
Introduction to G Programming

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

© Eduardo Perez

This work is licensed under a Creative Commons-ShareAlike 4.0 International License

Original source: CONNEXIONS
http://cnx.org/content/col11192/1.1/

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/col11192/1.1/

Contents

Preface to an "Introduction to G Programming" ...1
About the Author ...3
Chapter 1 Introduction to G Programming..4
1.1 Hello Graphical World ..4
1.2 Arithmetic Expressions ..6
1.3 Functions ...8
1.4 Case Selection ...9
1.5 Arrays ...13
1.6 For Loop...15
1.7 While Loop...16
1.8 Graphs ...20
1.9 Interactivity..22
1.10 Parallel Programming ..26
1.11 Multicore Programming ..28
1.12 Polymorphism...28

Chapter 2 Data Types ...29
Chapter 3 Operators ..31
3.1 Numeric ...31
3.2 Boolean..32
3.3 Comparison...32
3.4 Math ..33

3.4.1 Math Constants ...33
3.4.2 Trigonometric Functions ..34
3.4.3 Exponential and Logarithmic Functions ...34
3.4.4 Hyperbolic Functions ..34

Chapter 4 Arrays and Clusters ..35
4.1 Multidimensional Arrays..36
4.2 Array Operators ..37
4.3 Clusters ..37
4.4 Cluster Operators ...38

Chapter 5 Data Flow Control ..39
5.1 Case Structure...39

5.1.1 Boolean Selection..39
5.1.2 Multicase Selection ..40

5.2 For Loop...42
5.2.1 Shift Registers ..43
5.2.2 Auto-Indexing ..44
5.2.3 Disabling Auto-Indexing ...45

5.3 While Loop...45
5.3.1 Loop Condition ...46

5.3.1.1 Stop if True..46
5.3.1.2 Continue if True..46

5.3.2 Shift Registers ..47
5.3.3 Enabling Auto-Indexing ..47

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

5.4 Sequence ...48
5.4.1 Flat Sequence...48
5.4.2 Stacked Sequence ...50

Chapter 6 Functions ...52
6.1 Connectors ..52
6.2 Icon Editor ...53
6.3 Invoking Functions ...54

Chapter 7 Graphs ...55
7.1 Waveform Chart ...55
7.2 Waveform Graph ..59

7.2.1 Single Plot...60
7.2.2 Multiplots ...61

7.3 XY Graph ..62

Chapter 8 Interactive Programming...63
Chapter 9 Parallel Programming ..68
Chapter 10 Multicore Programming...70
10.1 Data Parallelism..70
10.2 Task Pipelining ..72
10.3 Pipelining Using Feedback Nodes ..73

Chapter 11 Input and Output ...75
11.1 Writing to File ..75
11.2 Reading From Files ...79

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Preface to an "Introduction to G
Programming"

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Internet, personal devices and multicore computers have greatly changed and
enhanced our lives by allowing us to access information and entertainment on-
demand anytime, anywhere. While these technologies are great on their own merit,
the reality is that in order to reap the benefits, someone has to program these devices
to develop useful applications.

Historically, text-based high-level programming languages provided the first
productive alternative to develop targeted applications. As more networked
computing platforms enter the mainstream, the programming complexities of text
based languages becomes a limiting factor, especially for domain experts who are
typically not programming or computer science experts. The G programming language
provides the next generation programming alternative allowing users to develop
interactive parallel programs whether they have extensive programming experience
or not. It's graphical syntax and constructs allow researchers, teachers, students and
even children to program complex devices and systems in minutes rather than hours,
days or even months.

G is a data flow graphical programming language. Originally designed to address test
and measurement needs, its general purpose programming attributes has been
applied in telecommunications, biomedical, aerospace, environmental and many
other industries. In general, G is used in Science, Technology, Engineering and Math
(STEM) projects and programs but is not limited to STEM.

The book was written to help the user learn the G programming syntax and begin
developing G programs quickly and easily. Although familiarity with programming
concepts could help learning G, the book assumes the user has had no previous
exposure to any programming languages. Therefore, to avoid confusion, no pseudo-
code or syntax comparisons are made with text-based programming languages. All
examples in this book are working graphical examples and have been tested
thoroughly. Chapter 1 is an introductory tutorial providing a reference for beginners
and seasoned programmers alike. Subsequent chapters provide more details on the G
syntax building up to the development of parallel programs that run on multicore
platforms.

This book is not an introduction to programming, style guide, debugging or to
development environments. It is strictly a concise G syntax. Additionally, the user must
have access to National Instruments LabVIEW and be familiar with LabVIEW basics.
Nonetheless, the user should be able to read along to learn and understand the
benefits of G programming.

1

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

As one of the original LabVIEW development team members, developing G programs
has been a pleasant and productive experience. It is the author's sincere hope that the
user finds G programming and interesting endeavor as well.

Lalo Perez, Ph.D.

2

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

About the Author
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Dr. Eduardo "Lalo" Perez is one of the original LabVIEW development team members
responsible for the design, deployment and optimization of the Digital Signal
Processing and Data Analysis Libraries still being used today.

Dr. Perez has nearly 30 years of engineering programming experience and nearly 20
years designing and implementing digital signal processing software architectures for
the deployment of multimedia, communications and biomedical real-time
applications. He has extensive experience in large enterprises -where he successfully
deployed global multimedia networks and services for AT&T and Ernst & Young -as
well as startups where he forged strategic alliances with Intel, Microsoft, Samsung and
Texas Instruments to accelerate adoption of audio-visual services over IP. Dr. Perez'
other accomplishments include: member of the first ever live video webcast team over
ISDN in 1994, first commercial DSL live IP broadcast in 1999, provided nearly 3 years
of webcasting services for Broadcast.com(now Yahoo! Broadcasting Services)with
100% success rate, team member at SBC Communications that launched SBC Internet
Services and DSL services and provided guidance for deployment of early Internet
multimedia communities.

Dr. Perez holds a variety of patents on high quality video encoding, compressive data
acquisition, multirate media processing, remote computing and streaming delivery
mechanisms.

A native from Mexico, he immigrated to the U.S. at the age of 18 to pursue higher
education. He received his B.S., M.S., and Ph.D. in Electrical and Computer Engineering
in the areas of Telecommunications, Image Processing, and Real-Time Digital Imaging
Systems, respectively, all from the University of Texas at Austin.

Dr. Perez was a member of the 1976 Mexican Olympic Swimming team.

3

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 1 Introduction to G
Programming

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

G is a high level, data-flow graphical programming language designed to develop
applications that are

• Interactive
• Execute in Parallel
• Multicore

The program is a block diagram edited in the Block Diagram programming window.

Figure 1.1 G Block Diagram

The program input data and results are manipulated and displayed in the Front Panel
window.

Figure 1.2 G User Interface

1.1 Hello Graphical World
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The first program is to display the text "Hello graphical interactive parallel multicore
world" in the Front Panel window.

Right click on the Block Diagram window and select String Constant from the
Functions » Programming » String menu.

4

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Drag and drop the String Constant onto the Block Diagram window as show in the
following Figure 1.3.

Figure 1.3 String Constant

Type in "Hello graphical interactive parallel multicore world." in the String Constant.

Figure 1.4 "Hello...world" String Constant

Right click in the Front Panel window and select a String Indicator from the Controls
»Modern » String & Path menu.

Figure 1.5 Select String Indicator

Drop it into the Front Panel window.

Figure 1.6 String Indicator

Return to the programming window. Notice the string terminal corresponding to
thestring indicator in the Front Panel window. As you approach the string constant
from the right, the wiring terminal is highlighted and the pointer turns to wire spooler.

Figure 1.7 Wiring the G Diagram

Click the "Hello graphical interactive parallel multicore world" terminal and then
click on the String Indicator triangular terminal to wire the terminals.

Figure 1.8 Wired G Block Diagram

5

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Save your program as Hello, World.vi. Return to the Front Panel window. Click the run
button ([U+27AF]). You have successfully completed and executed your first G
program.

Figure 1.9 Hello, World G Program Executed

1.2 Arithmetic Expressions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The next program converts degrees from Fahrenheit to Celsius using the formula

In the Block Diagram window, select the subtract, multiply and divide from the
Functions » Mathematics » Numeric menu

Figure 1.10 Numeric Operations

Wire the subtract, multiply and divide functions as shown in Figure 3.11.

Figure 1.11 Subtract, Multiply and Divide

Right click on the upper left terminal of the subtract function and select Create »
Control from the pop-up menu.

Figure 1.12 Create Control

Re-labelx as Fahrenheit and wire the terminal as shown in Fahrenheit Input Control.

6

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.13 Fahrenheit Input Control

Right click on the lower left terminal of the subtract function and select Create
»Constant and type 32.0.

Figure 1.14 Fahrenheit Numeric Constant

Repeat the process to generate numeric constants for the multiply and divide function
with 5.0 and 9.0 respectively.

Figure 1.15 Fahrenheit Numeric Constants

To complete the program, right click on the right terminal of the divide function and
select Create »Indicator. Re-label x/y as Celsius. The fnal diagram is shown in
Fahrenheit to Celsius G Diagram

Figure 1.16 Fahrenheit to Celsius G Diagram

Switch to the Front Panel window to run the program. Save the program as Celsius.vi.
Try various Fahrenheit values to see the corresponding Celsius values. You have
successfully finished a Fahrenheit to Celsius calculator.

Figure 1.17 Fahrenheit to Celsius calculator

7

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

1.3 Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Click on empty space and drag to select the entire diagram.

Figure 1.18 Select G Block Diagram

The selected diagram is highlighted as shown in Selected G Block Diagram

Figure 1.19 Selected G Block Diagram

From the Edit menu select Create SubVI to create a G function. The resulting diagram
is shown in Creating a Function .

Figure 1.20 Creating a Function

From the File menu select Save All and save the Untitled function as Fahrenheit to
Celsius.vi.

Figure 1.21 Diagram with Function

Open the Fahrenheit to Celsius.vi by double clicking on the icon. Right click on the
icon editor (upper right corner) and select Edit Icon...

Figure 1.22 Edit Icon

This pops-up the Icon Editor. Edit the function's icon.

8

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.23 Icon Editor

After editing the icon, the function's icon is shown in the upper right corner of the
Front Panel window. Save the function, plug in various input values and run the
function. Save the function.

Figure 1.24 Edited Icon

Close theFahrenheit to Celsius function and return to the Celsius Block Diagram
windows. The Celsius diagram reflects the updated Fahrenheit to Celsius icon

Figure 1.25 Function Calling

1.4 Case Selection
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This program determines if a year is a leap year or not. A leap year is divisible by 4 but
not by 100, except when it is divisible by 400. A number x is divisible by a number y if
the remainder of x/y is identical to zero, i.e. Rem(x/y}=O is true therefore

Leap Year = {Rem (Year/4) = 0 And Not (Rem (Year/100) = 0)} Or Rem (Year/400) = 0
(3.1)

where And, Or and Not are Boolean operators.

For example:

1900 is not a leap year because it is divisible by 100

1970 is not a leap year because it is not divisible by 4

9

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1980 is a leap year because it is divisible by 4 but not by 100

2000 is a leap year because it is divisible by 400

Start a new G program and right click on the Block Diagram window. Go to the
Functions » Programming » Numeric menu in the Block Diagram window.

Figure 1.26 Quotient & Remainder Function

Select three copies of the Quotient & Remainder function and three numeric
constants. Type in 4, 100 and 400 for the numeric constants and wire these constants
to the lower input terminal (corresponding to the dividend) of the Quotient &
Remainder function.

Figure 1.27 Leap Year Numeric Constants

From the Functions » Programming » Comparison menu, select 2 copies of the
Equal to Zero function and one copy of the Not Equal to Zero function.

Figure 1.28 Comparison Functions

Organize the comparison operations as show in the diagram.

Figure 1.29 Diagram

10

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

From the Functions » Programming » Boolean menu select the AND and OR
operators

Figure 1.30 Boolean Operators

Place the Boolean operators as shown in Q&R, Comparison & Boolean Functions.

Figure 1.31 Q&R, Comparison & Boolean Functions

From the Functions » Programming » Structures menu, click on the Case Structure.

Figure 1.32 Case Structure

Click and drag on the Block Diagram window to create the Case Structure.

Figure 1.33 Creating a Case Structure

The True diagra m option is indicated at the top of the case structure.

Figure 1.34 Created Case Structure

Drop a string constant and type "Is a Leap Year".

11

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 1.35 True Case Editing

Click on the down arrowhead next to the True label and select the False option .

Figure 1.36 Selecting the False Case

Drop another string constant and type "Is not a Leap Year".

Figure 1.37 False Case Editing

Go to the Front Panel window and place a numeric input and an output string. Re-
label the numeric input to Year and the output string to Message.

Figure 1.38 Leap Year GUI

Right click on Year and select Representation » I32 from the numeric pop-up menu.

Figure 1.39 32-Bit Integer Numeric

Arrange the Year and Message terminals in the Block Diagram window as shown in
the figure.

12

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 1.40 Unwired Leap Year Diagram

Wire the OR operator is to the "7" in the case structure and the string constant "Is not
a Leap Year" is wired to Message.

Figure 1.41 Leap Year False Case

Select the True option and Wire the "Is a Leap Year" string constant to the output
terminal of the Case Structure.

Figure 1.42 Leap Year True Case

Save the program as Leap Year.vi, enterYear values and run the program to
determine whether the value of Year is that of a leap year or not.

Figure 1.43 Leap Year Program

1.5 Arrays
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Right click on the Front Panel window and selectArray from the Controls » Modern »
Arrays, Matrix & Cluster menu, and drop an array onto the Front Panel window. The
array structure consists of an index or element offset (left portion of the structure)
and the array elements (right portion of the structure). When the array structure is
placed on the Front Panel window, the data type of the array is undefned as indicated
by the grayed out portion of the array.

13

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.44 Arrays

To define the array data type, drag and drop a data type onto the array structure. For
instance, to create an input array of numbers, place Numeric Control into the array
structure.

Figure 1.45 Creating a Numeric Array

At this point, the numeric array is an Empty or Null array because no elements of the
array have been defned. This is indicated by the grayed out numeric control within the
array structure.

Figure 1.46 Empty Numeric Array

Define elements of an input array by selecting the offset and entering its value. For
instance, at ofset 4, enter the value 0.0. This defines Numeric Input Array as {0, 0, 0,
0, 0}.

Figure 1.47 Defining Numeric Array Elements

An output array is created similarly to an input array with the exception that an output
data type needs to be dropped into the array structure.

Figure 1.48 Creating Output Numeric Arrays

14

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

1.6 For Loop
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This program converts an array of Fahrenheit values to Celsius. Create numeric input
and output arrays and label them Fahrenheit and Celsius respectively. In the
Fahrenheit array enter the values 0, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 at
ofsets 0 through 10 as shown in Numeric Input and Output Arrays.

Figure 1.49 Numeric Input and Output Arrays

Right click in the Block Diagram window, navigate to Programming » Structures and
click on For Loop.

Figure 1.50 For Loop Structure

Click and drag to create the For Loop as shown in Creating For Loops and For Loop.

Figure 1.51 Creating For Loops

Figure 1.52 For Loop

Right click inside the For Loop and select Select a VI... from the pop-up menu. Find
the Fahrenheit to Celsius.vi and clickOK. Drop the function inside the For Loop.

Figure 1.53 Function in Diagram

15

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

To complete the program, wire the Fahrenheit input array to the input terminal of the
Fahrenheit

to Celsius function and wire the output terminal of the Fahrenheit to Celsius
function to the Celsius output array.

Figure 1.54 Wired Function in Diagram

This program uses the For Loop to select each element in the Fahrenheit input array,
converts that value to Celsius and saves the results in the Celsius output array. Save
the program as Fahrenheit to Celsius For Loop.vi and run the program.

Figure 1.55 Fahrenheit to Celsius Arrays

The Celsius output array contains: Celsius {-17.7778, -6.6667, 4.44444, 15.5556,
26.6667, 37.7778, 48.8889, 60, 71.1111, 82.2222, 93.3333}

1.7 While Loop
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The next program will generate Fahrenheit values and convert them to Celsius until a
condition is met to stop the iterations in a While Loop. In the Block Diagram window,
select the While Loop structure by clicking on it from the Functions » Programming »
Structures menu.

Click and drag to create the While Loop structure.

Figure 1.56 While Loop Structure

16

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.57 Creating a While Loop

Figure 1.58 While Loop

In the Front Panel window, create two numeric output arrays. Label them Fahrenheit
and Celsius.

Figure 1.59 Numeric Output Arrays

Re-arrange the diagram as in While Loop Diagram .

Figure 1.60 While Loop Diagram

From the Functions menu, select Multiply function and a couple of numeric
constants. Type in 20.0 and 300.0 for the numeric constants. Select the Fahrenheit to
Celsius.vi and drop it inside the While Loop. Re-arrange the diagram to look like
Generating Fahrenheit Values

17

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 1.61 Generating Fahrenheit Values

From the Functions » Programming » Comparison menu select the Greater or
Equal operator.

Figure 1.62 Greater or Equal Function Description

Wire the While Loop components as shown in Generating Fahrenheit Values & Stop
Condition.

Figure 1.63 Generating Fahrenheit Values & Stop Condition

Wire the output of the Multiply operation to theFahrenheit and the output of the
Fahrenheit to Celsius function to the Celsius numeric output arrays. The
connections between the While Loop and the Fahrenheit andCelsius arrays are
broken (see Broken Wires).

Figure 1.64 Broken Wires

To repair the broken connections, roll over the mouse pointer to the Loop Tunnel.

18

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 1.65 Loop Tunnel

Right click on the Loop Tunnel and select Enable Indexing from the pop-up menu.

Figure 1.66 [/topic/body/fig/title/title {"- topic/title "}) Enable Loop Indexing (title]

This enables values to accumulate and store the results into an array. Repeat for the
Celsius array.

Figure 1.67 Broken Wire Repaired

Each iteration of the While Loop in this program generates an i ×20 Fahrenheit value
and converts it to Celsius. The While Loop stops iterating when the generated
Fahrenheit value is greater than or equal to 300. The resulting arrays are stored in the
Fahrenheit and Celsius numeric output arrays.

Save the program as Fahrenheit to Celsius While Loop.vi and run it. The program
generates the following results:

Figure 1.68 Fahrenheit to Celsius While Loop

Fahrenheit {0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 240, 260, 280, 300}

Celsius {-17.7778, -6.6667, 4.44444, 15.5556, 26.6667, 37.7778, 48.8889, 60, 71.1111,
82.2222, 93.3333, 104.444, 115.556, 126.667, 137.778, 148.889}

Figure 1.69 Fahrenheit and Celsius Arrays

19

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

1.8 Graphs
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Using the previous G program example, we will now visualize the results by adding a
graph to the Front Panel windows. Right click on the Front Panel window. Select XY
Graph from the Controls » Modern » Graph menu.

Figure 1.70 XY Graph Selection

Drop the XY Graph in the Front Panel window. Double click on the x and y axis labels
and renameTime to Fahrenheit and Amplitude to Celsius.

Figure 1.71 XY Graph in Front Panel window

The Block Diagram window contains theXY Graph terminal.

Figure 1.72 XY Graph Terminal in Diagram

Select Bundle from the Functions » Programming » Cluster, Class & Variant menu

20

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.73 Bundle Operator

Drop it on the diagram as shown in Bundle for XY Graph.

Figure 1.74 Bundle for XY Graph

Wire the Fahrenheit and Celsius results to the input Bundle terminals and the
output Bundle terminal to the XY Graph.

Save the program and run it. The resulting graph is shown in the fgure below.

Figure 1.75 Wired XY Graph

Figure 1.76 XY Graph Result

21

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

1.9 Interactivity
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This G program shows how G allows programmers to develop interactive programs.
Create the following G program and wire it as shown in the figure below.

Figure 1.77 Creating Interactive Programs

In the Front Panel window, from the Functions » Modern » Numeric select the
vertical pointer slide. From the Functions » Modern » Graph select Waveform Chart.

Figure 1.78 Vertical Pointer Slide and Waveform Chart

Re-label the vertical pointer slide as Amplitude and the waveform chart as Sine
Wave. Re-arrange to GUI to look like the figure below.

Figure 1.79 Slide & Waveform Chart in Front Panel window

Right click on Sine Wave and selectProperties from the pop-up menu.

22

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.80 Selecting Chart Properties

Select the Scales tab and change Maximum to 1023. Sine Wave will display 1024
samples. Click on the down arrow located to the right of Time (XAxis) and select
Amplitude (YAxis).

Figure 1.81 X-Axis Maximum

Figure 1.82 Selecting Y-Axis

De-select Autoscale and change the Minimum and Maximum values to -10 and 10.
Click OK.

De-Selecting Autoscale

23

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

In the Block Diagram window, re-arrange the Amplitude and Sine Wave terminals
and finish the program as shown in Interactive Sine Wave Diagram.

Figure 1.83 Interactive Sine Wave Diagram

Scroll the mouse pointer over the Loop Control...

Figure 1.84 Loop Condition

And right click on theLoop Control and from the pop-up menu selectCreate Control.
A stop terminal is created...

Figure 1.85 Create Loop Control

24

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 1.86 Interactive G Program

With the correspondingstop Boolean input control. Save the G program as
Interactivity.vi.

Figure 1.87 Interactive Program

Run the G program.

Figure 1.88 Interactive Program

While the program is running, change the Amplitude and watch the graph update to
refect the interactive changes.

25

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 1.89 Interactive Program

To end the G program, simply click on the stop button. Congratulations. You have
successfully completed and executed your first interactive G program.

Figure 1.90 Interactive Program

1.10 Parallel Programming
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Save a copy of Interactivity.vi as Parallel Programming.vi. Select the while loop as
shown in Select Diagram for Parallel Programming.

Figure 1.91 Select Diagram for Parallel Programming

From the menu select Edit » Copy.

26

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 1.92 Copy Selected Diagram

Create a copy of the while loop and its contents by selecting Edit » Paste. Organize
the diagram as shown in the figure below.

Figure 1.93 Paste Diagram

Go the Front Panel window and organize the input and output controls as shown in
the figure below.

Figure 1.94 Parallel G Program

Congratulations!!! You have just completed your frst parallel interactive program using
G. Save the program, run it and interact with it. To end this program click on stop and
stop 2.

Figure 1.95 Parallel Interactive G Program

27

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

1.11 Multicore Programming
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Save a copy of Parallel Programming.vi as Multicore Programming.vi. If you have a
multicore computer, CONGRATULATIONS!!! You have just completed your first
multicore G program.

Figure 1.96 Interactive Multicore G Program

1.12 Polymorphism
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

This program shows the polymorphic properties of G. Create the G program shown
below. Notice that the Subtract and Multiply operations allow arrays to be wired in
the G program.

Figure 1.97 Polymorphic G Diagram

28

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 2 Data Types
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 2.1

29

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 2.2

Figure 2.3

30

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Chapter 3 Operators

3.1 Numeric
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.1 Numeric Operators

Figure 3.2 Complex Numeric Operations Figure : Numeric Conversion Operators

Figure 3.3 Numeric Data Manipulation Operators

31

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 3.4 Numeric Conversion Operators

3.2 Boolean
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.5 Boolean Operators

3.3 Comparison
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.6 Comparison Operators

32

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 3.7 String Operators

Figure 3.8 String/Number Operators

3.4 Math

3.4.1 Math Constants
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.9 Mathematical Constants

33

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.4.2 Trigonometric Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.10 Trigonometric Functions

3.4.3 Exponential and Logarithmic Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.11 Exponential and Logarithmic Functions

3.4.4 Hyperbolic Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 3.12 Hyperbolic Functions

34

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 4 Arrays and Clusters
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

To create an array in G, right click on the Front Panel window and select Array from
the Controls » Modern » Arrays, Matrix & Cluster menu, and drop the array
structure onto the Front Panel window to create an array.

Figure 4.1 Array Structure

The array structure consists of an index or element offset (highlighted left portion of
the array structure) and the array elements (right portion of the structure). When the
array structure is placed on the Front Panel window, the data type of the array is
undefined as indicated by the grayed out portion of the array.

Figure 4.2 Index and Elements of an Array

To define the array data type, drag and drop any data type, such as numeric, Boolean,
string or cluster structure, onto the elements portion of the array structure.

Figure 4.3 Creating Arrays

At this point, the newly defined array is anEmpty orNullArray because no elements of
the array have been defined. This is indicated by the grayed out data type within
theelements array structure.

Figure 4.4 Empty Arrays

To define elements of an input array, select the element's index and enter the
appropriate value. Figure 6.5 defines a numeric array with one element at index 0.

35

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 4.5 Defining Array Elements

G arrays are zero-based. The last element index of an N element array is N1. Last
Array Element and Undefined Nth Element are those of a 10 element array.

Figure 4.6 Last Array Element

Figure 4.7 Undefined Nth Element

An output array is created similarly to an input array with the exception that an output
data type needs to be dropped into the array structure.

Figure 4.8 Input and Output Arrays

4.1 Multidimensional Arrays
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

To create multidimensional arrays, click on the array's index and select Add
Dimension from the menu. Multidimensional Array shows a 2-dimensional array.

Figure 4.9 Creating Multidimensional Arrays

Figure 4.10 Multidimensional Array

36

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.2 Array Operators
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 4.11 Array Operators

4.3 Clusters
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Clusters allow users to create compound data types by aggregating various and
different data types into a single unit.

Figure 4.12 Empty Cluster

Select the various data types and drag them onto the cluster structure. Figure Figure
4.13shows an Error Cluster consisting of a Boolean Error, a numeric ID and a string
Message data types.

Figure 4.13 Cluster Example

37

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.4 Cluster Operators
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Figure 4.14 Cluster Operators

38

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 5 Data Flow Control

5.1 Case Structure
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The case structure allows data to flow based on a integer, Boolean or string matching
condition. The case executed is selected based on the data wired to theCase Selector.

Figure 5.1 Case Structure

5.1.1 Boolean Selection
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In the Front Panel window, select a Boolean control and an output string.

Figure 5.2 Case Selection User Interface

Arrange the diagram to look as in Case Selection G Diagram.

Figure 5.3 Case Selection G Diagram

In theTrue case, add a string constant containing True Case.

Figure 5.4 True Case Diagram

To select the False case, click on the selector label down arrow and select False from
the pop-up menu. You can also cycle through the cases by clicking the next (right) or
previous (left) arrows.

Selecting False Case

39

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

In the False case, add a string constant containing False Case.

Figure 5.5 False Case Diagram

Wire the string constant in the case structure to the output string terminal.

Figure 5.6 Wiring Case Structures

Select theTrue case and wire the string constant to the case structure tunnel.
Complete the diagram as shown in Completed Case Diagram.

Figure 5.7 Completed Case Diagram

It is important to note that all instances in a case structure must be wired to enable
data to flow from thecase structure.

In the Front Panel window, toggle the Boolean input control and run the program.

Figure 5.8 False Selection

Figure 5.9 True Selection

5.1.2 Multicase Selection
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Select an Integer 32 numeric input and an Integer 32 numeric output and label them
Selector and Case respectively.

Figure 5.10 Multicase GUI

In the Block Diagram window, create a case structure, select the False case and
arrange the terminals as shown in Multicase.

40

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.11 Multicase

Wire the Selector numeric control to the case selector on the case structure. The
selector label reflects the diagram update.

Figure 5.12 Multicase Selector

In the0, Default case, add a numeric constant and leave its value as 0.

Figure 5.13 Default Case

Using the selector label, select case 1. Add a numeric constant, enter 1 and wire it to
the case tunnel. The resulting diagram is shown in Case 1.

Figure 5.14 Case 1

Right click anywhere in the case structure and selectAdd Case After from the pop-up
menu.

Figure 5.15 Adding Cases

Case 2 is added after case 1. Add a numeric constant, enter2 and wire it to the case
structure tunnel.

41

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 5.16 Case 2

Multicase Selection Program shows the results of running this simple case selection
programs for Selector set to 0, 1, 2 and 3 respectively.

Figure 5.17 Multicase Selection Program

5.2 For Loop
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The For Loop structure repeatedly executes the diagram within the structure. The
Loop Count specifies the number of times the loop contents must be executed and
the Loop Iteration indicates which iteration is currently being executed.

Figure 5.18 For Loop Structure

The Loop Count and Loop Iteration are of Integer 32 data types. If the Loop Count is
set to N, then the Loop Iteration value range is from 0 toN1. This is illustrated in Loop
Count and Final Loop Iteration.

Figure 5.19 Loop Count

Figure 5.20 Final Loop Iteration

42

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.2.1 Shift Registers
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Shift Registers allow the preservation of intermediate results between sequences of
iterations.

Figure 5.21 Shift Registers

Figure 5.22 Shift Registers

To add a Shift Register, right click on the For Loop structure and select Add Shift
Register from the pop-up menu.

Figure 5.23 Adding Shift Registers

To add elements to the shift register, right click on the shift register and select Add
Element from the pop-up menu.

Figure 5.24 Adding Shift Register Elements

Figure 5.25 Adding Shift Register Elements

To illustrate the use of the shift registers, the following example computes the
Fibonacci number Fib(n).

Figure 5.26 (7.1)

43

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

In the Front Panel window, select an integer 32 numeric input and output controls and
labeled them n and Fib(n) respectively. Arrange the diagram as shown in Shift
Register Example.

Figure 5.27 Shift Register Example

Add a 0 and 1 numeric constants to initialize the elements of the shift register and
wire them to the i-1 and i-2 elements respectively. Add the add operator in the for
loop and complete the program wiring as shown in Fibonacci G Program.

Figure 5.28 Fibonacci G Program

For n=0, the for loop iterates 0 times and passes 0 to Fib(n), therefore Fib(0) 0. For n 1,
the for loop the values ini-1 and i-2 shift register elements are added (0+1) and saved
in the i shift register element (1). Since the loop iterates once only, the resulting value
is passed toFib(n), therefore Fib(1) 1. For n= 2, the first iteration produces the value of
1. Prior to the next and final iteration, the values are shifted in the register as follows:

The value in the i-2 shift register element is discarded

The value in the i-1 shift register element is shifted to the i-2 shift register element

The value in the i shift register element is shifted to thei-1 shift register element

To start the 2nd and final iteration, thei-1 shift register element contains 1 and the i-2
shift register element contains 0. These are added to produce 1, which is passed to
Fib(n) and, therefore, Fib(2) 1. This process is repeated for values of n > 2.

Save this program as Fibonacci.vi. Figure 7.29 shows the result of Fib(8).

Figure 5.29 Fib(8) = 21

5.2.2 Auto-Indexing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Auto-indexing allows input array elements to be operated on and output array
elements to be aggregated automatically in a for loop. It is not required to wire the
Loop Counter. The for loop automatically reduces the array dimensionality by one.

44

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.30 For Loop Auto-Indexing

5.2.3 Disabling Auto-Indexing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

It is sometimes necessary to disable auto-indexing. In this example, the For Loop is
used to scan the elements of the array taking advantage of the auto-indexing feature.
However, the result is a single number. Wiring the result through the For Loop with
auto-indexing enabled results in a broken data type wire.

Figure 5.31 Broken Auto-Indexing

To disable auto-indexing, right click on the target Auto-Indexed Tunnel and select
Disable Indexing from the pop-up menu.

Figure 5.32 Disabling Auto-Indexing

The final diagram with the Auto-Indexed Tunnel disabled is shown in Disabled Auto-
Indexing.

Figure 5.33 Disabled Auto-Indexing

5.3 While Loop
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The While Loop conditionally iterates executing the statements within the structure.
The Loop Condition establishes whether the loop iterates or terminates. TheLoop
Iteration is a zero-based iteration execution reference similar to the For Loop.

45

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.34 While Loop Structure

5.3.1 Loop Condition

5.3.1.1 Stop if True

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The default loop condition is to continue if the Boolean condition is False (or stop if
True). The while loop in the following Figure 5.35 will iterate while Iterations is less
than Loop Iteration is False or, equivalently, will stop iterating whenIterations is less
than the value in Loop Iteration.

Figure 5.35 Stop If True

5.3.1.2 Continue if True

Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

At times it is more convenient to let the while loop iterate while the condition is True.
To change the loop condition, right click on the loop condition icon and select
Continue if True from the pop-up menu.

Figure 5.36 Changing Loop Condition

Continue If True shows the Loop Condition set to Continue if True.

Figure 5.37 Continue If True

46

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.3.2 Shift Registers
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Programmatically, while loop shift registers are identical to for loop shift registers.
Refer to Section Shift Registers for the discussion. However, an example is provided to
illustrate the use of shift registers in while loops.

Figure 5.38 While Loop Shift Registers

In the following example, Euler's number e is computed to the specified accuracy
using the infinite series

Notice that two shift registers keep track of the factorial and the sum. Also notice the
dot in the multiplication. This is because the loop iteration is an integer 32 data type
and the input from one of the shift registers is double precision numeric. The dot
represents that the integer 32 data type has been coerced into a double precision
number.

Figure 5.39 Computing e

Save the program as e.vi. The result of running this program is shown in Computed e
to 5 Digits.

Figure 5.40 Computed e to 5 Digits

5.3.3 Enabling Auto-Indexing
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

By default, while loops are auto-indexed disabled. In order for while loops to process
and generate arrays, the loop tunnel must be enabled to auto-indexed arrays.

47

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.41 Disabled Auto-Indexing

To enable auto-indexing, right click on the loop tunnel and select Enable Indexing
from the pop-up menu.

Figure 5.42 Enabling Auto-Indexing

In this example the while loop appropriately generates a 1,000 element numeric array
with random numbers.

Figure 5.43 Auto-Indexing Enabled

5.4 Sequence
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Although G was designed to easily develop interactive, parallel programs, it is
sometimes necessary to execute diagrams in sequential order. The sequence
structure allows G diagrams to execute sequentially.

The following examples time in milliseconds (ms) the execution of a G diagram. The
sequence of events is get a start time stamp, execute the diagram, get stop time
stamp and take the difference between the stop and start times to determine the
execution time.

Figure 5.44 Sequence Structure

5.4.1 Flat Sequence
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Flat Sequences always execute left to right. A Flat Sequence structure starts with a
single frame and allows a user to visualize the diagram sequences.

48

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.45 Sequence Frame

To add frames to a sequence, right click on the sequence structure and select either
Add Frame After or Add Frame Before from the pop-up menu according to the
program's needs.

Figure 5.46 Adding Sequence Frames

Add two more frames to the sequence structure to get a three frame sequence as
shown in Three Frame Sequence.

Figure 5.47 Three Frame Sequence

From the Functions » Programming » Timing menu select Tick Count (ms) function.

Figure 5.48 Tick Count Function

Drop the Tick Count (ms) function in the frst (left most) frame of this sequence. Make
a copy of the Tick Count function and place it on the third (right most) frame as
shown in Start and Stop Tick Counts.

Figure 5.49 Start and Stop Tick Counts

Add a For Loop that iterates 5,000 times to the second frame. Add a subtract
operator, an unsigned integer 32 output and complete the program as shown in
Timing G Program. The execution of this program shows the time in milliseconds it

took for the 2nd sequential frame to execute.

Figure 5.50 Timing G Program

49

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

5.4.2 Stacked Sequence
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A Stacked Sequence provides a more compact representation of program sequences.
It is programmatically identical to the Flat Sequence with the exception that a
Sequence Local enables data to flow to subsequent frames. Additionally, as frames
are added, a Sequence Selector provides access to the desired frame (see Stacked
Sequence).

Figure 5.51 Stacked Sequence

For this timing example, start with a Stacked Sequence and add 3 more frames. The
sequence frames are labeled 0, 1, 2 and 3 and will execute in that order.

Figure 5.52 Four Frame Stacked Sequence

Go to the first frame (frame 0) and add a Tick Count (ms) function. Right click on the
sequence structure and select Add Sequence Local from the pop-up menu.

Figure 5.53 Adding Sequence Locals

Figure 5.54 Adding Sequence Locals

The Sequence Local is shown as an undefined tunnel. Wire the Tick Count (ms)
function to the Sequence Local to define the tunnel data type and data flow. Data can
now flow from frame 0 to the other frames as needed.

Figure 5.55 Sequence Local

50

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 5.56 Sequence Local

Go to the next frame sequence (frame 1) and enter the program to be timed.

Figure 5.57 Frame to Time

Go to the third frame of the sequence (frame 2), add a Tick Count (ms) function, add
another Sequence Local and wire the Tick Count (ms) to the new Sequence Local.
The wired sequence frame is shown in Stop Time Stamp.

Figure 5.58 Stop Time Stamp

Go to the last frame (frame 3) and add aSubtract function. Wire the Sequence Locals
from frame 2 and frame 0 to the Subtract function as shown in Stacked Timing G
Program. To complete the diagram, wire the output of the Subtract function to the
unsigned integer 32 output.

Figure 5.59 Stacked Timing G Program

It is important to note that the programs in Timing G Program and Stacked Timing G
Program are programmatically identical.

51

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Chapter 6 Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Any G program can become a function. Three operations must be done:

1. Edit connecting input and/or output terminals
2. Edit the icon (optional but recommended)
3. Save the G program

6.1 Connectors
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Open the Fibonacci.vi for this example.

On the Front Panel window, right click on the icon located on the right upper corner of
the window and select Show Connector.

Figure 6.1 Show Connector Pane

This brings up the connector pane as shown in Connector Pane.

Figure 6.2 Connector Pane

Right click on the connector pane and select Patterns. A menu with connector
patterns is presented from which you can select the appropriate pattern. For this
example select the pattern highlighted in Select Connector Pattern.

Figure 6.3 Select Connector Pattern

52

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Click on the connector terminal followed by a click on the input or output control to
which the terminal is to be associated. In Associating Terminals, the left connector
terminal is associated with the numeric input control n.

Figure 6.4 Associating Terminals

Repeat for all the input and output controls that are to be associated to the terminals.
For the Fibonacci.vi, Connected Terminals shows the right connector terminal
associated with the Fib(n) output terminal.

Figure 6.5 Connected Terminals

6.2 Icon Editor
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Right click on the connector pane and selectEdit Icon... from the pop-up menu. This
will bring the icon editor (Figure: Icon Editor). Edit the icon for black and white,
16-color and 256-color displays and click OK when completed. Save the G program to
complete the function.

Figure 6.6 Selecting Icon Editor

53

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 6.7 Icon Editor

6.3 Invoking Functions
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

To invoke functions, right click on the Block Diagram window and selectSelect a VI...
from the pop-up menu. This will bring a file dialog box. Find the desired function to be
part of the program and click OK.

Figure 6.8 Invoking Functions

In the example shown in Fibonacci Series, the Fibonacci series of the first 20 Fibonacci
numbers is stored in an array. The numbers are computed by invoking the
Fibonacci.vi function.

Figure 6.9 Fibonacci Series

54

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 7 Graphs

7.1 Waveform Chart
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Waveform Charts provide a historical graphical representation of numeric data.

The following example will build a simple G program that will allow you to chart a sine
wave as it is being generated on a point-by-point basis using the equation:

yi = sin (0.2xi) (9.1)

Figure 7.1 Waveform Chart

Start with a while loop and add into it a Multiply and Sine functions, a numeric
constant with value 0.2 and a Boolean control to stop the loop when its value is True.
Arrange the diagram to look as in the following Figure Figure 7.2.

Figure 7.2 While Loop For Waveform Chart

To select a waveform chart, right click on the Front Panel window and select
Waveform Chart from the Controls »Modern »Graph menu.

Figure 7.3 Selecting Waveform Chart

Figure 7.4

This places the Waveform Chart in the Front Panel window.

55

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 7.5 Waveform Chart in Front Panel window

In the Block Diagram window, make sure that the Waveform Chart terminal is inside
the while loop. Wire the output of the Sine function to this terminal.

Notice that Waveform Chart terminal is that of a numeric output.

Figure 7.6 Waveform Chart Terminal

Most modern computers will run this program too fast. Thus, before this program is
executed, a delay of 125 milliseconds will be inserted in the while loop. This will allow
users to see how the Waveform Chart operates as data samples are plotted in the
chard.

From theFunctions »Programming »Timing selectWait Until Next ms Multiple.
This will put the while loop to sleep for the indicated number of milliseconds.

Figure 7.7 Wait Until Next ms Multiple

Drop the Wait Until Next ms Multiple function inside the loop and wire a constant to it
with the value

125. This will delay the loop for 125 milliseconds. The final Waveform Chart program is
shown in Figure Waveform Chart Program.

Figure 7.8 Waveform Chart Program

56

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

The default graphing mode of the Waveform Chart is autoscaling. You will notice the
auto-scaling property when the program frst begins to run and the y-axis, labeled
Amplitude, updates automatically as new numerical values are aggregated and
displayed on the chart.

Figure 7.9 Waveform Chart Autoscaling

As the program continues to run, the graph continues to build as per the values
associated with the x-axis, labeled Time, which correspond to the index value of the
equations.

Figure 7.10 Accumulating Values for the Waveform Chart

As the program continues to run, the autoscaling property also applies to the x-axis.
Noticed the updated x-axis. For this example, the x-axis will continue updating so as
long as the program is running. This gives the appearance of a scrolling strip chart.

57

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 7.11 Scrolling X-Axis

Stopping and restarting the G program retains the numeric history and continues to
aggregate the values for display.

Figure 7.12 Graph History Retained Between Runs

The Waveform Chart options can be easily updated by right clicking on the Waveform
Chart and selecting the appropriate option to update from the pop-up menu.

Selecting Properties from this pop-up menu brings up the Waveform Chart dialog
window (Figure Figure 7.14).

58

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 7.13 Waveform Chart Pop-Up Menu

Figure 7.14 Waveform Chart Options Dialog Box

7.2 Waveform Graph
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The Waveform Graph allows numeric arrays to be displayed graphically in the Front
Panel window. Similar to the previous example, we will build a simple G program that
will allow you to graph a sine wave using the equation:

59

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 7.15

for i = 0,1,2, ... , 99.

Figure 7.16 Waveform Graph

7.2.1 Single Plot
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Start by building the following program shown in Figure For Loop Sine Wave.

Figure 7.17 For Loop Sine Wave

Right click on the Front Panel window, select Waveform Graph from the Modern
»Graph pop-up menu, and drop it on the Front Panel window.

Figure 7.18 Select Waveform Graph

In the Block Diagram window you will see the Waveform Graph terminal. Wire the
Sine function output to the Waveform Graph terminal through the For Loop.

Figure 7.19 Waveform Graph Diagram

Run the program. The resulting graph is shown in Figure Sine Wave Graph.

60

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 7.20 Sine Wave Graph

7.2.2 Multiplots
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In this example a sine wave and a noisy sine wave will be plotted. Modify the previous
example to add noise to the sine operation as shown in Figure Sine and Noisy Sine
Waveforms.

Figure 7.21 Sine and Noisy Sine Waveforms

Add a Build Array operator and wire the output of the Sine function and the multi-
add operator containing the sine value plus some random noise between -0.5 and 0.5
to the Build Array operator. Wire the output of the Build Array operator to the
Waveform Graph terminal.

Figure 7.22 Bundle Arrays for Multiplotting

You can continue adding 1D arrays to be multiplotted into a single Waveform Graph.
Run the program. The multiplot result is shown in Figure Multiplot.

61

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 7.23 Multiplot

7.3 XY Graph
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The XY Graph plots x vs. y numeric values contained in arrays.

Figure 7.24 XY Graph

The example shown in Figure Spiral G Program generates the spiral shown in Figure Fi
gure 7.24.

Figure 7.25 Spiral G Program

62

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 8 Interactive Programming
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The heart of interactive programming in G is the while loop. Any input control within
the while loop can be modified from the Front Panel window at run time to provide
seamless interaction with the G program.

Figure 8.1 Creating Interactive Programs

In the Front Panel window, from the Functions »Modern »Numeric select the vertical
pointer slide. From the Functions »Modern »Graph select Waveform Chart.

Figure 8.2 Vertical Pointer Slide and Waveform Chart

Figure 8.3 Vertical Pointer Slide and Waveform Chart

Re-label the vertical pointer slide as Amplitude and the waveform chart as Sine
Wave. Re-arrange to GUI to look like the figure below.

63

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 8.4 Slide & Waveform Chart in Front Panel window

Right click on Sine Wave and select Properties from the pop-up menu.

Figure 8.5 Selecting Chart Properties

Select the Scales tab and change Maximum to 1023. Sine Wave will display 1024
samples.

Figure 8.6 X-Axis Maximum

Click on the down arrow located to the right of Time (XAxis) and select Amplitude
(YAxis).

64

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 8.7 Selecting Y-Axis

De-selectAutoscale and change the Minimum and Maximum values to-10 and 10.
ClickOK.

Figure 8.8 De-Selecting Autoscale

Rearrange Amplitude and Sine Wave terminals and finish the program as shown in
Figure Figure 8.9. Scroll the mouse pointer over the Loop Control...

Figure 8.9 Interactive Sine Wave Diagram

Figure 8.10 Loop Condition

And right click on the Loop Control and from the pop-up menu select Create Control.
A stop terminal is created.

Figure 8.11 Create Control

65

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 8.12 Interactive G Program

With the corresponding stop Boolean input control. Save the G program
asInteractivity.vi.

Figure 8.13 Interactive Program

Run the G program.

Figure 8.14 Interactive Program

While the program is running, change the Amplitude and watch the graph update to
reflect the interactive changes.

66

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 8.15 Interactive Program

To end the G program, simply click on the stop button.

Interactive Program

Figure 8.16

Congratulations. You have successfully completed and executed your first interactive
G program.

67

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Chapter 9 Parallel Programming
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

In 1985, by design, G was developed to address and simplify parallel programming. If
you have gone through the examples in this book, you have already developed
various parallel programs.

In the following example, we will develop a simple program where interactivity and
parallelism are part of the program.

Figure 9.1 Select Diagram for Parallel Programming

From the menu select Edit »Copy.

Figure 9.2 Copy Selected Diagram

Create a copy of the while loop and its contents by selecting Edit »Paste. Organize the
diagram as shown in the figure below.

Figure 9.3 Paste Diagram

Go the Front Panel window and organize the input and output controls as shown in
the figure below.

68

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 9.4 Parallel G Program

You have just completed your first parallel interactive program using G. Save the
program, run it and interact with it.

Figure 9.5 Parallel Interactive G Program

To end this program click on the stop and stop 2 terminals.

69

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Chapter 10 Multicore Programming
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

If you have written parallel programs in G and have a multicore computer,
CONGRATULATIONS!!! You have been successfully developing interactive parallel
programs that execute in multicore PC processors.

Figure 10.1 Interactive Multicore G Program

The following sections discuss some multicore programming techniques to improve
the performance of G programs.

10.1 Data Parallelism
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Matrix multiplication is a compute intensive operation that can leverage data
parallelism. Figure Data Parallelism shows a G program with 8 sequential frames to
demonstrate the performance improvement via data parallelism.

Figure 10.2 Data Parallelism

70

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The Create Matrix function generates a square matrix based of size indicated by Size
containing random numbers between 0 and 1. The Create Matrix function is shown
in Figure Creating a Square Matrix.

Figure 10.3 Creating a Square Matrix

The Split Matrix function determines the number of rows in the matrix and shifts
right the resulting number of rows by one (integer divide by 2). This value is used to
split the input matrix into the top half and bottom half matrices. The Split Matrix
function is shown in Figure Split Matrix into Top & Bottom.

Figure 10.4 Split Matrix into Top & Bottom

Sequence
Frame

Operation Description

First Frame
Generates two square matrices initialized with random
numbers

Second Frame Records start time for single core matrix multiply

Thrid Frame Performs single core matrix multiply

Fourth Frame Records stop time of single core matrix multiply

Fifth Frame Splits the matrix into top and bottom matrices

Sixth Frame Records start time for multicore matrix multiply

Seventh
Frame

Performs multicore matrix multiply

Eighth Frame Records stop time of multicore matrix multiply

The rest of the calculations determine the execution time in milliseconds of the single
core and multi-core matrix multiply operations and the performance improvement of
using data parallelism in a multicore computer.

The program was executed in a dual core 1.83 GHz laptop. The results are shown in
Figure Data Parallelism Performance Improvement. By leveraging data parallelism, the
same operation has nearly a 2x performance improvement. Similar performance
benefts can be obtained with higher multicore processors

71

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 10.5 Data Parallelism Performance Improvement

10.2 Task Pipelining
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

A variety of applications require tasks to be programmed sequentially and continually
iterate on these tasks. Most notably are telecommunications applications require
simultaneous transmit and receive. In the following example, a simple
telecommunications example illustrates how these sequential tasks can be pipelined
to leverage multicore environments.

Consider the following simple modulation -demodulation example where a noisy
signal is modulated transmitted and demodulated. A typical diagram is shown in
Figure Sequential Tasks.

Figure 10.6 Sequential Tasks

Adding a shift register to the loop allows tasks to be pipelined and be executed in
parallel in separate cores should they be available. Task pipelining is shown in Figure
Pipelined Tasks.

Figure 10.7 Pipelined Tasks

The program below times the sequential task and the pipelined tasks to establish its
performance improvement when executed in multicore computers.

Figure 10.8 Task Pipelining Program Example

72

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure Pipelining Performance Improvement shows the results of running the above G
program in a dual core 1.8 GHz laptop. Pipelining shows nearly 2x performance
improvement.

Figure 10.9 Pipelining Performance Improvement

10.3 Pipelining Using Feedback Nodes
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Feedback Nodes provide a storage mechanism between loop iterations. They are
programmatically identical to the Shift Registers. Feedback Nodes consist of an
Initializer Terminal and the Feedback Node itself (see Figure Feedback Node).

Figure 10.10 Feedback Node

To add a Feedback Node, right click on the Block Diagram window and select
Feedback Node from the Functions »Programming »Structures pop-up menu. The
direction of the Feedback Node can be changed by right clicking on the node and
selecting Change Direction.

Figure 10.11 Feedback Node Direction

The diagram shown in Figure Pipelining with Feedback Node is programmatically
identical to the diagram in Figure Pipelined Tasks.

Figure 10.12 Pipelining with Feedback Node

Similarly, the diagram in Figure Pipelining Tasks with Feedback Nodes is
programmatically identical to that in Figure Task Pipelining Program Example.

73

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 10.13 Pipelining Tasks with Feedback Nodes

74

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Chapter 11 Input and Output

11.1 Writing to File
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

Consider the function in Figure Figure 11.1 where a set of numbers in a one-
dimensional array represents the resulting noisy signal is to be written to a file. This
section will outline the steps required to create files.

Figure 11.1 Noisy Signal Function

Create a new G program, right click in the G programming window and select File
Dialog from the Functions »Programming »File I/O »Advanced Functions menu.
Drag and drop the File Dialog function onto the G programming window.

Figure 11.2 File Dialog

The Configure File Dialog dialog box automatically appears to configure the function.
Accept the default configuration shown in Figure Figure 11.3 to create a single file by
clicking the OK button.

Figure 11.3 Configure File Dialog

75

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The resulting diagram after closing the configuration dialog box is shown in .
Optionally, right click on File Dialog and select View As Icon from the pop-up menu.
This will save some real estate in the G programming window.

Figure 11.4 G File Dialog

Figure 11.5 View As Icon

From the Functions »Programming »File I/O menu select Open/Create File, Write
Binary File and Close File functions.

Figure 11.6 File Input and Output Operators

Arrange the File I/O operations as shown in Figure Figure 11.7.

Figure 11.7 Open, Write and Close File Diagram

Right click on the operation (0:open) terminal of the Open/Create File function
(highlighted in Figure File Create Operation).

Figure 11.8 File Create Operation

Select Create » Constant from the pop-up menu.

76

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 11.9 Create Operation Constant

Arrange the diagram to look as in Figure Figure 11.10.

Figure 11.10 Operation Constant

Click on the down arrow in the operation constant just created and select open or
create from the pop-up menu.

Figure 11.11 Open or Create File Operation

The resulting updated operation constant value is shown in Figure Figure 11.12.

Figure 11.12 Create File to Write

Repeat the process to create a constant for theaccess (0:read/write) terminal
(highlighted in Figure Figure 11.13).

Figure 11.13 File Access Mode

Set the constant to write-only. Re-arrange the block diagram to look like the diagram
shown in Figure Figure 11.14. At this point, the file is set to create a new file for
writing.

77

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 11.14 Write Only Mode

Get the Noisy Signal function and wire its output data to the Data terminal of the
Write to Binary File function.

Figure 11.15 Writing Binary Data

Complete the diagram by connecting the Open, Write and Close file operations as
shown in Figure Figure 11.16.

Figure 11.16 Writing to File G Program

When this G program is executed, the standard file dialog box appears. Name the file
to be written signal.dat.

Figure 11.17 Create File Dialog Box

78

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Once the program completes executing, the signal.dat file is created and located in
the location indicated by the path selected.

Figure 11.18 Data File signal.dat

11.2 Reading From Files
Available under Creative Commons-ShareAlike 4.0 International License (http://creativecommon

s.org/licenses/by-sa/4.0/).

The signal.dat file created in the previous example will be used to read data from a
file. As in the previous example, select the File Dialog, Open/Create File, Read from
Binary File and Close File functions.

Figure 11.19 Operators to Read Files

Create constants by right clicking on the operation (0:open) and access (0:read/
write) terminals of the Open/Create File operation. Set the constants toopen
andread-only respectively (see Figure Figure 11.20).

Figure 11.20 Set to Open and Read-Only

Similar to creating arrays, drop an array constant in the G diagram, drop a numeric
constant onto the array constant and set the data type representation to double. Wire
this array constant to the data type terminal of the Read from Binary File function
as shown in Figure Figure 11.21 .

79

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Figure 11.21 Data Type to Read

In the Front Panel window, drop a Waveform Graph.

Figure 11.22 Graph for Data to be Read

With the data type specified, wire thedata terminal of the Read from Binary File
function to the Waveform Graph terminal as shown in Figure Figure 11.23 .

Figure 11.23 Data to be Read

Complete the program by wiring refnum and error terminals of the Open/Create
File, Read from Binary File and Close File functions as shown in Figure Figure 11.24 .

Figure 11.24 Read Binary Data G Program

When this program is executed, a fle dialog box appears. Select the signal.dat file and
click OK.

80

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

Figure 11.25 Select Binary File to Read From

The binary data in signal.dat is read and plotted in a Waveform Graph. The result is
shown in Figure Figure 11.26.

Figure 11.26 Read Data Graphed

81

Download for free at http://cnx.org/contents/5b6e61df-b830-48cb-9764-94696cb47c80@1.3

	Preface to an "Introduction to G Programming"
	About the Author
	Chapter 1 Introduction to G Programming
	1.1 Hello Graphical World
	1.2 Arithmetic Expressions
	1.3 Functions
	1.4 Case Selection
	1.5 Arrays
	1.6 For Loop
	1.7 While Loop
	1.8 Graphs
	1.9 Interactivity
	1.10 Parallel Programming
	1.11 Multicore Programming
	1.12 Polymorphism

	Chapter 2 Data Types
	Chapter 3 Operators
	3.1 Numeric
	3.2 Boolean
	3.3 Comparison
	3.4 Math
	3.4.1 Math Constants
	3.4.2 Trigonometric Functions
	3.4.3 Exponential and Logarithmic Functions
	3.4.4 Hyperbolic Functions

	Chapter 4 Arrays and Clusters
	4.1 Multidimensional Arrays
	4.2 Array Operators
	4.3 Clusters
	4.4 Cluster Operators

	Chapter 5 Data Flow Control
	5.1 Case Structure
	5.1.1 Boolean Selection
	5.1.2 Multicase Selection

	5.2 For Loop
	5.2.1 Shift Registers
	5.2.2 Auto-Indexing
	5.2.3 Disabling Auto-Indexing

	5.3 While Loop
	5.3.1 Loop Condition
	5.3.1.1 Stop if True
	5.3.1.2 Continue if True

	5.3.2 Shift Registers
	5.3.3 Enabling Auto-Indexing

	5.4 Sequence
	5.4.1 Flat Sequence
	5.4.2 Stacked Sequence

	Chapter 6 Functions
	6.1 Connectors
	6.2 Icon Editor
	6.3 Invoking Functions

	Chapter 7 Graphs
	7.1 Waveform Chart
	7.2 Waveform Graph
	7.2.1 Single Plot
	7.2.2 Multiplots

	7.3 XY Graph

	Chapter 8 Interactive Programming
	Chapter 9 Parallel Programming
	Chapter 10 Multicore Programming
	10.1 Data Parallelism
	10.2 Task Pipelining
	10.3 Pipelining Using Feedback Nodes

	Chapter 11 Input and Output
	11.1 Writing to File
	11.2 Reading From Files

