helps our brain to understand and build memory. In addition to variety,
repetition (exposure over multiple study periods) is essential for our brains to be able
to learn and recall the course materials. Again, this understanding and recall are
essential to courses that require cumulative learning (you must understand item a
before you can learn item b).

Textbooks and professors break-up course materials into chapters or learning
modules often with learning objectives first and review items at the end of each unit.
Each chapter or module might have any of the above mentioned items. But doing
things and study are different. You can't just show up to class and listen, you can't just
read stuf, you need to study. Study requires a variety of activities. Ask yourself:

• Do you understand each learning objective?
• Can you explain or formulate an answer for each learning objective?
• If you did not understand the reading materials, did you re-read it?
• Do the review items (especially questions).
• Take lecture notes.

313

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Do the lecture notes or handouts give you a better understanding than the
textbook?

• Often the problems or lab assignments are to be studied in conjunction with and
reinforce the study materials. Have you tried to do and understand the problems
or lab assignments?

• Are there any learning activities available and if yes, did you do them.
• Did you consider using 3x5 cards to study definitions and vocabulary?
• Did you review the learning objectives before taking any quizzes?
• If the quizzes are computerized, did you study your quiz results?
• After reviewing quiz results and re-study, did you retake the quiz again if

available?

All of this requires time and efort on your part as the student in any course (distance
education or on-campus). You need several study periods a week to learn the
materials in any course. The purpose of a quiz is for you to self assess your
understanding of the materials. If your learning is not complete, change or modify
your learning habits.

26.6.5 Interact with the Other Students
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In a normal classroom students interact with each other. They often form study
groups with other students and meet regularly to help each other study materials.
These interactions in most cases are essential to the learning process. If your only
interaction is by private conversation or private email with the instructor, you are not
fully participating in the course. For distance education students, most learning
systems (such as Blackboard Vista) provide several tools to create this interaction.
They typically include announcements, discussion list, email and chat tools.

26.6.6 Don't Procrastinate and Don't Get Behind
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

What should you do if you get behind? Plan regular study periods. The lack of regular
study periods is most likely the reason for why you got behind. Plan when you will do
extra study periods in order to catch up.

26.6.7 Attend Class and Take Notes
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Taking lecture notes and being able to review those note later when you are studying
provides variety that is needed to learn material. Just writing the notes down more
actively engages the brain, because you are listening and writing. But you need to
arrange with at least two fellow classmates that you will all take notes and share notes

314

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

with each other if absent. In addition to course materials, other administrative matters
are discussed in class (such as the announcement of exam date change).

If you are taking a distance education course, you need to regularly enter the learning
management system (such as Blackboard Vista) and review the announcements,
discussion list postings and read (and answer if appropriate) email. Most distance
education professors assume that anything he has communicated via these tools will
have been read by the student within 3 days. In short this means you are responsible
for having read the items and completing any action requested.

26.7 Study Habits that Build the Brain

26.7.1 Introduction
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

During the spring of 2008 the author, Kenneth Leroy Busbee, did some research with
students taking a computer programming fundamentals course to determine if using
3x5 cards would improve student performance on exams. In short, it did! This was not
a surprise, but it became obvious that most of us (faculty at all levels of education as
well as students) have little understanding of how are brain builds understanding and
long term memory.

Attached are several PowerPoint presentations that have been save in an Adobe PDF
format. Please spend a few minutes reviewing the information provided. Hopefully it
will help students to better learn the subjects they are studying.

26.7.2 Main Presentation
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Link to:

 Study Habits that Build the Brain (http://www.opentextbooks.org.hk/system/files/resource/5/52
67/6092/media/Study_Habits_that_Build_the_Brain.pdf)

26.7.3 Specifc Topics
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Link to:

 Reading the Textbook (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/me
dia/Reading_the_Textbook.pdf)

 Taking Lecture Notes (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/me
dia/Taking_Lecture_Notes.pdf)

 Using 3x5 Cards (http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/U
sing_3x5_Cards.pdf)

315

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6092/media/Study_Habits_that_Build_the_Brain.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6092/media/Study_Habits_that_Build_the_Brain.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6092/media/Study_Habits_that_Build_the_Brain.pdf
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Reading_the_Textbook.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Reading_the_Textbook.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Reading_the_Textbook.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Taking_Lecture_Notes.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Taking_Lecture_Notes.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Taking_Lecture_Notes.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Using_3x5_Cards.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Using_3x5_Cards.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Using_3x5_Cards.pdf

 Using the Flash Card Activity (http://www.opentextbooks.org.hk/system/files/resource/5/5267/
6093/media/Using_the_Flash_Card_Activity.pdf)

316

http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Using_the_Flash_Card_Activity.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Using_the_Flash_Card_Activity.pdf
http://www.opentextbooks.org.hk/system/files/resource/5/5267/6093/media/Using_the_Flash_Card_Activity.pdf

	Preface
	Orientation and Syllabus
	Chapter 1 Introduction to Programming
	1.1 Systems Development Life Cycle
	1.1.1 Discussion
	1.1.2 Definitions

	1.2 Bloodshed Dev-C++ 5 Compiler/IDE
	1.2.1 Introduction
	1.2.2 Bloodshed Dev-C++ 5 compiler/IDE
	1.2.3 Preparation before Installation
	1.2.3.1 Creating the Needed Folders and Sub-Folders
	1.2.3.2 Getting the Software
	» Tip

	1.2.3.3 Getting a C++ Source Code File

	1.2.4 Installation Instructions for Bloodshed Dev-C++ 5 compiler/IDE
	1.2.4.1 Computer Installation Instructions
	1.2.4.2 Flash Drive Installation Instructions

	1.3 Modularization and C++ Program Layout
	1.3.1 Concept of Modularization
	1.3.2 Introduction of Functions within C++
	1.3.2.1 Program Control Function
	1.3.2.2 Specifc Task Function

	1.3.3 C++ Program Layout
	1.3.4 Definitions

	1.4 Practice 1: Introduction to Programming
	1.4.1 Learning Objectives
	1.4.2 Memory Building Activities
	1.4.3 Exercises
	1.4.4 Miscellaneous Items
	1.4.5 Lab Assignment
	1.4.5.1 Creating a Folder or Sub-Folder for Chapter 01 Files
	1.4.5.2 Download the Lab File(s)
	1.4.5.3 Detailed Lab Instructions

	1.4.6 Problems
	1.4.6.1 Problem 01a -Instructions

	1.4.7 Solutions to Exercises in Chapter 1

	Chapter 2 Program Planning & Design
	2.1 Program Design
	2.1.1 Topic Introduction
	2.1.2 Understanding the Program
	2.1.3 Using Design Tools to Create a Model
	2.1.4 Develop Test Data
	2.1.5 Definitions

	2.2 Pseudocode
	2.2.1 Overview
	2.2.2 Definitions

	2.3 Test Data
	2.3.1 Overview
	2.3.2 Creating Test Data and Model Checking
	2.3.3 Testing the Coded Program -Code Checking
	2.3.4 Definitions

	2.4 Practice 2: Program Planning & Design
	2.4.1 Learning Objectives
	2.4.2 Memory Building Activities
	2.4.3 Exercises
	2.4.4 Miscellaneous Items
	2.4.5 Lab Assignment
	2.4.5.1 Creating a Folder or Sub-Folder for Chapter 02 Files
	2.4.5.2 Download the Lab File(s)
	2.4.5.3 Detailed Lab Instructions

	2.4.6 Problems
	2.4.6.1 Problem 02a -Instructions
	2.4.6.2 Problem 02b -Instructions

	2.4.7 Solutions to Exercises in Chapter 2

	Chapter 3 Data & Operators
	3.1 Data Types in C++
	3.1.1 General Discussion
	3.1.2 Definitions

	3.2 Identifier Names
	3.2.1 Overview
	3.2.2 Technical to Language
	3.2.3 Good Programming Techniques
	3.2.4 Industry Rules
	3.2.5 Definitions

	3.3 Constants &Variables
	3.3.1 Understanding Constants
	3.3.2 Defining Constants & Variables
	3.3.3 Definitions

	3.4 Data Manipulation
	3.4.1 Introduction
	3.4.2 Definitions
	3.4.3 An Expression Example with Evaluation
	3.4.4 Precedence of Operators Chart

	3.5 Assignment Operator
	3.5.1 Discussion
	3.5.2 Definitions

	3.6 Arithmetic Operators
	3.6.1 General Discussion

	3.7 Data Type Conversions
	3.7.1 Overview
	3.7.2 Implicit Type Conversion
	3.7.3 Promotion
	3.7.4 Demotion
	3.7.5 Explicit Type Conversion
	3.7.6 Demonstration Program in C++
	3.7.6.1 Creating a Folder or Sub-Folder for Source Code Files
	3.7.6.2 Download the Demo Program

	3.7.7 Definitions

	3.8 Practice 3: Data & Operators
	3.8.1 Learning Objectives
	3.8.2 Memory Building Activities
	3.8.3 Exercises
	3.8.4 Miscellaneous Items
	3.8.5 Lab Assignment
	3.8.5.1 Creating a Folder or Sub-Folder for Chapter 03 Files
	3.8.5.2 Download the Lab File(s)
	3.8.5.3 Detailed Lab Instructions

	3.8.6 Problems
	3.8.6.1 Problem 03a -Instructions

	3.8.7 Solutions to Exercises in Chapter 3

	Chapter 4 Often Used Data Types
	4.1 Integer Data Type
	4.1.1 General Discussion
	4.1.2 Definitions

	4.2 Floating-Point Data Type
	4.2.1 General Discussion
	4.2.2 Definitions

	4.3 String Data Type
	4.3.1 General Discussion
	4.3.2 Definitions

	4.4 Arithmetic Assignment Operators
	4.4.1 Overview of Arithmetic Assignment
	4.4.2 Demonstration Program in C++
	4.4.2.1 Creating a Folder or Sub-Folder for Source Code Files
	4.4.2.2 Download the Demo Program

	4.5 Lvalue & Rvalue
	4.5.1 Discussion
	4.5.2 Definitions

	4.6 Integer Division and Modulus
	4.6.1 Overview of Integer Division and Modulus
	4.6.2 Demonstration Program in C++
	4.6.2.1 Creating a Folder or Sub-Folder for Source Code Files
	4.6.2.2 Download the Demo Program

	4.7 Practice 4: Often Used Data Types
	4.7.1 Learning Objectives
	4.7.2 Memory Building Activities
	4.7.3 Exercises
	4.7.4 Miscellaneous Items
	4.7.5 Lab Assignment
	4.7.5.1 Creating a Folder or Sub-Folder for Chapter 04 Files
	4.7.5.2 Detailed Lab Instructions

	4.7.6 Problems
	4.7.6.1 Problem 04a - Instructions

	4.7.7 Solutions to Exercises in Chapter 4

	Chapter 5 Integrated Development Environment
	5.1 Integrated Development Environment
	5.1.1 IDE Overview
	5.1.2 Resolving Errors
	5.1.3 Demonstration Program in C++
	5.1.3.1 Creating a Folder or Sub-Folder for Source Code Files
	5.1.3.2 Download the Demo Program

	5.1.4 Definitions

	5.2 Standard Input and Output
	5.2.1 General Discussion
	5.2.2 Standard I/O within C++
	5.2.3 Definitions

	5.3 Compiler Directives
	5.3.1 General Discussion
	5.3.2 Definitions

	5.4 Practice 5: Integrated Development Environment
	5.4.1 Learning Objectives
	5.4.2 Memory Building Activities
	5.4.3 Exercises
	5.4.4 Miscellaneous Items
	5.4.5 Lab Assignment
	5.4.5.1 Creating a Folder or Sub-Folder for Chapter 05 Files
	5.4.5.2 Download the Lab File(s)
	5.4.5.3 Detailed Lab Instructions

	5.4.6 Problems
	5.4.6.1 Problem 05a -Instructions
	5.4.6.2 Problem 05b -Instructions

	5.4.7 Solutions to Exercises in Chapter 5

	Chapter 6 Program Control Functions
	6.1 Pseudocode Examples for Functions
	6.1.1 Concept
	6.1.2 Examples
	6.1.3 Definitions

	6.2 Hierarchy or Structure Chart
	6.2.1 Overview
	6.2.2 Definitions

	6.3 Program Control Functions
	6.3.1 Prerequisite Material
	6.3.2 Concept of Modularization
	6.3.3 Program Control Functions
	6.3.4 Demonstration Program in C++
	6.3.4.1 Creating a Folder or Sub-Folder for Source Code Files
	6.3.4.2 Download the Demo Program
	6.3.4.3 Study the Materials Collectively to Understand Modularization

	6.3.5 Definitions

	6.4 Void Data Type
	6.4.1 General Discussion
	6.4.2 Definitions

	6.5 Documentation and Making Source Code Readable
	6.5.1 General Discussion
	6.5.1.1 Documentation
	6.5.1.2 Vertical Alignment
	6.5.1.3 Appropriate use of Comments
	6.5.1.4 Banners for Functions
	6.5.1.5 Block Markers on Lines by Themselves
	6.5.1.6 Indent Block Markers
	6.5.1.7 Meaningful Identifier Names Consistently Typed
	6.5.1.8 Appropriate use of Typedef

	6.5.2 Definitions

	6.6 Practice 6: Program Control Functions
	6.6.1 Learning Objectives
	6.6.2 Memory Building Activities
	6.6.3 Exercises
	6.6.4 Miscellaneous Items
	6.6.4.1 Lab Assignment
	6.6.4.1.1 Creating a Folder or Sub-Folder for Chapter 06 Files
	6.6.4.1.2 Download the Lab File(s)
	6.6.4.1.3 Detailed Lab Instructions

	6.6.4.2 Problems
	6.6.4.2.1 Problem 06a -Instructions
	6.6.4.2.2 Problem 06b -Instructions

	6.6.4.3 Solutions to Exercises in Chapter 6

	Chapter 7 Specific Task Functions
	7.1 Specific Task Functions
	7.1.1 Prerequisite Material
	7.1.2 General Concept
	7.1.3 Specifc Task Functions
	7.1.4 Definitions

	7.2 Global vs Local Data Storage
	7.2.1 General Discussion
	7.2.2 Definitions

	7.3 Using a Header File for User Defned Specifc Task Functions
	7.3.1 Concept: User Defned Specifc Task Functions
	7.3.2 Demonstration Using C++
	7.3.2.1 Creating a Folder or Sub-Folder for the Four Files
	7.3.2.2 Download the Four Files
	7.3.2.3 Study the Files Collectively to Understand the Concepts
	7.3.2.4 Creating a Folder or Sub-Folder for your User Library
	7.3.2.5 Placing the Header File into the User Library
	7.3.2.6 Verify that the Header File Works Properly

	7.3.3 Definitions

	7.4 Practice 7: Specifc Task Functions
	7.4.1 Learning Objectives
	7.4.2 Memory Building Activities
	7.4.3 Exercises
	7.4.4 Miscellaneous Items
	7.4.5 Lab Assignment
	7.4.5.1 Creating a Folder or Sub-Folder for Chapter 07 Files
	7.4.5.2 Download the Lab File(s)
	7.4.5.3 Detailed Lab Instructions

	7.4.6 Problems
	7.4.6.1 Problem 07a -Instructions
	7.4.6.2 Problem 07b -Instructions

	7.4.7 Solutions to Exercises in Chapter 7

	Chapter 8 Standard Libraries
	8.1 Standard Libraries
	8.1.1 Overview of Standard Libraries
	8.1.2 Demonstration Program in C++
	8.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	8.1.2.2 Download the Demo Program

	8.1.3 Definitions

	8.2 Practice 8: Standard Libraries
	8.2.1 Learning Objectives
	8.2.2 Memory Building Activities
	8.2.3 Exercises
	8.2.4 Miscellaneous Items
	8.2.5 Lab Assignment
	8.2.5.1 Creating a Folder or Sub-Folder for Chapter 08 Files
	8.2.5.2 Download the Lab File(s)
	8.2.5.3 Detailed Lab Instructions

	8.2.6 Problems
	8.2.6.1 Problem 08a -Instructions

	8.2.7 Solutions to Exercises in Chapter 8

	Chapter 9 Character Data, Sizeof, Typedef, Sequence
	9.1 Character Data Type
	9.1.1 Overview of the Character Data Type
	9.1.2 Demonstration Program in C++
	9.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	9.1.2.2 Download the Demo Program

	9.1.3 Definitions

	9.2 Sizeof Operator
	9.2.1 Overview
	9.2.2 Definitions

	9.3 Typedef -An Alias
	9.3.1 General Discussion
	9.3.2 Definitions

	9.4 Sequence Operator
	9.4.1 General Discussion
	9.4.2 Definitions

	9.5 Practice 9: Character Dataf Sizeoff Typedeff Sequence
	9.5.1 Learning Objectives
	9.5.2 Memory Building Activities
	9.5.3 Exercises
	9.5.4 Miscellaneous Items
	9.5.4.1 Lab Assignment
	9.5.4.1.1 Creating a Folder or Sub-Folder for Chapter 09 Files
	9.5.4.1.2 Download the Lab File(s)
	9.5.4.1.3 Detailed Lab Instructions

	9.5.4.2 Problems
	9.5.4.2.1 Problem 09a -Instructions

	9.5.4.3 Solutions to Exercises in Chapter 9

	Chapter 10 Introduction to Structured Programming
	10.1 Structured Programming
	10.1.1 Introduction
	10.1.1.1 Introduction to Selection Control Structures
	10.1.1.2 Introduction to Iteration Control Structures

	10.1.2 Definitions

	10.2 Pseudocode Examples for Control Structures
	10.2.1 Overview
	10.2.2 Selection Control Structures
	10.2.3 Iteration (Repetition) Control Structures

	10.3 Flowcharting
	10.3.1 Flowcharting Symbols
	10.3.1.1 Terminal
	10.3.1.2 Process
	10.3.1.3 Input/Output
	10.3.1.4 Connectors
	10.3.1.5 Decision
	10.3.1.6 Module Call
	10.3.1.7 Flow Lines

	10.3.2 Examples
	10.3.3 Functions
	10.3.3.1 Sequence Control Structures
	10.3.3.2 Selection Control Structures Example 10.12: pseudocode: If then Else
	10.3.3.3 Iteration (Repetition) Control Structures

	10.3.4 Definitions

	10.4 Practice 10: Introduction to Structured Programming
	10.4.1 Learning Objectives
	10.4.1.1 Memory Building Activities

	10.4.2 Exercises
	10.4.3 Miscellaneous Items
	10.4.4 Lab Assignment
	10.4.4.1 Creating a Folder or Sub-Folder for Chapter 10 Files
	10.4.4.2 Download the Lab File(s)
	10.4.4.3 Detailed Lab Instructions

	10.4.5 Problems
	10.4.5.1 Problem 10a - Instructions

	10.4.6 Solutions to Exercises in Chapter 10

	Chapter 11 Two Way Selection
	11.1 If Then Else
	11.1.1 Introduction to Two Way Selection
	11.1.1.1 Traditional Two Way Selection
	11.1.1.2 One Choice -Implied Two Way Selection

	11.1.2 Two Way Selection within C++
	11.1.3 Definitions

	11.2 Boolean Data Type
	11.2.1 Discussion
	11.2.2 Definitions

	11.3 Relational Operators
	11.3.1 Overview of the Relational Operators
	11.3.2 Demonstration Program in C++
	11.3.2.1 Creating a Folder or Sub-Folder for Source Code Files
	11.3.2.2 Download the Demo Program

	11.4 Compound Statement
	11.4.1 The Need for a Compound Statement
	11.4.2 Other Uses of a Compound Statement
	11.4.3 Definitions

	11.5 Practice 11: Two Way Selection
	11.5.1 Learning Objectives
	11.5.2 Memory Building Activities
	11.5.3 Exercises
	11.5.4 Miscellaneous Items
	11.5.5 Lab Assignment
	11.5.5.1 Creating a Folder or Sub-Folder for Chapter 11 Files
	11.5.5.2 Download the Lab File(s)
	11.5.5.3 Detailed Lab Instructions

	11.5.6 Problems
	11.5.6.1 Problem 11a - Instructions
	11.5.6.2 Problem 11b -Instructions

	11.5.7 Solutions to Exercises in Chapter 11

	Chapter 12 Multiway Selection
	12.1 Nested If Then Else
	12.1.1 Introduction to Mulitway Selection
	12.1.1.1 Nested Control Structures
	12.1.1.2 Multiway Selection

	12.1.2 if then else Syntax within C++
	12.1.3 C++ Example
	12.1.4 Definitions

	12.2 Logical Operators
	12.2.1 Overview of the Logical Operators
	12.2.2 Truth Tables
	12.2.3 Examples
	12.2.4 Demonstration Program in C++
	12.2.4.1 Creating a Folder or Sub-Folder for Source Code Files
	12.2.4.2 Download the Demo Program

	12.2.5 Definitions

	12.3 Case Control Structure
	12.3.1 Traditional Case Control Structure
	12.3.1.1 Multiway Selection using the Case Structure
	12.3.1.2 C++ Code to Accomplish Multiway Selection

	12.3.2 Limitations of the Case Control Structure
	12.3.3 Good Structured Programming Methods
	12.3.4 Definitions

	12.4 Branching Control Structures
	12.4.1 Discussion
	12.4.1.1 Definitions

	12.4.2 Examples
	12.4.2.1 break
	12.4.2.2 continue

	12.4.3 goto
	12.4.3.1 return
	12.4.3.2 exit

	12.5 Practice 12: Multiway Selection
	12.5.1 Learning Objectives
	12.5.2 Memory Building Activities
	12.5.3 Exercises
	12.5.4 Miscellaneous Items
	12.5.5 Lab Assignment
	12.5.5.1 Creating a Folder or Sub-Folder for Chapter 12 Files
	12.5.5.2 Download the Lab File(s)
	12.5.5.3 Detailed Lab Instructions

	12.5.6 Problems
	12.5.6.1 Problem 12a -Instructions
	12.5.6.2 Problem 12b -Instructions
	12.5.6.3 Problem 12c -Instructions

	12.5.7 Solutions to Exercises in Chapter 12

	Chapter 13 Test After Loops
	13.1 Do While Loop
	13.1.1 Introduction to Test After Loops
	13.1.1.1 Understanding Iteration in General -do while

	13.1.2 The do while Structure within C++
	13.1.2.1 Syntax
	13.1.2.2 An Example
	13.1.2.3 Infinite Loops

	13.1.3 Definitions

	13.2 Flag Concept
	13.2.1 Concept Discussion
	13.2.2 Computer Implementation
	13.2.3 Two Flags with the Same Meaning
	13.2.4 Multiple Flags in One Byte
	13.2.5 Definitions

	13.3 Assignment vs Equality within C++
	13.3.1 General Discussion

	13.4 Repeat Until Loop
	13.4.1 Introduction to Test After Loops
	13.4.1.1 Understanding Iteration in General -repeat until

	13.4.2 The repeat until Structure within C++
	13.4.3 Definitions

	13.5 Practice 13: Test After Loops
	13.5.1 Learning Objectives
	13.5.2 Memory Building Activities
	13.5.3 Exercises
	13.5.4 Miscellaneous Items
	13.5.4.1 Lab Assignment
	13.5.4.1.1 Creating a Folder or Sub-Folder for Chapter 13 Files
	13.5.4.1.2 Download the Lab File(s)
	13.5.4.1.3 Detailed Lab Instructions

	13.5.4.2 Problems
	13.5.4.2.1 Problem 13a -Instructions

	13.5.4.3 Solutions to Exercises in Chapter 13

	Chapter 14 Test Before Loops
	14.1 Increment and Decrement Operators
	14.1.1 General Discussion
	14.1.2 C++ Code Examples
	14.1.2.1 Basic Concept
	14.1.2.2 Postfix Increment
	14.1.2.3 Prefix Increment
	14.1.2.4 Allowable Data Types
	14.1.2.5 Exercises

	14.1.3 Definitions

	14.2 While Loop
	14.2.1 Introduction to Test Before Loops
	14.2.1.1 Understanding Iteration in General -while
	14.2.1.2 Human Example of the while Loop

	14.2.2 The while Structure within C++
	14.2.2.1 Syntax
	14.2.2.2 An Example
	14.2.2.3 Infinite Loops

	14.2.3 Counting Loops
	14.2.3.1 Infinite Loops
	14.2.3.2 Variations on Counting

	14.2.4 Definitions

	14.3 Practice 14: Test Before Loops
	14.3.1 Learning Objectives
	14.3.2 Memory Building Activities
	14.3.3 Exercises
	14.3.4 Miscellaneous Items
	14.3.5 Lab Assignment
	14.3.5.1 Creating a Folder or Sub-Folder for Chapter 14 Files
	14.3.5.2 Download the Lab File(s)
	14.3.5.3 Detailed Lab Instructions

	14.3.6 Problems
	14.3.6.1 Problem 14a -Instructions

	14.3.7 Solutions to Exercises in Chapter 14.

	Chapter 15 Counting Loops
	15.1 For Loop
	15.1.1 Introduction to Test Before Loops
	15.1.1.1 Understanding Iteration in General - for

	15.1.2 The for Structure within C++
	15.1.2.1 Syntax
	15.1.2.2 An Example
	15.1.2.3 Infinite Loops
	15.1.2.4 Multiple Items in the Initialization and Update

	15.1.3 Counting Loop Conversion -a while into a for
	15.1.4 Miscellaneous Information about the for Structure
	15.1.5 Definitions

	15.2 Circular Nature of the Integer Data Type Family
	15.2.1 General Discussion
	15.2.2 Implications When Executing Loops
	15.2.3 Demonstration Program in C++
	15.2.3.1 Creating a Folder or Sub-Folder for Source Code Files
	15.2.3.2 Download the Demo Program

	15.2.4 Definitions

	15.3 Formatting Output
	15.3.1 General Discussion
	15.3.2 C++ Considerations using Standard Output (cout)
	15.3.2.1 Text Wrapping and Vertical Spacing
	15.3.2.2 Handling Floating-point Data Type
	15.3.2.3 Setting the Width for Numbers

	15.3.3 Demonstration Program in C++
	15.3.3.1 Creating a Folder or Sub-Folder for Source Code Files
	15.3.3.2 Download the Demo Program

	15.3.4 Definitions

	15.4 Nested For Loops
	15.4.1 General Discussion
	15.4.1.1 Nested Control Structures

	15.4.2 An Example -Nested for loops
	15.4.3 Demonstration Program in C++
	15.4.3.1 Creating a Folder or Sub-Folder for Source Code Files
	15.4.3.2 Download the Demo Program

	15.4.4 Definitions

	15.5 Practice 15: Counting Loops
	15.5.1 Learning Objectives
	15.5.2 Memory Building Activities
	15.5.3 Exercises
	15.5.4 Miscellaneous Items
	15.5.5 Lab Assignment
	15.5.5.1 Creating a Folder or Sub-Folder for Chapter 15 Files
	15.5.5.2 Download the Lab File(s)
	15.5.5.3 Detailed Lab Instructions

	15.5.6 Problems
	15.5.6.1 Problem 15a -Instructions

	15.5.7 Solutions to Exercises in Chapter 15

	Chapter 16 String Class, Unary Positive and Negative
	16.1 String Class within C++
	16.1.1 General Discussion
	16.1.2 Demonstration Program in C++
	16.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	16.1.2.2 Download the Demo Program

	16.1.3 Definitions

	16.2 Unary Positive and Negative Operators
	16.2.1 General Discussion
	16.2.2 C++ Code Examples
	16.2.2.1 Negation -Unary Negative
	16.2.2.2 Unary Positive -Worthless
	16.2.2.3 Possible Confusion
	16.2.2.4 Exercises

	16.2.3 Definitions

	16.3 Practice 16: String Classf Unary Positive and Negative
	16.3.1 Learning Objectives
	16.3.2 Memory Building Activities
	16.3.3 Exercises
	16.3.4 Miscellaneous Items
	16.3.5 Lab Assignment
	16.3.5.1 Creating a Folder or Sub-Folder for Chapter 16 Files
	16.3.5.2 Download the Lab File(s)
	16.3.5.3 Detailed Lab Instructions

	16.3.6 Problems
	16.3.6.1 Problem 16a -Instructions
	16.3.6.2 Problem 16b -Instructions
	16.3.6.3 Problem 16c -Instructions

	16.3.7 Solutions to Exercises in Chapter 16

	Chapter 17 Conditional Operator and Recursion
	17.1 Conditional Operator
	17.1.1 Overview
	17.1.2 Definitions

	17.2 Recursion vs Iteration
	17.2.1 Repetitive Algorithms
	17.2.2 Demonstration Program in C++
	17.2.2.1 Creating a Folder or Sub-Folder for Source Code Files
	17.2.2.2 Download the Demo Program

	17.2.3 Definitions

	17.3 Practice 17: Conditional Operator and Recursion
	17.3.1 Learning Objectives
	17.3.2 Memory Building Activities
	17.3.3 Exercises
	17.3.4 Miscellaneous Items
	17.3.5 Lab Assignment
	17.3.5.1 Creating a Folder or Sub-Folder for Chapter 17 Files
	17.3.5.2 Download the Lab File(s)
	17.3.5.3 Detailed Lab Instructions

	17.3.6 Problems
	17.3.6.1 Problem 17a -Instructions
	17.3.6.2 Problem 17b -Instructions

	17.3.7 Solutions to Exercises in Chapter 17

	Chapter 18 Introduction to Arrays
	18.1 Array Data Type
	18.1.1 Overview
	18.1.2 Defning an Array in C++
	18.1.3 Definitions

	18.2 Array Index Operator
	18.2.1 Array Index Operator in C++
	18.2.2 Definitions

	18.3 Displaying Array Members
	18.3.1 Accessing Array Members in C++
	18.3.2 Using the Sizeof Operator with Arrays in C++
	18.3.3 Demonstration Program in C++
	18.3.3.1 Creating a Folder or Sub-Folder for Source Code Files
	18.3.3.2 Download the Demo Program

	18.3.4 Definitions

	18.4 Practice 18: Introduction to Arrays
	18.4.1 Learning Objectives
	18.4.2 Memory Building Activities
	18.4.3 Exercises
	18.4.4 Miscellaneous Items
	18.4.5 Lab Assignment
	18.4.5.1 Creating a Folder or Sub-Folder for Chapter 18 Files
	18.4.5.2 Download the Lab File(s)
	18.4.5.3 Detailed Lab Instructions

	18.4.6 Problems
	18.4.6.1 Problem 18a -Instructions

	18.4.7 Solutions to Exercises in Chapter 18

	Chapter 19 File I/O and Array Functions
	19.1 File Input and Output
	19.1.1 Overview of File I/O in C++
	19.1.2 Demonstration Program in C++
	19.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	19.1.2.2 Download the Demo Program

	19.1.3 Definitions

	19.2 Arrays and Functions
	19.2.1 Overview of Array Functions
	19.2.2 Demonstration Program in C++
	19.2.2.1 Creating a Folder or Sub-Folder for Source Code Files
	19.2.2.2 Download the Demo Program

	19.2.3 Definitions

	19.3 Loading an Array from a File
	19.3.1 Conceptual Overview
	19.3.2 Demonstration Program in C++
	19.3.2.1 Creating a Folder or Sub-Folder for Source Code Files
	19.3.2.2 Download the Demo Program

	19.3.3 Definitions

	19.4 Math Statistics with Arrays
	19.4.1 Overview
	19.4.2 Demonstration Program in C++
	19.4.2.1 Creating a Folder or Sub-Folder for Source Code Files
	19.4.2.2 Download the Demo Program

	19.4.3 Definitions

	19.5 Practice 19: File I/O and Array Functions
	19.5.1 Learning Objectives
	19.5.2 Memory Building Activities
	19.5.3 Exercises
	19.5.4 Miscellaneous Items
	19.5.5 Lab Assignment
	19.5.5.1 Creating a Folder or Sub-Folder for Chapter 19 Files
	19.5.5.2 Download the Lab File(s)
	19.5.5.3 Detailed Lab Instructions

	19.5.6 Problems
	19.5.6.1 Problem 19a -Instructions
	19.5.6.2 Problem 19b -Instructions

	19.5.7 Solutions to Exercises in Chapter 19

	Chapter 20 More Array Functions
	20.1 Finding a Specifc Member of an Arrayl
	20.1.1 Overview
	20.1.2 Demonstration Program in C++
	20.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	20.1.2.2 Download the Demo Program

	20.1.3 Definitions

	20.2 Sorting an Array
	20.2.1 Overview
	20.2.2 Demonstration Program in C++
	20.2.2.1 Creating a Folder or Sub-Folder for Source Code Files
	20.2.2.2 Download the Demo Program

	20.2.3 Definitions

	20.3 Practice 20: More Array Functions
	20.3.1 Learning Objectives
	20.3.2 Memory Building Activities
	20.3.3 Exercises
	20.3.4 Miscellaneous Items
	20.3.5 Lab Assignment
	20.3.5.1 Creating a Folder or Sub-Folder for Chapter 20 Files
	20.3.5.2 Download the Lab File(s)
	20.3.5.3 Detailed Lab Instructions

	20.3.6 Problems
	20.3.6.1 Problem 20a -Instructions

	20.3.7 Solutions to Exercises in Chapter 20

	Chapter 21 More on Typedef
	21.1 Versatile Code with Typedef
	21.1.1 Overview
	21.1.2 Demonstration Program in C++
	21.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	21.1.2.2 Download the Demo Program

	21.1.3 Definitions

	21.2 Practice 21: More on Typedef
	21.2.1 Learning Objectives
	21.2.2 Memory Building Activities
	21.2.3 Exercises
	21.2.4 Miscellaneous Items
	21.2.5 Lab Assignment
	21.2.5.1 Creating a Folder or Sub-Folder for Chapter 18 Files
	21.2.5.2 Download the Lab File(s)
	21.2.5.3 Detailed Lab Instructions

	21.2.6 Problems
	21.2.6.1 Problem 21a -Instructions

	21.2.7 Solutions to Exercises in Chapter 21

	Chapter 22 Pointers
	22.1 Address Operator
	22.1.1 Address Operator in C++
	22.1.2 Definitions

	22.2 Parameter Passing by Reference
	22.2.1 Overview
	22.2.2 Demonstration Program in C++
	22.2.2.1 Creating a Folder or Sub-Folder for Source Code Files
	22.2.2.2 Download the Demo Program

	22.2.3 Definitions

	22.3 Pointer Data Type
	22.3.1 Pointer Data Type in C++
	22.3.2 Definitions

	22.4 Indirection Operator
	22.4.1 Indirection Operator in C++
	22.4.2 Demonstration Program in C++
	22.4.2.1 Creating a Folder or Sub-Folder for Source Code Files
	22.4.2.2 Download the Demo Program

	22.4.3 Definitions

	22.5 Practice 22: Pointers
	22.5.1 Learning Objectives
	22.5.2 Memory Building Activities
	22.5.3 Exercises
	22.5.4 Miscellaneous Items
	22.5.5 Lab Assignment
	22.5.5.1 Creating a Folder or Sub-Folder for Chapter 22 Files
	22.5.5.2 Download the Lab File(s)
	22.5.5.3 Detailed Lab Instructions

	22.5.6 Problems
	22.5.6.1 Problem 22a -Instructions

	22.5.7 Solutions to Exercises in Chapter 22

	Chapter 23 More Arrays & Compiler Directives
	23.1 Multidimensional Arrays
	23.1.1 Overview
	23.1.2 Demonstration Program in C++
	23.1.2.1 Creating a Folder or Sub-Folder for Source Code Files
	23.1.2.2 Download the Demo Program

	23.1.3 Definitions

	23.2 Conditional Compilation
	23.2.1 Overview
	23.2.2 Demonstration Program in C++
	23.2.2.1 Creating a Folder or Sub-Folder for Source Code Files
	23.2.2.2 Download the Demo Program

	23.2.3 Definitions

	23.3 Practice 23: More Arrays & Compiler Directives
	23.3.1 Learning Objectives
	23.3.2 Memory Building Activities
	23.3.3 Exercises
	23.3.4 Miscellaneous Items
	23.3.5 Lab Assignment
	23.3.5.1 Creating a Folder or Sub-Folder for Chapter 23 Files
	23.3.5.2 Download the Lab File(s)
	23.3.5.3 Detailed Lab Instructions

	23.3.6 Problems
	23.3.6.1 Problem 23a - Instructions

	23.3.7 Solutions to Exercises in Chapter 23

	Chapter 24 OOP & HPC
	24.1 Object Oriented Programming
	24.1.1 Discussion
	24.1.2 Transition
	24.1.3 Definitions

	24.2 Understanding High Performance Computing
	24.2.1 Preface -November 13, 2009
	24.2.2 Introduction to High Performance Computing
	24.2.2.1 The Shift from a Single Processor to Parallel
	24.2.2.2 The Birth of Computers -A "Parallel" to Central Processing Unit (CPU) Story
	24.2.2.3 The Need for Power
	24.2.2.4 Measuring Computer Power
	24.2.2.5 High Performance Computing Made Personal
	24.2.2.6 Summary

	24.2.3 Learner Appropriate Activities
	24.2.3.1 Computer Literacy but No Programming Skills
	24.2.3.2 Learning Programming Fundamentals
	24.2.3.3 Upper Division Under-Graduate College Students

	24.2.4 Educator Resources
	24.2.5 Simple Definitions

	24.3 Practice 2: OOP & HPC
	24.3.1 Learning Objectives
	24.3.2 Memory Building Activities
	24.3.3 Exercises
	24.3.4 Miscellaneous Items
	24.3.5 Lab Assignment
	24.3.5.1 Creating a Folder or Sub-Folder for Chapter 24 Files
	24.3.5.2 Download the Lab File(s)
	24.3.5.3 Detailed Lab Instructions

	24.3.6 Problems
	24.3.6.1 Problem 24a -Instructions
	24.3.6.2 Problem 24b -Instructions

	24.3.7 Solutions to Exercises in Chapter 2.

	Chapter 25 Review Materials
	25.1 Review: Foundation Topics Group: 1-5
	25.1.1 Strategy Discussion
	25.1.2 Memory Building Activities
	25.1.3 Miscellaneous Items

	25.2 Review: Modular Programming Group: 6-9
	25.2.1 Strategy Discussion
	25.2.2 Memory Building Activities
	25.2.3 Miscellaneous Items

	25.3 Review: Structured Programming Group: 10-16
	25.3.1 Strategy Discussion
	25.3.2 Memory Building Activities
	25.3.3 Miscellaneous Items

	25.4 Review: Intermediate Topics Group: 17-21
	25.4.1 Strategy Discussion
	25.4.2 Memory Building Activities
	25.4.3 Miscellaneous Items

	25.5 Review: Advanced Topics Group: 22-24
	25.5.1 Strategy Discussion
	25.5.2 Memory Building Activities
	25.5.3 Miscellaneous Items

	Chapter 26 Appendix
	26.1 Abbreviated Precedence Chart for C++ Operators
	26.2 C++ Reserved Keywords
	26.3 ASCII Character Set
	26.4 Show Hide File Extensions
	26.4.1 Windows XP
	26.4.2 Windows Vista
	26.4.3 Windows 7

	26.5 Academic or Scholastic Dishonesty
	26.5.1 Introduction
	26.5.2 Collusion
	26.5.3 Type it Yourself
	26.5.4 Control Access to Your Files
	26.5.5 Ask for a Clarification of the Collaboration
	26.5.6 Detecting Academic Dishonesty
	26.5.7 Serious Consequences
	26.5.8 Summary

	26.6 Successful Learning Skills
	26.6.1 Realize the Time Commitment
	26.6.2 Understand Your Capacity to Concentrate
	26.6.3 Plan Regular Study Times
	26.6.4 Learning Requires Variety and Repetition
	26.6.5 Interact with the Other Students
	26.6.6 Don't Procrastinate and Don't Get Behind
	26.6.7 Attend Class and Take Notes

	26.7 Study Habits that Build the Brain
	26.7.1 Introduction
	26.7.2 Main Presentation
	26.7.3 Specifc Topics

