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A note from the author: Why did I write this text?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

I have been teaching introductory statistics to undergraduate economics and business
students for almost 30 years. When I took the course as an undergraduate, before
computers were widely available to students, we had lots of homework, and learned
how to do the arithmetic needed to get the mathematical answer. When I got to
graduate school, I found out that I did not have any idea of how statistics worked, or
what test to use in what situation. The first few times I taught the course, I stressed
learning what test to use in what situation and what the arithmetic answer meant.

As computers became more and more available, students would do statistical studies
that would have taken months to perform before, and it became even more important
that students understand some of the basic ideas behind statistics, especially the
sampling distribution, so I shifted my courses toward an intuitive understanding of
sampling distributions and their place in hypothesis testing. That is what is presented
here—my attempt to help students understand how statistics works, not just how to
“get the right number”.
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What is statistics?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are two common definitions of statistics. The first is "turning data into
information", the second is "making inferences about populations from samples".
These two definitions are quite different, but between them they capture most of
what you will learn in most introductory statistics courses. The first, "turning data into
information," is a good definition of descriptive statistics—the topic of the first part of
this, and most, introductory texts. The second, "making inferences about populations
from samples", is a good definition of inferential statistics —the topic of the latter part
of this, and most, introductory texts.

To reach an understanding of the second definition an understanding of the first
definition is needed; that is why we will study descriptive statistics before inferential
statistics. To reach an understanding of how to turn data into information, an
understanding of some terms and concepts is needed. This first chapter provides an
explanation of the terms and concepts you will need before you can do anything
statistical.

Before starting in on statistics, I want to introduce you to the two young managers
who will be using statistics to solve problems throughout this book. Ann Howard and
Kevin Schmidt just graduated from college last year, and were hired as "Assistants to
the General Manager" at Foothill Mills, a small manufacturer of socks, stockings, and
pantyhose. Since Foothill is a small firm, Ann and Kevin get a wide variety of
assignments. Their boss, John McGrath, knows a lot about knitting hosiery, but is from
the old school of management, and doesn't know much about using statistics to solve
business problems. We will see Ann or Kevin, or both, in every chapter. By the end of
the book, they may solve enough problems, and use enough statistics, to earn
promotions.

Data and information; samples and populations
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Though we tend to use data and information interchangeably in normal conversation,
we need to think of them as different things when we are thinking about statistics.
Data is the raw numbers before we do anything with them. Information is the product
of arranging and summarizing those numbers. A listing of the score everyone earned
on the first statistics test I gave last semester is data. If you summarize that data by
computing the mean (the average score), or by producing a table that shows how
many students earned A's, how many B's, etc. you have turned the data into
information.

Imagine that one of Foothill Mill's high profile, but small sales, products is "Easy
Bounce", a cushioned sock that helps keep basketball players from bruising their feet
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as they come down from jumping. John McGrath gave Ann and Kevin the task of
finding new markets for Easy Bounce socks. Ann and Kevin have decided that a good
extension of this market is college volleyball players. Before they start, they want to
learn about what size socks college volleyball players wear. First they need to gather
some data, maybe by calling some equipment managers from nearby colleges to ask
how many of what size volleyball socks were used last season. Then they will want to
turn that data into information by arranging and summarizing their data, possibly
even comparing the sizes of volleyball socks used at nearby colleges to the sizes of
socks sold to basketball players.

Some definitions and important concepts
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

It may seem obvious, but a population is all of the members of a certain group. A
sample is some of the members of the population. The same group of individuals may
be a population in one context and a sample in another. The women in your stat class
are the population of "women enrolled in this statistics class", and they are also a
sample of "all students enrolled in this statistics class". It is important to be aware of
what sample you are using to make an inference about what population.

How exact is statistics? Upon close inspection, you will find that statistics is not all that
exact; sometimes I have told my classes that statistics is "knowing when its close
enough to call it equal". When making estimations, you will find that you are almost
never exactly right. If you make the estimations using the correct method however,
you will seldom be far from wrong. The same idea goes for hypothesis testing. You can
never be sure that you've made the correct judgement, but if you conduct the
hypothesis test with the correct method, you can be sure that the chance you've made
the wrong judgement is small.

A term that needs to be defined is probability. Probability is a measure of the chance
that something will occur. In statistics, when an inference is made, it is made with
some probability that it is wrong (or some confidence that it is right). Think about
repeating some action, like using a certain procedure to infer the mean of a
population, over and over and over. Inevitably, sometimes the procedure will give a
faulty estimate, sometimes you will be wrong. The probability that the procedure gives
the wrong answer is simply the proportion of the times that the estimate is wrong.
The confidence is simply the proportion of times that the answer is right. The
probability of something happening is expressed as the proportion of the time that it
can be expected to happen. Proportions are written as decimal fractions, and so are
probabilities. If the probability that Foothill Hosiery's best salesperson will make the
sale is .75, three-quarters of the time the sale is made.
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Why bother with stat?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Reflect on what you have just read. What you are going to learn to do by learning
statistics is to learn the right way to make educated guesses. For most students,
statistics is not a favorite course. It is viewed as hard, or cosmic, or just plain
confusing. By now, you should be thinking: "I could just skip stat, and avoid making
inferences about what populations are like by always collecting data on the whole
population and knowing for sure what the population is like." Well, many things come
back to money, and it is money that makes you take stat. Collecting data on a whole
population is usually very expensive, and often almost impossible. If you can make a
good, educated inference about a population from data collected from a small portion
of that population, you will be able to save yourself, and your employer, a lot of time
and money. You will also be able to make inferences about populations for which
collecting data on the whole population is virtually impossible. Learning statistics now
will allow you to save resources later and if the resources saved later are greater than
the cost of learning statistics now, it will be worthwhile to learn statistics. It is my hope
that the approach followed in this text will reduce the initial cost of learning statistics.
If you have already had finance, you'll understand it this way—this approach to
learning statistics will increase the net present value of investing in learning statistics
by decreasing the initial cost.

Imagine how long it would take and how expensive it would be if Ann and Kevin
decided that they had to find out what size sock every college volleyball player wore in
order to see if volleyball players wore the same size socks as basketball players. By
knowing how samples are related to populations, Ann and Kevin can quickly and
inexpensively get a good idea of what size socks volleyball players wear, saving
Foothill a lot of money and keeping John McGrath happy.

There are two basic types of inferences that can be made. The first is to estimate
something about the population, usually its mean. The second is to see if the
population has certain characteristics, for example you might want to infer if a
population has a mean greater than 5.6. This second type of inference, hypothesis
testing, is what we will concentrate on. If you understand hypothesis testing,
estimation is easy. There are many applications, especially in more advanced statistics,
in which the difference between estimation and hypothesis testing seems blurred.

Estimation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Estimation is one of the basic inferential statistics techniques. The idea is simple;
collect data from a sample and process it in some way that yields a good inference of
something about the population. There are two types of estimates: point estimates
and interval estimates. To make a point estimate, you simply find the single number
that you think is your best guess of the characteristic of the population. As you can

4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


imagine, you will seldom be exactly correct, but if you make your estimate correctly,
you will seldom be very far wrong. How to correctly make these estimates is an
important part of statistics.

To make an interval estimate, you define an interval within which you believe the
population characteristic lies. Generally, the wider the interval, the more confident you
are that it contains the population characteristic. At one extreme, you have complete
confidence that the mean of a population lies between and but that
information has little value. At the other extreme, though you can feel comfortable
that the population mean has a value close to that guessed by a correctly conducted
point estimate, you have almost no confidence ("zero plus" to statisticians) that the
population mean is exactly equal to the estimate. There is a trade-off between width
of the interval, and confidence that it contains the population mean. How to find a
narrow range with an acceptable level of confidence is another skill learned when
learning statistics.

Hypothesis testing
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The other type of inference is hypothesis testing. Though hypothesis testing and
interval estimation use similar mathematics, they make quite different inferences
about the population. Estimation makes no prior statement about the population; it is
designed to make an educated guess about a population that you know nothing
about. Hypothesis testing tests to see if the population has a certain
characteristic—say a certain mean. This works by using statisticians' knowledge of
how samples taken from populations with certain characteristics are likely to look to
see if the sample you have is likely to have come from such a population.

A simple example is probably the best way to get to this. Statisticians know that if the
means of a large number of samples of the same size taken from the same population
are averaged together, the mean of those sample means equals the mean of the
original population, and that most of those sample means will be fairly close to the
population mean. If you have a sample that you suspect comes from a certain
population, you can test the hypothesis that the population mean equals some
number, m, by seeing if your sample has a mean close to m or not. If your sample has
a mean close to m, you can comfortably say that your sample is likely to be one of the
samples from a population with a mean of m.

Sampling
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

It is important to recognize that there is another cost to using statistics, even after you
have learned statistics. As we said before, you are never sure that your inferences are
correct. The more precise you want your inference to be, either the larger the sample
you will have to collect (and the more time and money you'll have to spend on
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collecting it), or the greater the chance you must take that you'll make a mistake.
Basically, if your sample is a good representation of the whole population—if it
contains members from across the range of the population in proportions similar to
that in the population—the inferences made will be good. If you manage to pick a
sample that is not a good representation of the population, your inferences are likely
to be wrong. By choosing samples carefully, you can increase the chance of a sample
which is representative of the population, and increase the chance of an accurate
inference.

The intuition behind this is easy. Imagine that you want to infer the mean of a
population. The way to do this is to choose a sample, find the mean of that sample,
and use that sample mean as your inference of the population mean. If your sample
happened to include all, or almost all, observations with values that are at the high
end of those in the population, your sample mean will overestimate the population
mean. If your sample includes roughly equal numbers of observations with "high" and
"low" and "middle" values, the mean of the sample will be close to the population
mean, and the sample mean will provide a good inference of the population mean. If
your sample includes mostly observations from the middle of the population, you will
also get a good inference. Note that the sample mean will seldom be exactly equal to
the population mean, however, because most samples will have a rough balance
between high and low and middle values, the sample mean will usually be close to the
true population mean. The key to good sampling is to avoid choosing the members of
your sample in a manner that tends to choose too many "high" or too many "low"
observations.

There are three basic ways to accomplish this goal. You can choose your sample
randomly, you can choose a stratified sample, or you can choose a cluster sample.
While there is no way to insure that a single sample will be representative, following
the discipline of random, stratified, or cluster sampling greatly reduces the probability
of choosing an unrepresentative sample.

The sampling distribution
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The thing that makes statistics work is that statisticians have discovered how samples
are related to populations. This means that statisticians (and, by the end of the course,
you) know that if all of the possible samples from a population are taken and
something (generically called a “statistic”) is computed for each sample, something is
known about how the new population of statistics computed from each sample is
related to the original population. For example, if all of the samples of a given size are
taken from a population, the mean of each sample is computed, and then the mean of
those sample means is found, statisticians know that the mean of the sample means
is equal to the mean of the original population.

There are many possible sampling distributions. Many different statistics can be
computed from the samples, and each different original population will generate a
different set of samples. The amazing thing, and the thing that makes it possible to
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make inferences about populations from samples, is that there are a few statistics
which all have about the same sampling distribution when computed from the
samples from many different populations.

You are probably still a little confused about what a sampling distribution is. It will be
discussed more in the chapter on the Normal and t-distributions. An example here will
help. Imagine that you have a population —the sock sizes of all of the volleyball
players in the South Atlantic Conference. You take a sample of a certain size, say six,
and find the mean of that sample. Then take another sample of six sock sizes, and find
the mean of that sample. Keep taking different samples until you've found the mean
of all of the possible samples of six. You will have generated a new population, the
population of sample means. This population is the sampling distribution. Because
statisticians often can find what proportion of members of this new population will
take on certain values if they know certain things about the original population, we will
be able to make certain inferences about the original population from a single sample.

Univariate and multivariate statistics and the idea of an
observation

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A population may include just one thing about every member of a group, or it may
include two or more things about every member. In either case there will be one
observation for each group member. Univariate statistics are concerned with making
inferences about one variable populations, like "what is the mean shoe size of
business students?" Multivariate statistics is concerned with making inferences about
the way that two or more variables are connected in the population like, "do students
with high grade point averages usually have big feet?" What's important about
multivariate statistics is that it allows you to make better predictions. If you had to
predict the shoe size of a business student and you had found out that students with
high grade point averages usually have big feet, knowing the student's grade point
average might help. Multivariate statistics are powerful and find applications in
economics, finance, and cost accounting.

Ann Howard and Kevin Schmidt might use multivariate statistics if Mr. McGrath asked
them to study the effects of radio advertising on sock sales. They could collect a
multivariate sample by collecting two variables from each of a number of
cities—recent changes in sales and the amount spent on radio ads. By using
multivariate techniques you will learn in later chapters, Ann and Kevin can see if more
radio advertising means more sock sales.

Conclusion
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

As you can see, there is a lot of ground to cover by the end of this course. There are a
few ideas that tie most of what you learn together: populations and samples, the
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difference between data and information, and most important, sampling distributions.
We'll start out with the easiest part, descriptive statistics, turning data into
information. Your professor will probably skip some chapters, or do a chapter toward
the end of the book before one that's earlier in the book. As long as you cover the
chapters “Descriptive statistics and frequency distributions (Page 9)”, “The normal and
t-distributions (Page 19)”, “Making estimates (Page 28)” and that is alright.

You should learn more than just statistics by the time the semester is over. Statistics is
fairly difficult, largely because understanding what is going on requires that you learn
to stand back and think about things; you cannot memorize it all, you have to figure
out much of it. This will help you learn to use statistics, not just learn statistics for its
own sake.

You will do much better if you attend class regularly and if you read each chapter at
least three times. First, the day before you are going to discuss a topic in class, read
the chapter carefully, but do not worry if you understand everything. Second, soon
after a topic has been covered in class, read the chapter again, this time going slowly,
making sure you can see what is going on. Finally, read it again before the exam.
Though this is a great statistics book, the stuff is hard, and no one understands
statistics the first time.
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Chapter  1 Descriptive statistics and
frequency distributions

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This chapter is about describing populations and samples, a subject known as
descriptive statistics. This will all make more sense if you keep in mind that the
information you want to produce is a description of the population or sample as a
whole, not a description of one member of the population. The first topic in this
chapter is a discussion of "distributions", essentially pictures of populations (or
samples). Second will be the discussion of descriptive statistics. The topics are
arranged in this order because the descriptive statistics can be thought of as ways to
describe the picture of a population, the distribution.

1.1 Distributions
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The first step in turning data into information is to create a distribution. The most
primitive way to present a distribution is to simply list, in one column, each value that
occurs in the population and, in the next column, the number of times it occurs. It is
customary to list the values from lowest to highest. This simple listing is called a
"frequency distribution". A more elegant way to turn data into information is to draw a
graph of the distribution. Customarily, the values that occur are put along the
horizontal axis and the frequency of the value is on the vertical axis.

Ann Howard called the equipment manager at two nearby colleges and found out the
following data on sock sizes used by volleyball players. At Piedmont State last year, 14
pairs of size 7 socks, 18 pairs of size 8, 15 pairs of size 9, and 6 pairs of size 10 socks
were used. At Graham College, the volleyball team used 3 pairs of size 6, 10 pairs of
size 7, 15 pairs of size 8, 5 pairs of size 9, and 11 pairs of size 10. Ann arranged her
data into a distribution and then drew a graph called a Histogram:
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Fig. 1.1: Frequency graph of sock sizes

Ann could have created a relative frequency distribution as well as a frequency
distribution. The difference is that instead of listing how many times each value
occurred, Ann would list what proportion of her sample was made up of socks of each
size:

Fig. 1.2: Relative frequency graph of sock sizes

Notice that Ann has drawn the graphs differently. In the first graph, she has used bars
for each value, while on the second, she has drawn a point for the relative frequency
of each size, and the "connected the dots". While both methods are correct, when you
have values that are continuous, you will want to do something more like the "connect
the dots" graph. Sock sizes are discrete, they only take on a limited number of values.
Other things have continuous values, they can take on an infinite number of values,
though we are often in the habit of rounding them off. An example is how much
students weigh. While we usually give our weight in whole pounds in the US ("I weigh
156 pounds."), few have a weight that is exactly so many pounds. When you say "I
weigh 156", you actually mean that you weigh between 155 1/2 and 156 1/2 pounds.
We are heading toward a graph of a distribution of a continuous variable where the
relative frequency of any exact value is very small, but the relative frequency of
observations between two values is measurable. What we want to do is to get used to
the idea that the total area under a "connect the dots" relative frequency graph, from
the lowest to the highest possible value is one. Then the part of the area under the
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graph between two values is the relative frequency of observations with values within
that range. The height of the line above any particular value has lost any direct
meaning, because it is now the area under the line between two values that is the
relative frequency of an observation between those two values occurring.

You can get some idea of how this works if you go back to the bar graph of the
distribution of sock sizes, but draw it with relative frequency on the vertical axis. If you
arbitrarily decide that each bar has a width of one, then the area "under the curve"
between 7.5 and 8.5 is simply the height times the width of the bar for sock size 8:
0.3510 x 1. If you wanted to find the relative frequency of sock sizes between 6.5 and
8.5, you could simply add together the area of the bar for size 7 (that's between 6.5
and 7.5) and the bar for size 8 (between 7.5 and 8.5).

1.2 Descriptive statistics
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Now that you see how a distribution is created, you are ready to learn how to describe
one. There are two main things that need to be described about a distribution: its
location and its shape. Generally, it is best to give a single measure as the description
of the location and a single measure as the description of the shape.

1.2.1 Mean
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

To describe the location of a distribution, statisticians use a "typical" value from the
distribution. There are a number of different ways to find the typical value, but by far
the most used is the "arithmetic mean", usually simply called the "mean". You already
know how to find the arithmetic mean, you are just used to calling it the "average".
Statisticians use average more generally—the arithmetic mean is one of a number of
different averages. Look at the formula for the arithmetic mean:

All you do is add up all of the members of the population, , and divide by how
many members there are, N. The only trick is to remember that if there is more than
one member of the population with a certain value, add that value once for every
member that has it. To reflect this, the equation for the mean sometimes is written:

where is the frequency of members of the population with the value .

This is really the same formula as above. If there are seven members with a value of
ten, the first formula would have you add seven ten times. The second formula simply
has you multiply seven by ten—the same thing as adding together ten sevens.
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Other measures of location are the median and the mode. The median is the value of
the member of the population that is in the middle when the members are sorted
from smallest to largest. Half of the members of the population have values higher
than the median, and half have values lower. The median is a better measure of
location if there are one or two members of the population that are a lot larger (or a
lot smaller) than all the rest. Such extreme values can make the mean a poor measure
of location, while they have little effect on the median. If there are an odd number of
members of the population, there is no problem finding which member has the
median value. If there are an even number of members of the population, then there
is no single member in the middle. In that case, just average together the values of the
two members that share the middle.

The third common measure of location is the mode. If you have arranged the
population into a frequency or relative frequency distribution, the mode is easy to find
because it is the value that occurs most often. While in some sense, the mode is really
the most typical member of the population, it is often not very near the middle of the
population. You can also have multiple modes. I am sure you have heard someone say
that "it was a bimodal distribution". That simply means that there were two modes,
two values that occurred equally most often.

If you think about it, you should not be surprised to learn that for bell-shaped
distributions, the mean, median, and mode will be equal. Most of what statisticians do
with the describing or inferring the location of a population is done with the mean.
Another thing to think about is using a spreadsheet program, like Microsoft Excel
when arranging data into a frequency distribution or when finding the median or
mode. By using the sort and distribution commands in 1-2-3, or similar commands in
Excel, data can quickly be arranged in order or placed into value classes and the
number in each class found. Excel also has a function, =AVERAGE(...), for finding the
arithmetic mean. You can also have the spreadsheet program draw your frequency or
relative frequency distribution.

One of the reasons that the arithmetic mean is the most used measure of location is
because the mean of a sample is an "unbiased estimator" of the population mean.
Because the sample mean is an unbiased estimator of the population mean, the
sample mean is a good way to make an inference about the population mean. If you
have a sample from a population, and you want to guess what the mean of that
population is, you can legitimately guess that the population mean is equal to the
mean of your sample. This is a legitimate way to make this inference because the
mean of all the sample means equals the mean of the population, so, if you used this
method many times to infer the population mean, on average you'd be correct.

All of these measures of location can be found for samples as well as populations,
using the same formulas. Generally, is used for a population mean, and is used
for sample means. Upper-case N, really a Greek "nu", is used for the size of a
population, while lower case n is used for sample size. Though it is not universal,
statisticians tend to use the Greek alphabet for population characteristics and the
Roman alphabet for sample characteristics.
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1.2.2 Measuring population shape
Available under Creative Commons-ShareAlike 4.0 International License (http://
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Measuring the shape of a distribution is more difficult. Location has only one
dimension ("where?"), but shape has a lot of dimensions. We will talk about two, and
you will find that most of the time, only one dimension of shape is measured. The two
dimensions of shape discussed here are the width and symmetry of the distribution.
The simplest way to measure the width is to do just that—the range in the distance
between the lowest and highest members of the population. The range is obviously
affected by one or two population members which are much higher or lower than all
the rest.

The most common measures of distribution width are the standard deviation and the
variance. The standard deviation is simply the square root of the variance, so if you
know one (and have a calculator that does squares and square roots) you know the
other. The standard deviation is just a strange measure of the mean distance between
the members of a population and the mean of the population. This is easiest to see if
you start out by looking at the formula for the variance:

Look at the numerator. To find the variance, the first step (after you have the mean, )
is to take each member of the population, and find the difference between its value
and the mean; you should have N differences. Square each of those, and add them
together, dividing the sum by N, the number of members of the population. Since you
find the mean of a group of things by adding them together and then dividing by the
number in the group, the variance is simply the "mean of the squared distances
between members of the population and the population mean".

Notice that this is the formula for a population characteristic, so we use the Greek
and that we write the variance as , or "sigma square" because the standard
deviation is simply the square root of the variance, its symbol is simply "sigma", .

One of the things statisticians have discovered is that 75 per cent of the members of
any population are within two standard deviations of the mean of the population. This
is known as Chebyshev's Theorem. If the mean of a population of shoe sizes is 9.6 and
the standard deviation is 1.1, then 75 per cent of the shoe sizes are between 7.4 (two
standard deviations below the mean) and 11.8 (two standard deviations above the
mean). This same theorem can be stated in probability terms: the probability that
anything is within two standard deviations of the mean of its population is .75.

It is important to be careful when dealing with variances and standard deviations. In
later chapters, there are formulas using the variance, and formulas using the standard
deviation. Be sure you know which one you are supposed to be using. Here again,
spreadsheet programs will figure out the standard deviation for you. In Excel, there is
a function, =STDEVP(...), that does all of the arithmetic. Most calculators will also
compute the standard deviation. Read the little instruction booklet, and find out how
to have your calculator do the numbers before you do any homework or have a test.
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The other measure of shape we will discuss here is the measure of "skewness".
Skewness is simply a measure of whether or not the distribution is symmetric or if it
has a long tail on one side, but not the other. There are a number of ways to measure
skewness, with many of the measures based on a formula much like the variance. The
formula looks a lot like that for the variance, except the distances between the
members and the population mean are cubed, rather than squared, before they are
added together:

At first it might not seem that cubing rather than squaring those distances would
make much difference. Remember, however, that when you square either a positive
or negative number you get a positive number, but that when you cube a positive, you
get a positive and when you cube a negative you get a negative. Also remember that
when you square a number, it gets larger, but that when you cube a number, it gets a
whole lot larger. Think about a distribution with a long tail out to the left. There are a
few members of that population much smaller than the mean, members for which

is large and negative. When these are cubed, you end up with some really big
negative numbers. Because there are not any members with such large, positive

, there are not any corresponding really big positive numbers to add in when
you sum up the , and the sum will be negative. A negative measure of
skewness means that there is a tail out to the left, a positive measure means a tail to
the right. Take a minute and convince yourself that if the distribution is symmetric,
with equal tails on the left and right, the measure of skew is zero.

To be really complete, there is one more thing to measure, "kurtosis" or "peakedness".
As you might expect by now, it is measured by taking the distances between the
members and the mean and raising them to the fourth power before averaging them
together.

1.2.3 Measuring sample shape
Available under Creative Commons-ShareAlike 4.0 International License (http://
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Measuring the location of a sample is done in exactly the way that the location of a
population is done. Measuring the shape of a sample is done a little differently than
measuring the shape of a population, however. The reason behind the difference is
the desire to have the sample measurement serve as an unbiased estimator of the
population measurement. If we took all of the possible samples of a certain size, n,
from a population and found the variance of each one, and then found the mean of
those sample variances, that mean would be a little smaller than the variance of the
population.

You can see why this is so if you think it through. If you knew the population mean,

you could find for each sample, and have an unbiased estimate for
. However, you do not know the population mean, so you will have to infer it. The

best way to infer the population mean is to use the sample mean . The variance of a

sample will then be found by averaging together all of the .
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The mean of a sample is obviously determined by where the members of that sample
lie. If you have a sample that is mostly from the high (or right) side of a population's
distribution, then the sample mean will almost for sure be greater than the population

mean. For such a sample, would underestimate . The same is true
for samples that are mostly from the low (or left) side of the population. If you think

about what kind of samples will have that is greater than the
population , you will come to the realization that it is only those samples with a few
very high members and a few very low members—and there are not very many

samples like that. By now you should have convinced yourself that
will result in a biased estimate of . You can see that, on average, it is too small.

How can an unbiased estimate of the population variance, , be found? If

is on average too small, we need to do something to make it a little

bigger. We want to keep the , but if we divide it by something a little
smaller, the result will be a little larger. Statisticians have found out that the following
way to compute the sample variance results in an unbiased estimator of the
population variance:

If we took all of the possible samples of some size, n, from a population, and found
the sample variance for each of those samples, using this formula, the mean of those
sample variances would equal the population variance, .

Note that we use s2 instead of , and n instead of N (really "nu", not "en") since this is
for a sample and we want to use the Roman letters rather than the Greek letters,
which are used for populations.

There is another way to see why you divide by n-1. We also have to address something
called "degrees of freedom" before too long, and it is the degrees of freedom that is
the key of the other explanation. As we go through this explanation, you should be
able to see that the two explanations are related.

Imagine that you have a sample with 10 members (n=10), and you want to use it to
estimate the variance of the population form which it was drawn. You write each of
the 10 values on a separate scrap of paper. If you know the population mean, you
could start by computing all 10 . In the usual case, you do not know ,
however, and you must start by finding from the values on the 10 scraps to use as
an estimate of m. Once you have found , you could lose any one of the 10 scraps and
still be able to find the value that was on the lost scrap form and the other 9 scraps. If
you are going to use in the formula for sample variance, only 9 (or n-1), of the x's are
free to take on any value. Because only n-1 of the x's can vary freely, you should divide

by n-1, the number of (x’s) that are really free. Once you use in the
formula for sample variance, you use up one "degree of freedom", leaving only n-1.
Generally, whenever you use something you have previously computed from a sample
within a formula, you use up a degree of freedom.
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A little thought will link the two explanations. The first explanation is based on the
idea that , the estimator of , varies with the sample. It is because varies with the
sample that a degree of freedom is used up in the second explanation.

The sample standard deviation is found simply by taking the square root of the
sample variance:

While the sample variance is an unbiased estimator of population variance, the
sample standard deviation is not an unbiased estimator of the population standard
deviation—the square root of the average is not the same as the average of the
square roots. This causes statisticians to use variance where it seems as though they
are trying to get at standard deviation. In general, statisticians tend to use variance
more than standard deviation. Be careful with formulas using sample variance and
standard deviation in the following chapters. Make sure you are using the right one.
Also note that many calculators will find standard deviation using both the population
and sample formulas. Some use and s to show the difference between population
and sample formulas, some use sn and sn-1 to show the difference.

If Ann Howard wanted to infer what the population distribution of volleyball players'
sock sizes looked like she could do so from her sample. If she is going to send
volleyball coaches packages of socks for the players to try, she will want to have the
packages contain an assortment of sizes that will allow each player to have a pair that
fits. Ann wants to infer what the distribution of volleyball players sock sizes looks like.
She wants to know the mean and variance of that distribution. Her data, again, is:

size frequency

6 3

7 24

8 33

9 20

10 17

The mean sock size can be found:
=[(3x6)+(24x7)+(33x8)+(20x9)+(17x10)]/97 = 8.25.

To find the sample standard deviation, Ann decides to use Excel. She lists the sock
sizes that were in the sample in column B, and the frequency of each of those sizes in

column C. For column D, she has the computer find for each of the sock
sizes, using the formula =(B1-8.25)^2 in the first row, and then copying it down to the
other four rows. In E1, she multiplies D1, by the frequency using the formula =C1*D1,
and copying it down into the other rows. Finally, she finds the sample standard
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deviation by adding up the five numbers in column E and dividing by n-1 = 96 using
the Excel formula =sum(E1:E5)/96. The spreadsheet appears like this when she is
done:

A B C D E

1 6 3 5.06 15.19

2 7 24 1.56 37.5

3 8 33 0.06 2.06

4 9 20 0.56 11.25

5 10 17 3.06 52.06

6 n= 97 Var = 1.217139

7 Std.dev = 1.10324

8

Ann now has an estimate of the variance of the sizes of socks worn by college
volleyball players, 1.22. She has inferred that the population of college volleyball
players' sock sizes has a mean of 8.25 and a variance of 1.22.

1.3 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://
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To describe a population you need to describe the picture or graph of its distribution.
The two things that need to be described about the distribution are its location and its
shape. Location is measured by an average, most often the arithmetic mean. The most
important measure of shape is a measure of dispersion, roughly width, most often the
variance or its square root the standard deviation.

Samples need to be described, too. If all we wanted to do with sample descriptions
was describe the sample, we could use exactly the same measures for sample location
and dispersion that are used for populations. We want to use the sample describers
for dual purposes, however: (a) to describe the sample, and (b) to make inferences
about the description of the population that sample came from. Because we want to
use them to make inferences, we want our sample descriptions to be "unbiased
estimators". Our desire to measure sample dispersion with an unbiased estimator of

Chapter 1 17

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


population dispersion means that the formula we use for computing sample variance
is a little different than that used for computing population variance.
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Chapter  2 The normal and t-
distributions

Available under Creative Commons-ShareAlike 4.0 International License (http://
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The normal distribution is simply a distribution with a certain shape. It is "normal"
because many things have this same shape. The normal distribution is the “bell-
shaped distribution” that describes how so many natural, machine-made, or human
performance outcomes are distributed. If you ever took a class when you were
"graded on a bell curve", the instructor was fitting the class' grades into a normal
distribution— not a bad practice if the class is large and the tests are objective, since
human performance in such situations is normally distributed. This chapter will
discuss the normal distribution and then move onto a common sampling distribution,
the t-distribution. The t-distribution can be formed by taking many samples (strictly, all
possible samples) of the same size from a normal population. For each sample, the
same statistic, called the t-statistic, which we will learn more about later, is calculated.
The relative frequency distribution of these t-statistics is the t-distribution. It turns out
that t-statistics can be computed in a number of different ways on samples drawn in a
number of different situations and still have the same relative frequency distribution.
This makes the t-distribution useful for making many different inferences, so it is one
of the most important links between samples and populations used by statisticians. In
between discussing the normal and t-distributions, we will discuss the central limit
theorem. The t-distribution and the central limit theorem give us knowledge about the
relationship between sample means and population means that allows us to make
inferences about the population mean.

The way the t-distribution is used to make inferences about populations from samples
is the model for many of the inferences that statisticians make. Since you will be
learning to make inferences like a statistician, try to understand the general model of
inference making as well as the specific cases presented. Briefly, the general model of
inference-making is to use statisticians' knowledge of a sampling distribution like the t-
distribution as a guide to the probable limits of where the sample lies relative to the
population. Remember that the sample you are using to make an inference about the
population is only one of many possible samples from the population. The samples
will vary, some being highly representative of the population, most being fairly
representative, and a few not being very representative at all. By assuming that the
sample is at least fairly representative of the population, the sampling distribution can
be used as a link between the sample and the population so you can make an
inference about some characteristic of the population.

These ideas will be developed more later on. The immediate goal of this chapter is to
introduce you to the normal distribution, the central limit theorem, and the t-
distribution.
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2.1 Normal things
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Normal distributions are bell-shaped and symmetric. The mean, median, and mode
are equal. Most of the members of a normally distributed population have values
close to the mean—in a normal population 96 per cent of the members (much better
than Chebyshev's 75 per cent), are within 2 of the mean.

Statisticians have found that many things are normally distributed. In nature, the
weights, lengths, and thicknesses of all sorts of plants and animals are normally
distributed. In manufacturing, the diameter, weight, strength, and many other
characteristics of man-or machine-made items are normally distributed. In human
performance, scores on objective tests, the outcomes of many athletic exercises, and
college student grade point averages are normally distributed. The normal distribution
really is a normal occurrence.

If you are a skeptic, you are wondering how can GPAs and the exact diameter of holes
drilled by some machine have the same distribution—they are not even measured
with the same units. In order to see that so many things have the same normal shape,
all must be measured in the same units (or have the units eliminated)—they must all
be "standardized." Statisticians standardize many measures by using the STANDARD
deviation. All normal distributions have the same shape because they all have the
same relative frequency distribution when the values for their members are measured in
standard deviations above or below the mean.

Using the United States customary system of measurement, if the weight of pet cats is
normally distributed with a mean of 10.8 pounds and a standard deviation of 2.3
pounds and the daily sales at The First Brew Expresso Cafe are normally distributed
with and , then the same proportion of pet cats weigh
between 8.5 pounds ( ) and 10.8 pounds ( ) as the proportion of daily First
Brew sales which lie between ($288.25) and ($341.46). Any normally
distributed population will have the same proportion of its members between the
mean and one standard deviation below the mean. Converting the values of the
members of a normal population so that each is now expressed in terms of standard
deviations from the mean makes the populations all the same. This process is known
as "standardization" and it makes all normal populations have the same location and
shape.

This standardization process is accomplished by computing a "z-score" for every
member of the normal population. The z-score is found by:

This converts the original value, in its original units, into a standardized value in units
of "standard deviations from the mean." Look at the formula. The numerator is simply
the difference between the value of this member of the population, x, and the mean
of the population . It can be measured in centimeters, or points, or whatever. The
denominator is the standard deviation of the population, , and it is also measured in
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centimeters, or points, or whatever. If the numerator is 15cm and the standard
deviation is 10cm, then the z will be 1.5. This particular member of the population, one
with a diameter 15cm greater than the mean diameter of the population, has a z-value
of 1.5 because its value is 1.5 standard deviations greater than the mean. Because the
mean of the x's is , the mean of the z-scores is zero.

We could convert the value of every member of any normal population into a z-score.
If we did that for any normal population and arranged those z-scores into a relative
frequency distribution, they would all be the same. Each and every one of those
standardized normal distributions would have a mean of zero and the same shape.
There are many tables which show what proportion of any normal population will
have a z-score less than a certain value. Because the standard normal distribution is
symmetric with a mean of zero, the same proportion of the population that is less
than some positive z is also greater than the same negative z. Some values from a
"standard normal" table appear below:

Proportion
below

.75 .90 .95 .975 .99 .995

z-score 0.674 1.282 1.645 1.960 2.326 2.576

John McGrath has asked Kevin Schmidt "How much does a pair of size 11 mens dress
socks usually weigh?" Kevin asks the people in quality control what they know about
the weight of these socks and is told that the mean weight is 4.25 ounces with a
standard deviation of .021 ounces. Kevin decides that Mr. McGrath probably wants
more than the mean weight, and decides to give his boss the range of weights within
which 95% of size 11 men's dress socks falls. Kevin sees that leaving 2.5% (.025) in the
left tail and 2.5% (.025) in the right tail will leave 95% (.95) in the middle. He assumes
that sock weights are normally distributed, a reasonable assumption for a machine-
made product, and consulting a standard normal table, sees that .975 of the members
of any normal population have a z-score less than 1.96 and that .975 have a z-score
greater than -1.96, so .95 have a z-score between ±1.96.

Now that he knows that 95% of the socks will have a weight with a z-score between
±1.96, Kevin can translate those z's into ounces. By solving the equation for both +1.96
and -1.96, he will find the boundaries of the interval within which 95% of the weights
of the socks fall:

solving for x, Kevin finds that the upper limit is 4.29 ounces. He then solves for z=-1.96:

and finds that the lower limit is 4.21 ounces. He can now go to John McGrath and tell
him: "95% of size 11 mens' dress socks weigh between 4.21 and 4.29 ounces."

Chapter 2 21



2.1.1 The central limit theorem
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If this was a statistics course for math majors, you would probably have to prove this
theorem. Because this text is designed for business and other non-math students, you
will only have to learn to understand what the theorem says and why it is important.
To understand what it says, it helps to understand why it works. Here is an
explanation of why it works.

The theorem is about sampling distributions and the relationship between the
location and shape of a population and the location and shape of a sampling
distribution generated from that population. Specifically, the central limit theorem
explains the relationship between a population and the distribution of sample means
found by taking all of the possible samples of a certain size from the original
population, finding the mean of each sample, and arranging them into a distribution.

The sampling distribution of means is an easy concept. Assume that you have a
population of x's. You take a sample of n of those x's and find the mean of that
sample, giving you one . Then take another sample of the same size, n, and find its
...Do this over and over until you have chosen all possible samples of size n. You will
have generated a new population, a population of 's. Arrange this population into a
distribution, and you have the sampling distribution of means. You could find the
sampling distribution of medians, or variances, or some other sample statistic by
collecting all of the possible samples of some size, n, finding the median, variance, or
other statistic about each sample, and arranging them into a distribution.

The central limit theorem is about the sampling distribution of means. It links the
sampling distribution of ’s with the original distribution of x's. It tells us that:

(1) The mean of the sample means equals the mean of the original population,
. This is what makes an unbiased estimator of .

(2) The distribution of ’s will be bell-shaped, no matter what the shape of the
original distribution of x's.

This makes sense when you stop and think about it. It means that only a
small portion of the samples have means that are far from the population
mean. For a sample to have a mean that is far from , almost all of its
members have to be from the right tail of the distribution of x's, or almost all
have to be from the left tail. There are many more samples with most of their
members from the middle of the distribution, or with some members from the
right tail and some from the left tail, and all of those samples will have an
close to .
(3a) The larger the samples, the closer the sampling distribution will be to
normal, and
(3b) if the distribution of x's is normal, so is the distribution of ’s.

These come from the same basic reasoning as (2), but would require a
formal proof since "normal distribution" is a mathematical concept. It is not too
hard to see that larger samples will generate a "more-bell-shaped" distribution
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of sample means than smaller samples, and that is what makes (3a) work.
(4) The variance of the ’s is equal to the variance of the x's divided by the
sample size, or:

therefore the standard deviation of the sampling distribution is:

While it is difficult to see why this exact formula holds without going through a formal
proof, the basic idea that larger samples yield sampling distributions with smaller
standard deviations can be understood intuitively. If then .
Furthermore, when the sample size, n, rises, gets smaller. This is because it
becomes more unusual to get a sample with an that is far from as n gets larger.
The standard deviation of the sampling distribution includes an for each, but
remember that there are not many 's that are as far from as there are x's that are
far from , and as n grows there are fewer and fewer samples with an far from .
This means that there are not many that are as large as quite a few
are. By the time you square everything, the average is going to be much
smaller than the average , so, is going to be smaller than . If the mean
volume of soft drink in a population of 12 ounce cans is 12.05 ounces with a variance
of .04 (and a standard deviation of .2), then the sampling distribution of means of
samples of 9 cans will have a mean of 12.05 ounces and a variance of .04/9=.0044 (and
a standard deviation of .2/3=.0667).

You can follow this same line of reasoning once again, and see that as the sample size
gets larger, the variance and standard deviation of the sampling distribution will get
smaller. Just remember that as sample size grows, samples with an that is far from

get rarer and rarer, so that the average will get smaller. The average
is the variance. If larger samples of soft drink bottles are taken, say samples

of 16, even fewer of the samples will have means that are very far from the mean of
12.05 ounces. The variance of the sampling distribution when n=16 will therefore be
smaller. According to what you have just learned, the variance will be only .04/
16=.0025 (and the standard deviation will be .2/4=.05). The formula matches what
logically is happening; as the samples get bigger, the probability of getting a sample
with a mean that is far away from the population mean gets smaller, so the sampling
distribution of means gets narrower and the variance (and standard deviation) get
smaller. In the formula, you divide the population variance by the sample size to get
the sampling distribution variance. Since bigger samples means dividing by a bigger
number, the variance falls as sample size rises. If you are using the sample mean as to
infer the population mean, using a bigger sample will increase the probability that
your inference is very close to correct because more of the sample means are very
close to the population mean. There is obviously a trade-off here. The reason you
wanted to use statistics in the first place was to avoid having to go to the bother and
expense of collecting lots of data, but if you collect more data, your statistics will
probably be more accurate.
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2.2 The t-distribution
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The central limit theorem tells us about the relationship between the sampling
distribution of means and the original population. Notice that if we want to know the
variance of the sampling distribution we need to know the variance of the original
population. You do not need to know the variance of the sampling distribution to
make a point estimate of the mean, but other, more elaborate, estimation techniques
require that you either know or estimate the variance of the population. If you reflect
for a moment, you will realize that it would be strange to know the variance of the
population when you do not know the mean. Since you need to know the population
mean to calculate the population variance and standard deviation, the only time when
you would know the population variance without the population mean are examples
and problems in textbooks. The usual case occurs when you have to estimate both the
population variance and mean. Statisticians have figured out how to handle these
cases by using the sample variance as an estimate of the population variance (and
being able to use that to estimate the variance of the sampling distribution).

Remember that s2 is an unbiased estimator of . Remember, too, that the variance
of the sampling distribution of means is related to the variance of the original
population according to the equation:

so, the estimated standard deviation of a sampling distribution of means is:

Following this thought, statisticians found that if they took samples of a constant size
from a normal population, computed a statistic called a "t-score" for each sample, and
put those into a relative frequency distribution, the distribution would be the same for
samples of the same size drawn from any normal population. The shape of this
sampling distribution of t's varies somewhat as sample size varies, but for any n it's
always the same. For example, for samples of 5, 90% of the samples have t-scores
between -1.943 and +1.943, while for samples of 15, 90% have t-scores between ±
1.761. The bigger the samples, the narrower the range of scores that covers any
particular proportion of the samples. That t-score is computed by the formula:

By comparing the formula for the t-score with the formula for the z-score, you will be
able to see that the t is just an estimated z. Since there is one t-score for each sample,
the t is just another sampling distribution. It turns out that there are other things that
can be computed from a sample that have the same distribution as this t. Notice that
we've used the sample standard deviation, s, in computing each t-score. Since we've
used s, we've used up one degree of freedom. Because there are other useful
sampling distributions that have this same shape, but use up various numbers of
degrees of freedom, it is the usual practice to refer to the t-distribution not as the
distribution for a particular sample size, but as the distribution for a particular number
of degrees of freedom. There are published tables showing the shapes of the t-

24

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


distributions, and they are arranged by degrees of freedom so that they can be used
in all situations.

Looking at the formula, you can see that the mean t-score will be zero since the mean
equals . Each t-distribution is symmetric, with half of the t-scores being positive

and half negative because we know from the central limit theorem that the sampling
distribution of means is normal, and therefore symmetric, when the original
population is normal.

An excerpt from a typical t-table is printed below. Note that there is one line each for
various degrees of freedom. Across the top are the proportions of the distributions
that will be left out in the tail--the amount shaded in the picture. The body of the table
shows which t-score divides the bulk of the distribution of t's for that df from the area
shaded in the tail, which t-score leaves that proportion of t's to its right. For example,
if you chose all of the possible samples with 9 df, and found the t-score for each, .025
(2 1/2 %) of those samples would have t-scores greater than 2.262, and .975 would
have t-scores less than 2.262.

Fig. 2.1: A sampling of a student's t-table. The table shows the probability of exceeding the value in the

body. With 5 df, there is a .05 probability that a sample will have a t-score > 2.015.

Since the t-distributions are symmetric, if 2 1/2% (.025) of the t's with 9 df are greater
than 2.262, then 2 1/2% are less than -2.262. The middle 95% (.95) of the t's, when
there are 9 df, are between -2.262 and +2.262. The middle .90 of t=scores when there
are 14 df are between ±1.761, because -1.761 leaves .05 in the left tail and +1.761
leaves .05 in the right tail. The t-distribution gets closer and closer to the normal
distribution as the number of degrees of freedom rises. As a result, the last line in the
t-table, for infinity df, can also be used to find the z-scores that leave different
proportions of the sample in the tail.
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What could Kevin have done if he had been asked "about how much does a pair of
size 11 socks weigh?" and he could not easily find good data on the population? Since
he knows statistics, he could take a sample and make an inference about the
population mean. Because the distribution of weights of socks is the result of a
manufacturing process, it is almost certainly normal. The characteristics of almost
every manufactured product are normally distributed. In a manufacturing process,
even one that is precise and well-controlled, each individual piece varies slightly as the
temperature varies some, the strength of the power varies as other machines are
turned on and off, the consistency of the raw material varies slightly, and dozens of
other forces that affect the final outcome vary slightly. Most of the socks, or bolts, or
whatever is being manufactured, will be very close to the mean weight, or size, with
just as many a little heavier or larger as there are that are a little lighter or smaller.
Even though the process is supposed to be producing a population of "identical"
items, there will be some variation among them. This is what causes so many
populations to be normally distributed. Because the distribution of weights is normal,
he can use the t-table to find the shape of the distribution of sample t-scores. Because
he can use the t-table to tell him about the shape of the distribution of sample t-
scores, he can make a good inference about the mean weight of a pair of socks. This is
how he could make that inference:

STEP 1. Take a sample of n, say 15, pairs size 11 socks and carefully weigh each
pair.
STEP 2. Find and s for his sample.
STEP 3 (where the tricky part starts). Look at the t-table, and find the t-scores
that leave some proportion, say .95, of sample t's with n-1 df in the middle.
STEP 4 (the heart of the tricky part). Assume that his sample has a t-score that is
in the middle part of the distribution of t-scores.
STEP 5 (the arithmetic). Take his , s, n, and t's from the t-table, and set up two
equations, one for each of his two table t-values. When he solves each of these
equations for m, he will find an interval that he is 95% sure (a statistician would
say "with .95 confidence") contains the population mean.

Kevin decides this is the way he will go to answer the question. His sample contains
pairs of socks with weights of :
4.36, 4.32, 4.29, 4.41, 4.45, 4.50, 4.36, 4.35, 4.33, 4.30, 4.39, 4.41, 4.43, 4.28, 4.46 oz.

He finds his sample mean, ounces, and his sample standard deviation
(remembering to use the sample formula), s = .067 ounces. The t-table tells him that
.95 of sample t's with 14 df are between ±2.145. He solves these two equations for :

and

finding ounces and ounces. With these results, Kevin can
report that he is "95 per cent sure that the mean weight of a pair of size 11 socks is
between 4.366 and 4.386 ounces". Notice that this is different from when he knew
more about the population in the previous example.
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2.3 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A lot of material has been covered in this chapter, and not much of it has been easy.
We are getting into real statistics now, and it will require care on your part if you are
going to keep making sense of statistics.

The chapter outline is simple:

• Many things are distributed the same way, at least once we've standardized the
members' values into z-scores.

• The central limit theorem gives users of statistics a lot of useful information about
how the sampling distribution of is related to the original population of x's.

• The t-distribution lets us do many of the things the central limit theorem permits,
even when the variance of the population, sx, is not known.

We will soon see that statisticians have learned about other sampling distributions
and how they can be used to make inferences about populations from samples. It is
through these known sampling distributions that most statistics is done. It is these
known sampling distributions that give us the link between the sample we have and
the population that we want to make an inference about.
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Chapter  3 Making estimates
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The most basic kind of inference about a population is an estimate of the location (or
shape) of a distribution. The central limit theorem says that the sample mean is an
unbiased estimator of the population mean and can be used to make a single point
inference of the population mean. While making this kind of inference will give you the
correct estimate on average, it seldom gives you exactly the correct estimate. As an
alternative, statisticians have found out how to estimate an interval that almost
certainly contains the population mean. In the next few pages, you will learn how to
make three different inferences about a population from a sample. You will learn how
to make interval estimates of the mean, the proportion of members with a certain
characteristic, and the variance. Each of these procedures follows the same outline,
yet each uses a different sampling distribution to link the sample you have chosen
with the population you are trying to learn about.

3.1 Estimating the population mean
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Though the sample mean is an unbiased estimator of the population mean, very few
samples have a mean exactly equal to the population mean. Though few samples
have a mean, exactly equal to the population mean, m, the central limit theorem tells
us that most samples have a mean that is close to the population mean. As a result, if
you use the central limit theorem to estimate , you will seldom be exactly right, but
you will seldom be far wrong. Statisticians have learned how often a point estimate
will be how wrong. Using this knowledge you can find an interval, a range of values,
which probably contains the population mean. You even get to choose how great a
probability you want to have, though to raise the probability, the interval must be
wider.

Most of the time, estimates are interval estimates. When you make an interval
estimate, you can say "I am z per cent sure that the mean of this population is
between x and y". Quite often, you will hear someone say that they have estimated
that the mean is some number "± so much". What they have done is quoted the
midpoint of the interval for the "some number", so that the interval between x and y
can then be split in half with + "so much" above the midpoint and -"so much" below.
They usually do not tell you that they are only "z per cent sure". Making such an
estimate is not hard— it is what Kevin Schmidt did at the end of the last chapter. It is
worth your while to go through the steps carefully now, because the same basic steps
are followed for making any interval estimate.

In making any interval estimate, you need to use a sampling distribution. In making an
interval estimate of the population mean, the sampling distribution you use is the t-
distribution.
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The basic method is to pick a sample and then find the range of population means
that would put your sample's t-score in the central part of the t-distribution. To make
this a little clearer, look at the formula for t:

n is your sample's size and and s are computed from your sample. is what you are
trying to estimate. From the t-table, you can find the range of t-scores that include the
middle 80 per cent, or 90 per cent, or whatever per cent, for n-1 degrees of freedom.
Choose the percentage you want and use the table. You now have the lowest and
highest t-scores, , s and n. You can then substitute the lowest t-score into the
equation and solve for to find one of the limits for if your sample's t-score is in the
middle of the distribution. Then substitute the highest t-score into the equation, and
find the other limit. Remember that you want two 's because you want to be able to
say that the population mean is between two numbers.

The two t-scores are almost always ± the same number. The only heroic thing you
have done is to assume that your sample has a t-score that is "in the middle" of the
distribution. As long as your sample meets that assumption, the population mean will
be within the limits of your interval. The probability part of your interval estimate, "I
am z per cent sure that the mean is between...", or "with z confidence, the mean is
between...", comes from how much of the t-distribution you want to include as "in the
middle". If you have a sample of 25 (so there are 24df), looking at the table you will see
that .95 of all samples of 25 will have a t-score between ±2.064; that also means that
for any sample of 25, the probability that its t is between ±2.064 is .95.

As the probability goes up, the range of t-scores necessary to cover the larger
proportion of the sample gets larger. This makes sense. If you want to improve the
chance that your interval contains the population mean, you could simply choose a
wider interval. For example, if your sample mean was 15, sample standard deviation
was 10, and sample size was 25, to be .95 sure you were correct, you would need to
base your mean on t-scores of ±2.064. Working through the arithmetic gives you an
interval from 10.872 to 19.128. To have .99 confidence, you would need to base your
interval on t-scores of ±2.797. Using these larger t-scores gives you a wider interval,
one from 9.416 to 20.584. This trade-off between precision (a narrower interval is
more precise) and confidence (probability of being correct), occurs in any interval
estimation situation. There is also a trade-off with sample size. Looking at the t-table,
note that the t-scores for any level of confidence are smaller when there are more
degrees of freedom. Because sample size determines degrees of freedom, you can
make an interval estimate for any level of confidence more precise if you have a larger
sample. Larger samples are more expensive to collect, however, and one of the main
reasons we want to learn statistics is to save money. There is a three-way trade-off in
interval estimation between precision, confidence, and cost.

At Foothill Hosiery, John McGrath has become concerned that the hiring practices
discriminate against older workers. He asks Kevin to look into the age at which new
workers are hired, and Kevin decides to find the average age at hiring. He goes to the
personnel office, and finds out that over 2,500 different people have worked at
Foothill in the past fifteen years. In order to save time and money, Kevin decides to
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make an interval estimate of the mean age at date of hire. He decides that he wants to
make this estimate with .95 confidence. Going into the personnel files, Kevin chooses
30 folders, and records the birth date and date of hiring from each. He finds the age at
hiring for each person, and computes the sample mean and standard deviation,
finding years and s = 2.13 years. Going to the t-table, he finds that .95 of t-
scores with 29 df are between ±2.045. He solves two equations:

and finds that the limits to his interval are 23.91 and 25.51. Kevin tells Mr. McGrath:
"With .95 confidence, the mean age at date of hire is between 23.91 years and 25.51
years."

3.2 Estimating the population proportion
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are many times when you, or your boss, will want to estimate the proportion of
a population that has a certain characteristic. The best known examples are political
polls when the proportion of voters who would vote for a certain candidate is
estimated. This is a little trickier than estimating a population mean. It should only be
done with large samples and there are adjustments that should be made under
various conditions. We will cover the simplest case here, assuming that the population
is very large, the sample is large, and that once a member of the population is chosen
to be in the sample, it is replaced so that it might be chosen again. Statisticians have
found that, when all of the assumptions are met, there is a sample statistic that
follows the standard normal distribution. If all of the possible samples of a certain size
are chosen, and for each sample, p, the proportion of the sample with a certain
characteristic, is found, and for each sample a z-statistic is computed with the formula:

where = proportion of population with the characteristic these will be distributed
normally. Looking at the bottom line of the t-table, .90 of these z's will be between
±1.645, .99 will be between ±2.326, etc.

Because statisticians know that the z-scores found from sample will be distributed
normally, you can make an interval estimate of the proportion of the population with
the characteristic. This is simple to do, and the method is parallel to that used to make
an interval estimate of the population mean: (1) choose the sample, (2) find the
sample p, (3) assume that your sample has a z-score that is not in the tails of the
sampling distribution, (4) using the sample p as an estimate of the population in the
denominator and the table z-values for the desired level of confidence, solve twice to
find the limits of the interval that you believe contains the population proportion, p.

At Foothill Hosiery, Ann Howard is also asked by John McGrath to look into the age at
hiring at the plant. Ann takes a different approach than Kevin, and decides to
investigate what proportion of new hires were at least 35. She looks at the personnel
records and, like Kevin, decides to make an inference from a sample after finding that
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over 2,500 different people have worked at Foothill at some time in the last fifteen
years. She chooses 100 personnel files, replacing each file after she has recorded the
age of the person at hiring. She finds 17 who were 35 or older when they first worked
at Foothill. She decides to make her inference with .95 confidence, and from the last
line of the t-table finds that .95 of z-scores lie between ±1.96. She finds her upper and
lower bounds:

and, she finds the other boundary:

and concludes, that with .95 confidence, the proportion of people who have worked at
Foothills Hosiery who were over 35 when hired is between .095 and .245. This is a
fairly wide interval. Looking at the equation for constructing the interval, you should
be able to see that a larger sample size will result in a narrower interval, just as it did
when estimating the population mean.

3.3 Estimating population variance
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Another common interval estimation task is to estimate the variance of a population.
High quality products not only need to have the proper mean dimension, the variance
should be small. The estimation of population variance follows the same strategy as
the other estimations. By choosing a sample and assuming that it is from the middle
of the population, you can use a known sampling distribution to find a range of values
that you are confident contains the population variance. Once again, we will use a
sampling distribution that statisticians have discovered forms a link between samples
and populations.

Take a sample of size n from a normal population with known variance, and compute
a statistic called " " (pronounced "chi square") for that sample using the following
formula:

You can see that will always be positive, because both the numerator and
denominator will always be positive. Thinking it through a little, you can also see that
as n gets larger, ,will generally be larger since the numerator will tend to be larger
as more and more are summed together. It should not be too surprising by
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now to find out that if all of the possible samples of a size n are taken from any
normal population, that when is computed for each sample and those are
arranged into a relative frequency distribution, the distribution is always the same.

Because the size of the sample obviously affects , there is a different distribution
for each different sample size. There are other sample statistics that are distributed
like , so, like the t-distribution, tables of the distribution are arranged by degrees
of freedom so that they can be used in any procedure where appropriate. As you
might expect, in this procedure, df = n-1. A portion of a table is reproduced below.

Fig. 3.1: The χ2 distribution

Variance is important in quality control because you want your product to be
consistently the same. John McGrath has just returned from a seminar called "Quality
Socks, Quality Profits". He learned something about variance, and has asked Kevin to
measure the variance of the weight of Foothill's socks. Kevin decides that he can fulfill
this request by using the data he collected when Mr. McGrath asked about the
average weight of size 11 men's dress socks. Kevin knows that the sample variance is
an unbiased estimator of the population variance, but he decides to produce an
interval estimate of the variance of the weight of pairs of size 11 men's socks. He also
decides that .90 confidence will be good until he finds out more about what Mr.
McGrath wants.

Kevin goes and finds the data for the size 11 socks, and gets ready to use the
distribution to make a .90 confidence interval estimate of the variance of the weights
of socks. His sample has 15 pairs in it, so he will have 14 df. From the table he sees
that .95 of are greater than 6.57 and only .05 are greater than 23.7 when there are
14 df. This means that .90 are between 6.57 and 23.7. Assuming that his sample has a

that is in the middle .90, Kevin gets ready to compute the limits of his interval. He

notices that he will have to find and decides to use his spreadsheet
program rather than find fifteen times. He puts the original sample values in
the first column, and has the program compute the mean. Then he has the program
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find fifteen times. Finally, he has the spreadsheet sum up the squared
differences and finds 0.062.

Kevin then takes the formula, and solves it twice, once by setting equal to 6.57:

Solving for , he finds one limit for his interval is .0094. He solves the second time by
setting :

and find that the other limit is .0026. Armed with his data, Kevin reports to Mr.
McGrath that "with .90 confidence, the variance of weights of size 11 men's socks is
between .0026 and .0094."

3.3.1 What is this confidence stuff mean anyway?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the example we just did, Ann found "that with .95 confidence..." What exactly does
"with .95 confidence" mean? The easiest way to understand this is to think about the
assumption that Ann had made that she had a sample with a z-score that was not in
the tails of the sampling distribution. More specifically, she assumed that her sample
had a z-score between ±1.96; that it was in the middle 95 per cent of z-scores. Her
assumption is true 95% of the time because 95% of z-scores are between ±1.96. If Ann
did this same estimate, including drawing a new sample, over and over, in .95 of those
repetitions, the population proportion would be within the interval because in .95 of
the samples the z-score would be between ±1.96. In .95 of the repetitions, her
estimate would be right.
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Chapter  4 Hypothesis testing
Available under Creative Commons-ShareAlike 4.0 International License (http://
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Hypothesis testing is the other widely used form of inferential statistics. It is different
from estimation because you start a hypothesis test with some idea of what the
population is like and then test to see if the sample supports your idea. Though the
mathematics of hypothesis testing is very much like the mathematics used in interval
estimation, the inference being made is quite different. In estimation, you are
answering the question "what is the population like?" While in hypothesis testing you
are answering the question "is the population like this or not?"

A hypothesis is essentially an idea about the population that you think might be true,
but which you cannot prove to be true. While you usually have good reasons to think it
is true, and you often hope that it is true, you need to show that the sample data
supports your idea. Hypothesis testing allows you to find out, in a formal manner, if
the sample supports your idea about the population. Because the samples drawn
from any population vary, you can never be positive of your finding, but by following
generally accepted hypothesis testing procedures, you can limit the uncertainty of
your results.

As you will learn in this chapter, you need to choose between two statements about
the population. These two statements are the hypotheses. The first, known as the
"null hypothesis", is basically "the population is like this". It states, in formal terms,
that the population is no different than usual. The second, known as the "alternative
hypothesis", is "the population is like something else". It states that the population is
different than the usual, that something has happened to this population, and as a
result it has a different mean, or different shape than the usual case. Between the two
hypotheses, all possibilities must be covered. Remember that you are making an
inference about a population from a sample. Keeping this inference in mind, you can
informally translate the two hypotheses into "I am almost positive that the sample
came from a population like this" and "I really doubt that the sample came from a
population like this, so it probably came from a population that is like something else".
Notice that you are never entirely sure, even after you have chosen the hypothesis
which is best. Though the formal hypotheses are written as though you will choose
with certainty between the one that is true and the one that is false, the informal
translations of the hypotheses, with "almost positive" or "probably came", is a better
reflection of what you actually find.

Hypothesis testing has many applications in business, though few managers are
aware that that is what they are doing. As you will see, hypothesis testing, though
disguised, is used in quality control, marketing, and other business applications. Many
decisions are made by thinking as though a hypothesis is being tested, even though
the manager is not aware of it. Learning the formal details of hypothesis testing will
help you make better decisions and better understand the decisions made by others.

The next section will give an overview of the hypothesis testing method by following
along with a young decision-maker as he uses hypothesis testing. The rest of the
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chapter will present some specific applications of hypothesis tests as examples of the
general method.

4.1 The strategy of hypothesis testing
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Usually, when you use hypothesis testing, you have an idea that the world is a little bit
surprising, that it is not exactly as conventional wisdom says it is. Occasionally, when
you use hypothesis testing, you are hoping to confirm that the world is not surprising,
that it is like conventional wisdom predicts. Keep in mind that in either case you are
asking "is the world different from the usual, is it surprising?" Because the world is
usually not surprising and because in statistics you are never 100 per cent sure about
what a sample tells you about a population, you cannot say that your sample implies
that the world is surprising unless you are almost positive that it does. The dull,
unsurprising, usual case not only wins if there is a tie, it gets a big lead at the start. You
cannot say that the world is surprising, that the population is unusual, unless the
evidence is very strong. This means that when you arrange your tests, you have to do
it in a manner that makes it difficult for the unusual, surprising world to win support.

The first step in the basic method of hypothesis testing is to decide what value some
measure of the population would take if the world was unsurprising. Second, decide
what the sampling distribution of some sample statistic would look like if the
population measure had that unsurprising value. Third, compute that statistic from
your sample and see if it could easily have come from the sampling distribution of that
statistic if the population was unsurprising. Fourth, decide if the population your
sample came from is surprising because your sample statistic could not easily have
come from the sampling distribution generated from the unsurprising population.

That all sounds complicated, but it is really pretty simple. You have a sample and the
mean, or some other statistic, from that sample. With conventional wisdom, the null
hypothesis that the world is dull and not surprising, tells you that your sample comes
from a certain population. Combining the null hypothesis with what statisticians know
tells you what sampling distribution your sample statistic comes from if the null
hypothesis is true. If you are "almost positive" that the sample statistic came from that
sampling distribution, the sample supports the null. If the sample statistic "probably
came" from a sampling distribution generated by some other population, the sample
supports the alternative hypothesis that the population is "like something else".

Imagine that Thad Stoykov works in the marketing department of Pedal Pushers, a
company that makes clothes for bicycle riders. Pedal Pushers has just completed a big
advertising campaign in various bicycle and outdoor magazines, and Thad wants to
know if the campaign has raised the recognition of the Pedal Pushers brand so that
more than 30 per cent of the potential customers recognize it. One way to do this
would be to take a sample of prospective customers and see if at least 30 per cent of
those in the sample recognize the Pedal Pushers brand. However, what if the sample
is small and just barely 30 per cent of the sample recognizes Pedal Pushers? Because
there is variance among samples, such a sample could easily have come from a
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population in which less than 30 percent recognize the brand—if the population
actually had slightly less than 30 per cent recognition, the sampling distribution would
include quite a few samples with sample proportions a little above 30 per cent,
especially if the samples are small. In order to be comfortable that more than 30 per
cent of the population recognizes Pedal Pushers, Thad will want to find that a bit
more than 30 per cent of the sample does. How much more depends on the size of
the sample, the variance within the sample, and how much chance he wants to take
that he'll conclude that the campaign did not work when it actually did.

Let us follow the formal hypothesis testing strategy along with Thad. First, he must
explicitly describe the population his sample could come from in two different cases.
The first case is the unsurprising case, the case where there is no difference between
the population his sample came from and most other populations. This is the case
where the ad campaign did not really make a difference, and it generates the null
hypothesis. The second case is the surprising case when his sample comes from a
population that is different from most others. This is where the ad campaign worked,
and it generates the alternative hypothesis. The descriptions of these cases are
written in a formal manner. The null hypothesis is usually called " H0 :". The alternative
hypothesis is called either " H1 :" or " Ha :". For Thad and the Pedal Pushers marketing
department, the null will be:

H0 : proportion of the population recognizing Pedal Pushers brand ≤ .30 and the
alternative will be:
Ha : proportion of the population recognizing Pedal Pushers brand ＞.30.

Notice that Thad has stacked the deck against the campaign having worked by putting
the value of the population proportion that means that the campaign was successful
in the alternative hypothesis. Also notice that between H0 : and Ha : all possible values
of the population proportion — >, =, and < .30 — have been covered.

Second, Thad must create a rule for deciding between the two hypotheses. He must
decide what statistic to compute from his sample and what sampling distribution that
statistic would come from if the null hypothesis, H0 : , is true. He also needs to divide
the possible values of that statistic into "usual" and "unusual" ranges if the null is true.
Thad's decision rule will be that if his sample statistic has a "usual" value, one that
could easily occur if H0 : is true, then his sample could easily have come from a
population like that described in H0 : . If his sample's statistic has a value that would be
"unusual" if H0 : is true, then the sample probably comes from a population like that
described in Ha : . Notice that the hypotheses and the inference are about the original
population while the decision rule is about a sample statistic. The link between the
population and the sample is the sampling distribution. Knowing the relative
frequency of a sample statistic when the original population has a proportion with a
known value is what allows Thad to decide what are "usual" and "unusual" values for
the sample statistic.

The basic idea behind the decision rule is to decide, with the help of what statisticians
know about sampling distributions, how far from the null hypothesis' value for the
population the sample value can be before you are uncomfortable deciding that the
sample comes from a population like that hypothesized in the null. Though the
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hypotheses are written in terms of descriptive statistics about the population—means,
proportions, or even a distribution of values—the decision rule is usually written in
terms of one of the standardized sampling distributions—the t, the normal z, or
another of the statistics whose distributions are in the tables at the back of statistics
books. It is the sampling distributions in these tables that are the link between the
sample statistic and the population in the null hypothesis. If you learn to look at how
the sample statistic is computed you will see that all of the different hypothesis tests
are simply variations on a theme. If you insist on simply trying to memorize how each
of the many different statistics is computed, you will not see that all of the hypothesis
tests are conducted in a similar manner, and you will have to learn many different
things rather than learn the variations of one thing.

Thad has taken enough statistics to know that the sampling distribution of sample
proportions is normally distributed with a mean equal to the population proportion
and a standard deviation that depends on the population proportion and the sample
size. Because the distribution of sample proportions is normally distributed, he can
look at the bottom line of a t-table and find out that only .05 of all samples will have a
proportion more than 1.645 standard deviations above .30 if the null hypothesis is
true. Thad decides that he is willing to take a 5 per cent chance that he will conclude
that the campaign did not work when it actually did, and therefore decides that he will
conclude that the sample comes from a population with a proportion that has heard
of Pedal Pushers that is greater than .30 if the sample's proportion is more than 1.645
standard deviations above .30. After doing a little arithmetic (which you'll learn how to
do later in the chapter), Thad finds that his decision rule is to decide that the
campaign was effective if the sample has a proportion which has heard of Pedal
Pushers that is greater than .375. Otherwise the sample could too easily have come
from a population with a proportion equal to or less than .30.

alpha 0.1 0.05 0.03 0.01

df infinity 1.28 1.65 1.96 2.33

Table 4.1: The bottom line of a t-table, showing the normal
distribution

The final step is to compute the sample statistic and apply the decision rule. If the
sample statistic falls in the usual range, the data supports H0 : , and the world is
probably unsurprising and the campaign did not make any difference. If the sample
statistic is outside the usual range, the data supports Ha : , and the world is a little
surprising, the campaign affected how many people have heard of Pedal Pushers.
When Thad finally looks at the sample data, he finds that .39 of the sample had heard
of Pedal Pushers. The ad campaign was successful!
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4.1.1 A straight-forward example: testing for "goodness-of-fit"
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are many different types of hypothesis tests, including many that are used more
often than the "goodness-of-fit" test. This test will be used to help introduce
hypothesis testing because it gives a clear illustration of how the strategy of
hypothesis testing is put to use, not because it is used frequently. Follow this example
carefully, concentrating on matching the steps described in previous sections with the
steps described in this section; the arithmetic is not that important right now.

We will go back to Ann Howard's problem with marketing "Easy Bounce" socks to
volleyball teams. Remember that Ann works for Foothills Hosiery, and she is trying to
market these sports socks to volleyball teams. She wants to send out some samples to
convince volleyball players that wearing "Easy Bounce" socks will be more comfortable
than wearing other socks. Her idea is to send out a package of socks to volleyball
coaches in the area, so the players can try them out. She needs to include an
assortment of sizes in those packages and is trying to find out what sizes to include.
The Production Department knows what mix of sizes they currently produce, and Ann
has collected a sample of 97 volleyball players' sock sizes from nearby teams. She
needs to test to see if her sample supports the hypothesis that volleyball players have
the same distribution of sock sizes as Foothills is currently producing—is the
distribution of volleyball players' sock sizes a "good fit" to the distribution of sizes now
being produced?

Ann's sample, a sample of the sock sizes worn by volleyball players, as a frequency
distribution of sizes:

size frequency

6 3

7 24

8 33

9 20

10 17

From the Production Department, Ann finds that the current relative frequency
distribution of production of "Easy Bounce" socks is like this:
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size
re.

frequency

6 0.06

7 0.13

8 0.22

9 0.3

10 0.26

11 0.03

If the world is "unsurprising", volleyball players will wear the socks sized in the same
proportions as other athletes, so Ann writes her hypotheses:

H0 : Volleyball players' sock sizes are distributed just like current production.
Ha : Volleyball players' sock sizes are distributed differently.

Ann's sample has n=97. By applying the relative frequencies in the current production
mix, she can find out how many players would be "expected" to wear each size if her
sample was perfectly representative of the distribution of sizes in current production.
This would give her a description of what a sample from the population in the null
hypothesis would be like. It would show what a sample that had a "very good fit" with
the distribution of sizes in the population currently being produced would look like.

Statisticians know the sampling distribution of a statistic which compares the
"expected" frequency of a sample with the actual, or "observed" frequency. For a
sample with c different classes (the sizes here), this statistic is distributed like with
c-1 df. The is computed by the formula:

where:

O = observed frequency in the sample in this class
E = expected frequency in the sample in this class.

The expected frequency, E, is found by multiplying the relative frequency of this class
in the H0 : hypothesized population by the sample size. This gives you the number in
that class in the sample if the relative frequency distribution across the classes in the
sample exactly matches the distribution in the population.
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Notice that is always ≥ 0 and equals 0 only if the observed is equal to the expected
in each class. Look at the equation and make sure that you see that a larger value of

goes with samples with large differences between the observed and expected
frequencies.

Ann now needs to come up with a rule to decide if the data supports H0 : or Ha : . She
looks at the table and sees that for 5 df (there are 6 classes—there is an expected
frequency for size 11 socks), only .05 of samples drawn from a given population will
have a and only .10 will have a . She decides that it would not
be all that surprising if volleyball players had a different distribution of sock sizes than
the athletes who are currently buying "Easy Bounce", since all of the volleyball players
are women and many of the current customers are men. As a result, she uses the
smaller .10 value of 9.24 for her decision rule. Now she must compute her sample .
Ann starts by finding the expected frequency of size 6 socks by multiplying the relative
frequency of size 6 in the population being produced by 97, the sample size. She gets
E = .06*97=5.82. She then finds O-E = 3-5.82 = -2.82, squares that and divides by 5.82,
eventually getting 1.37. She then realizes that she will have to do the same
computation for the other five sizes, and quickly decides that a spreadsheet will make
this much easier. Her spreadsheet looks like this:

sock
size

frequency
in

sample

population
relative

frequency

expected
frequency =
97*C

(O-E)^2/E

6 3 0.06 5.82 1.3663918

7 24 0.13 12.61 10.288033

8 33 0.22 21.34 6.3709278

9 20 0.3 29.1 2.8457045

10 17 0.26 25.22 2.6791594

11 0 0.03 2.91 2.91

97
=

26.460217

Table 4.2: Ann's Excel sheet

Ann performs her third step, computing her sample statistic, using the spreadsheet.
As you can see, her sample , which is well into the "unusual" range which
starts at 9.24 according to her decision rule. Ann has found that her sample data
supports the hypothesis that the distribution of sock sizes of volleyball players is
different from the distribution of sock sizes that are currently being manufactured. If
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Ann's employer, Foothill Hosiery, is going to market "Easy Bounce" socks to volleyball
players, they are going to have to send out packages of samples that contain a
different mix of sizes than they are currently making. If "Easy Bounce" are successfully
marketed to volleyball players, the mix of sizes manufactured will have to be altered.

Now, review what Ann has done to test to see if the data in her sample supports the
hypothesis that the world is "unsurprising" and that volleyball players have the same
distribution of sock sizes as Foothill Hosiery is currently producing for other athletes.
The essence of Ann's test was to see if her sample could easily have come from the
sampling distribution of 's generated by taking samples from the population of
socks currently being produced. Since her sample would be way out in the tail of
that sampling distribution, she judged that her sample data supported the other
hypothesis, that there is a difference between volleyball players and the athletes who
are currently buying "Easy Bounce" socks.

Formally, Ann first wrote null and alternative hypotheses, describing the population
her sample comes from in two different cases. The first case is the null hypothesis;
this occurs if volleyball players wear socks of the same sizes in the same proportions
as Foothill is currently producing. The second case is the alternative hypothesis; this
occurs if volleyball players wear different sizes. After she wrote her hypotheses, she
found that there was a sampling distribution that statisticians knew about that would
help her choose between them. This is the distribution. Looking at the formula for
computing and consulting the tables, Ann decided that a sample value greater
than 9.24 would be unusual if her null hypothesis was true. Finally, she computed her
sample statistic, and found that her , at 26.46, was well above her cut-off value.
Ann had found that the data in her sample supported the alternative, Ha : , that the
distribution of volleyball players' sock sizes is different from the distribution that
Foothill is currently manufacturing. Acting on this finding, Ann will send a different mix
of sizes in the sample packages she sends volleyball coaches.

4.1.2 Testing population proportions
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

As you learned in the chapter “Making estimates (Page 28)”, sample proportions can
be used to compute a statistic that has a known sampling distribution. Reviewing, the
z-statistic is:

where: p = the proportion of the sample with a certain characteristic
= the proportion of the population with that characteristic.

These sample z-statistics are distributed normally, so that by using the bottom line of
the t table, you can find what portion of all samples from a population with a given
population proportion, , have z-statistics within different ranges. If you look at the
table, you can see that .95 of all samples from any population have a z-statistics
between ±1.96, for instance.
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If you have a sample that you think is from a population containing a certain
proportion, , of members with some characteristic, you can test to see if the data in
your sample supports what you think. The basic strategy is the same as that explained
earlier in this chapter and followed in the "goodness-of-fit" example: (a) write two
hypotheses, (b) find a sample statistic and sampling distribution that will let you
develop a decision rule for choosing between the two hypotheses, and (c) compute
your sample statistic and choose the hypothesis supported by the data.

Foothill Hosiery recently received an order for children's socks decorated with
embroidered patches of cartoon characters. Foothill did not have the right machinery
to sew on the embroidered patches and contracted out the sewing. While the order
was filled and Foothill made a profit on it, the sewing contractor's price seemed high,
and Foothill had to keep pressure on the contractor to deliver the socks by the date
agreed upon. Foothill's CEO, John McGrath has explored buying the machinery
necessary to allow Foothill to sew patches on socks themselves. He has discovered
that if more than a quarter of the children's socks they make are ordered with
patches, the machinery will be a sound investment. Mr. McGrath asks Kevin Schmidt
to find out if more than 25 per cent of children's socks are being sold with patches.

Kevin calls the major trade organizations for the hosiery, embroidery, and children's
clothes industries, and no one can answer his question. Kevin decides it must be time
to take a sample and to test to see if more than 25 per cent of children's socks are
decorated with patches. He calls the sales manager at Foothill and she agrees to ask
her salespeople to look at store displays of children's socks, counting how many pairs
are displayed and how many of those are decorated with patches. Two weeks later,
Kevin gets a memo from the sales manager telling him that of the 2,483 pairs of
children's socks on display at stores where the salespeople counted, 716 pairs had
embroidered patches.

Kevin writes his hypotheses, remembering that Foothill will be making a decision
about spending a fair amount of money based on what he finds. To be more certain
that he is right if he recommends that the money be spent, Kevin writes his
hypotheses so that the "unusual" world would be the one where more than 25 per
cent of children's socks are decorated:

When writing his hypotheses, Kevin knows that if his sample has a proportion of
decorated socks well below .25, he will want to recommend against buying the
machinery. He only wants to say the data supports the alternative if the sample
proportion is well above .25. To include the low values in the null hypothesis and only
the high values in the alternative, he uses a "one-tail" test, judging that the data
supports the alternative only if his z-score is in the upper tail. He will conclude that the
machinery should be bought only if his z-statistic is too large to have easily have come
from the sampling distribution drawn from a population with a proportion of .25.
Kevin will accept Ha : only if his z is large and positive.

Checking the bottom line of the t-table, Kevin sees that .95 of all z-scores are less than
1.645. His rule is therefore to conclude that his sample data supports the null
hypothesis that 25 per cent or less of children's socks are decorated if his sample z is
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less than 1.645. If his sample z is greater than 1.645, he will conclude that more than
25 per cent of children's socks are decorated and that Foothill Hosiery should invest in
the machinery needed to sew embroidered patches on socks.

Using the data the salespeople collected, Kevin finds the proportion of the sample that
is decorated:

Using this value, he computes his sample z-statistic:

Because his sample z-score is larger than 1.645, it is unlikely that his sample z came
from the sampling distribution of z's drawn from a population where , so it is
unlikely that his sample comes from a population with . Kevin can tell John
McGrath that the sample the sales people collected supports the conclusion that more
than 25 per cent of children's socks are decorated with embroidered patches. John
can feel comfortable making the decision to buy the embroidery and sewing
machinery.

4.2 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This chapter has been an introduction to hypothesis testing. You should be able to see
the relationship between the mathematics and strategies of hypothesis testing and
the mathematics and strategies of interval estimation. When making an interval
estimate, you construct an interval around your sample statistic based on a known
sampling distribution. When testing a hypothesis, you construct an interval around a
hypothesized population parameter, using a known sampling distribution to
determine the width of that interval. You then see if your sample statistic falls within
that interval to decide if your sample probably came from a population with that
hypothesized population parameter.

Hypothesis testing is a very widely used statistical technique. It forces you to think
ahead about what you might find. By forcing you to think ahead, it often helps with
decision-making by forcing you to think about what goes into your decision. All of
statistics requires clear thinking, and clear thinking generally makes better decisions.
Hypothesis testing requires very clear thinking and often leads to better decision-
making.
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Chapter  5 The t-test
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In "The normal and t-distributions (Page 19)" a sampling distribution, the t-
distribution, was introduced. In "Making estimates (Page 28)" you learned how to use
the t-distribution to make an important inference, an interval estimate of the
population mean. Here you will learn how to use that same t-distribution to make
more inferences, this time in the form of hypothesis tests. Before we start to learn
about those tests, a quick review of the t-distribution is in order.

5.1 The t-distribution
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The t-distribution is a sampling distribution. You could generate your own t-
distribution with n-1 degrees of freedom by starting with a normal population,
choosing all possible samples of one size, n, computing a t-score for each sample:

where: = the sample mean

= the population mean

s = the sample standard deviation

n = the size of the sample.

When you have all of the samples' t-scores, form a relative frequency distribution and
you will have your t-distribution. Luckily, you do not have to generate your own t-
distributions because any statistics book has a table that shows the shape of the t-
distribution for many different degrees of freedom. Figure 5.1 A portion of a typical t-
table reproduces a portion of a typical t-table. See below.
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Fig. 5.1: A portion of a typical t-table

When you look at the formula for the t-score, you should be able to see that the mean
t-score is zero because the mean of the 's is equal to . Because most samples have

's that are close to , most will have t-scores that are close to zero. The t-distribution
is symmetric, because half of the samples will have 's greater than , and half less.
As you can see from the table, if there are 10 df, only .005 of the samples taken from a
normal population will have a t-score greater than +3.17. Because the distribution is
symmetric, .005 also have a t-score less than -3.17. Ninety-nine per cent of samples
will have a t-score between ±3.17. Like the example in Figure 5.1 A portion of a typical
t-table , most t-tables have a picture showing what is in the body of the table. In
Figure 5.1 A portion of a typical t-table , the shaded area is in the right tail, the body of
the table shows the t-score that leaves the α in the right tail. This t-table also lists the
two-tail above the one-tail where p = .xx. For 5 df, there is a .05 probability that a
sample will have a t-score greater than 2.02, and a .10 probability that a sample will
have a t score either > +2.02 or < -2.02.

There are other sample statistics which follow this same shape and which can be used
as the basis for different hypothesis tests. You will see the t-distribution used to test
three different types of hypotheses in this chapter and that the t-distribution can be
used to test other hypotheses in later chapters.
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Though t-tables show how the sampling distribution of t-scores is shaped if the
original population is normal, it turns out that the sampling distribution of t-scores is
very close to the one in the table even if the original population is not quite normal,
and most researchers do not worry too much about the normality of the original
population. An even more important fact is that the sampling distribution of t-scores is
very close to the one in the table even if the original population is not very close to
being normal as long as the samples are large. This means that you can safely use the
t-distribution to make inferences when you are not sure that the population is normal
as long as you are sure that it is bell-shaped. You can also make inferences based on
samples of about 30 or more using the t-distribution when you are not sure if the
population is normal. Not only does the t-distribution describe the shape of the
distributions of a number of sample statistics, it does a good job of describing those
shapes when the samples are drawn from a wide range of populations, normal or not.

5.2 A simple test: does this sample come from a
population with that mean?

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Imagine that you have taken all of the samples with n=10 from a population that you
knew the mean of, found the t-distribution for 9 df by computing a t-score for each
sample and generated a relative frequency distribution of the t's. When you were
finished, someone brought you another sample (n=10) wondering if that new sample
came from the original population. You could use your sampling distribution of t's to
test if the new sample comes from the original population or not. To conduct the test,
first hypothesize that the new sample comes from the original population. With this
hypothesis, you have hypothesized a value for , the mean of the original population,
to use to compute a t-score for the new sample. If the t for the new sample is close to
zero—if the t-score for the new sample could easily have come from the middle of the
t-distribution you generated—your hypothesis that the new sample comes from a
population with the hypothesized mean seems reasonable and you can conclude that
the data supports the new sample coming from the original population. If the t-score
from the new sample was far above or far below zero, your hypothesis that this new
sample comes from the original population seems unlikely to be true, for few samples
from the original population would have t-scores far from zero. In that case, conclude
that the data gives support to the idea that the new sample comes from some other
population.

This is the basic method of using this t-test. Hypothesize the mean of the population
you think a sample might come from. Using that mean, compute the t-score for the
sample. If the t-score is close to zero, conclude that your hypothesis was probably
correct and that you know the mean of the population from which the sample came. If
the t-score is far from zero, conclude that your hypothesis is incorrect, and the sample
comes from a population with a different mean.

Once you understand the basics, the details can be filled in. The details of conducting
a "hypothesis test of the population mean", testing to see if a sample comes from a
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population with a certain mean—are of two types. The first type concerns how to do
all of this in the formal language of statisticians. The second type of detail is how to
decide what range of t-scores implies that the new sample comes from the original
population.

You should remember from the last chapter that the formal language of hypothesis
testing always requires two hypotheses. The first hypothesis is called the "null
hypothesis", usually denoted H0 :. It states that there is no difference between the
mean of the population from which the sample is drawn and the hypothesized mean.
The second is the "alternative hypothesis", denoted H1 : or Ha :. It states that the mean
of the population from which the sample comes is different from the hypothesized
value. If your question is simply "does this sample come from a population with this
mean?", your Ha : is simply ≠ the hypothesized value . If your question is "does this
sample come from a population with a mean greater than some value”, then your Ha

: becomes the hypothesized value .

The other detail is deciding how "close to zero" the sample t-score has to be before
you conclude that the null hypothesis is probably correct. How close to zero the
sample t-score must be before you conclude that the data supports H0 : depends on
the df and how big a chance you want to take that you will make a mistake. If you
decide to conclude that the sample comes from a population with the hypothesized
mean only if the sample t is very, very close to zero, there are many samples actually
from the population that will have t-scores that would lead you to believe they come
from a population with some other mean—it would be easy to make a mistake and
conclude that these samples come from another population. On the other hand, if you
decide to accept the null hypothesis even if the sample t-score is quite far from zero,
you will seldom make the mistake of concluding that a sample from the original
population is from some other population, but you will often make another mistake —
concluding that samples from other populations are from the original population.
There are no hard rules for deciding how much of which sort of chance to take. Since
there is a trade-off between the chance of making the two different mistakes, the
proper amount of risk to take will depend on the relative costs of the two mistakes.
Though there is no firm basis for doing so, many researchers use a 5 per cent chance
of the first sort of mistake as a default. The level of chance of making the first error is
usually called "alpha" ( ) and the value of alpha chosen is usually written as a
decimal fraction—taking a 5 per cent chance of making the first mistake would be
stated as " ". When in doubt, use .

If your alternative hypothesis is "not equal to", you will conclude that the data
supports Ha : if your sample t-score is either well below or well above zero and you
need to divide α between the two tails of the t-distribution. If you want to use

, you will support Ha : if the t is in either the lowest .025 or the highest .025 of
the distribution. If your alternative is "greater than", you will conclude that the data
supports Ha : only if the sample t-score is well above zero. So, put all of your α in the
right tail. Similarly, if your alternative is "less than", put the whole α in the left tail.

The table itself can be confusing even after you know how many degrees of freedom
you have and if you want to split your α between the two tails or not. Adding to the
confusion, not all t-tables look exactly the same. Look at the typical t-table above and
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notice that it has three parts: column headings of decimal fractions, row headings of
whole numbers, and a body of numbers generally with values between 1 and 3. The
column headings are labeled p or "area in the right tail," and sometimes are labeled “

.” The row headings are labeled "df," but are sometimes labeled “ν” or "degrees of
freedom". The body is usually left unlabeled and it shows the t-score which goes with
the " " and "degrees of freedom" of that column and row. These tables are set up to
be used for a number of different statistical tests, so they are presented in a way that
is a compromise between ease of use in a particular situation and the ability to use
the same table for a wide variety of tests. My favorite t tables are available online at
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm

In order to use the table to test to see if "this sample comes from a population with a
certain mean" choose and find the number of degrees of freedom. The number of
degrees of freedom in a test involving one sample mean is simply the size of the
sample minus one (df = n-1). The you choose may not be the in the column
heading. The column headings show the "right tail areas"—the chance you'll get a t-
score larger than the one in the body of the table. Assume that you had a sample with
ten members and chose . There are nine degrees of freedom, so go across
the 9 df row to the .025 column since this is a two-tail test, and find the t-score of
2.262. This means that in any sampling distribution of t-scores, with samples of ten
drawn from a normal population, only 2.5 per cent (.025) of the samples would have t-
scores greater than 2.262—any t-score greater than 2.262 probably occurs because
the sample is from some other population with a larger mean. Because the t-
distributions are symmetrical, it is also true that only 2.5 per cent of the samples of
ten drawn from a normal population will have t-scores less than -2.262. Putting the
two together, 5 per cent of the t-scores will have an absolute value greater the 2.262.
So if you choose , you will probably be using a t-score in the .025 column.
The picture that is at the top of most t-tables shows what is going on. Look at it when
in doubt.

LaTonya Williams is the plant manager for Eileen's Dental Care Company (EDC) which
makes dental floss. EDC has a good, stable work force of semi-skilled workers who
work packaging floss, paid by piece-work, and the company wants to make sure that
these workers are paid more than the local average wage. A recent report by the local
Chamber of Commerce shows an average wage for "machine operators" of USD 8.71.
LaTonya needs to decide if a raise is needed to keep her workers above the average.
She takes a sample of workers, pulls their work reports, finds what each one earned
last week and divides their earnings by the hours they worked to find average hourly
earnings.

That data appears below:
Smith 9.01
Wilson 8.67
Peterson 8.90
Jones 8.45
Gordon 8.88
McCoy 9.13
Bland 8.77
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LaTonya wants to test to see if the mean of the average hourly earnings of her
workers is greater than USD 8.71. She wants to use a one-tail test because her
question is "greater than" not "unequal to". Her hypotheses are:

and

As is usual in this kind of situation, LaTonya is hoping that the data supports Ha :, but
she wants to be confident that it does before she decides her workers are earning
above average wages. Remember that she will compute a t-score for her sample using
USD 8.71 for . If her t-score is negative or close to zero, she will conclude that the
data supports H0 :. Only if her t-score is large and positive will she go with Ha :. She
decides to use because she is unwilling to take much risk of saying the
workers earn above average wages when they really do not. Because her sample has
n=7, she has 6 df. Looking at the table, she sees that the data will support Ha :, the
workers earn more than average, only if the sample t-score is greater than 2.447.

Finding the sample mean and standard deviation, = $8.83 and s = .225, LaTonya
computes her sample t-score:

Because her sample t is not greater than +2.447, LaTonya concludes that she will have
to raise the piece rates EDC pays in order to be really sure that mean hourly earnings
are above the local average wage.

If LaTonya had simply wanted to know if EDC's workers earned the same as other
workers in the area, she would have used a two-tail test. In that case her hypotheses
would have been:

and

Using , LaTonya would split the .10 between the two tails since the data
supports Ha : if the sample t-score is either large and negative or large and positive.
Her arithmetic is the same, her sample t-score is still 1.41, but she now will decide that
the data supports Ha : only if it is outside ±1.943.

5.3 An alternative to choosing an α
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Many researchers now report how unusual the sample t-score would be if the null
hypothesis was true rather than choosing an α and stating whether the sample t-score
implies the data supports one or the other of the hypotheses based on that α. When a
researcher does this, he is essentially letting the reader of his report decide how much
risk to take of making which kind of mistake. There are even two ways to do this. If you
look at the portion of the t-table reproduced above, you will see that it is not set up
very well for this purpose; if you wanted to be able to find out what part of a t-
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distribution was above any t-score, you would need a table that listed many more t-
scores. Since the t-distribution varies as the df changes, you would really need a whole
series of t-tables, one for each df.

The old-fashioned way of making the reader decide how much of which risk to take is
to not state an α in the body of your report, but only give the sample t-score in the
main text. To give the reader some guidance, you look at the usual t-table and find the
smallest , say it is .01, that has a t-value less than the one you computed for the
sample. Then write a footnote saying "the data supports the alternative hypothesis for
any ".

The more modern way uses the capability of a computer to store lots of data. Many
statistical software packages store a set α detailed t-tables, and when a t-score is
computed, the package has the computer look up exactly what proportion of samples
would have t-scores larger than the one for your sample. Table 5.1 Output from
typical statistical software for LaTonya's problem shows the computer output for
LaTonya's problem from a typical statistical package. Notice that the program gets the
same t-score that LaTonya did, it just goes to more decimal places. Also notice that it
shows something called the "P value". The P value is the proportion of t-scores that
are larger then the one just computed. Looking at the example, the computed t
statistic is 1.41188 and the P value is 0.1038. This means that if there are 6 df, a little
over 10 per cent of samples will have a t-score greater than 1.41188. Remember that
LaTonya used an and decided that the data supported H0 :, the P value of
.1038 means that H0 : would be supported for any α less than .1038. Since LaTonya
had used , this p value means she does not find support for H0 :.

Hypothesis test: Mean

Null Hypothesis: Mean = 8.71

Alternative: greater than

Computed t statistic = 1.41188

P value = 0.1038

Table 5.1: Output from typical statistical software for LaTonya's
problem

The P-value approach is becoming the preferred way to The P-value presents research
results to audiences of professional researchers. Most of the statistical research
conducted for a business firm will be used directly for decision making or presented to
an audience of executives to aid them in making a decision. These audiences will
generally not be interested in deciding for themselves which hypothesis the data
supports. When you are making a presentation of results to your boss, you will want
to simply state which hypothesis the evidence supports. You may decide by using
either the traditional α approach or the more modern P-value approach, but deciding
what the evidence says is probably your job.
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5.4 Another t-test: do these two (independent) samples
come from populations with the same mean?

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

One of the other statistics that has a sampling distribution that follows the t-
distribution is the difference between two sample means. If samples of one size (n1)
are taken from one normal population and samples of another size (n2) are taken
from another normal population (and the populations have the same standard
deviation), then a statistic based on the difference between the sample means and the
difference between the population means is distributed like t with n1 + n2 −2 degrees
of freedom. These samples are independent because the members in one sample do
not affect which members are in the other sample. You can choose the samples
independently of each other, and the two samples do not need to be the same size.
The t-statistic is:

where: = the mean of sample i
= the mean of population i

s2 = the pooled variance
ni = the size of sample i.

The usual case is to test to see if the samples come from populations with the same
mean, the case where . The pooled variance is simply a weighted
average of the two sample variances, with the weights based on the sample sizes. This
means that you will have to calculate the pooled variance before you calculate the t-
score. The formula for pooled variance is:

To use the pooled variance t-score, it is necessary to assume that the two populations
have equal variances. If you are wondering about why statisticians make a strong
assumption in order to use such a complicated formula, it is because the formula that
does not need the assumption of equal variances is even more complicated, and
reduces the degrees of freedom in the final statistic. In any case, unless you have
small samples, the amount of arithmetic needed means that you will probably want to
use a statistical software package for this test. You should also note that you can test
to see if two samples come from populations that are any hypothesized distance apart
by setting equal to that distance.

An article in U. S. News and World Report (Nov. 1993) lamenting grade inflation in
colleges states that economics grades have not been inflated as much as most other
grades. Nora Alston chairs the Economics Department at Oaks College, and the dean
has sent her a copy of the article with a note attached saying "Is this true here at
Oaks? Let me know." Dr Alston is not sure if the Dean would be happier if economics
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grades were higher or lower than other grades, but the article claims that economics
grades are lower. Her first stop is the Registrar's office.

She has the clerk in that office pick a sample of 10 class grade reports from across the
college spread over the past three semesters.She also has the clerk pick out a sample
of 10 reports for economics classes. She ends up with a total of 38 grades for
economics classes and 51 grades for other classes. Her hypotheses are:

She decides to use .

This is a lot of data, and Dr Alston knows she will want to use the computer to help.
She initially thought she would use a spreadsheet to find the sample means and
variances, but after thinking a minute, she decided to use a statistical software
package. The one she is most familiar with is one called SAS. She loads SAS onto her
computer, enters the data, and gives the proper SAS commands. The computer gives
her the output in Table 5.2 SAS system software output for Dr Alston's grade study.

The SAS System

TTFST Procedure

Variable: GRADE

Dept N Mean Dev
Std
Error

Minimum Maximum

Econ 38 2.28947 1.01096 0.16400 0 4.00000

Variance T DF Prob>[T]

Unequal -2.3858 85.1 0.0193

Equal -2.3345 87.0 0.0219

For HO: Variances are equal, F=1.35 DF=[58.37] Prob>F=0.3485

Table 5.2: SAS system software output for Dr Alston's grade study

Dr Alston has 87 df, and has decided to use a one-tailed, left tail test with .
She goes to her t-table and finds that 87 df does not appear, the table skipping from
60 to 120 df. There are two things she could do. She could try to interpolate the t-
score that leaves .05 in the tail with 87 df, or she could choose between the t-value for
60 and 120 in a conservative manner. Using the conservative choice is the best initial
approach, and looking at her table she sees that for 60 df .05 of t-scores are less than
-1.671,and for 120 df, .05 are less than -1.658. She does not want to conclude that the
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data supports economics grades being lower unless her sample t-score is far from
zero, so she decides that she will accept Ha : if her sample t is to the left of -1.671. If
her sample t happens to be between -1.658 and -1.671, she will have to interpolate.

Looking at the SAS output, Dr Alston sees that her t-score for the equal variances
formula is -2.3858, which is well below -1.671. She concludes that she will tell the dean
that economics grades are lower than grades elsewhere at Oaks College.

Notice that SAS also provides the t-score and df for the case where equal variances
are not assumed in the "unequal" line. SAS also provides a P value, but it is for a two-
tail test because it gives the probability that a t with a larger absolute value, >|T|,
occurs. Be careful when using the p values from software: notice if they are one-tail or
two-tail p-values before you make your report!

5.5 A third t-test: do these (paired) samples come from
the sample population?

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Managers are often interested in "before and after" questions. As a manager or
researcher you will often want to look at "longitudinal" studies, studies that ask about
what has happened to an individual as a result of some treatment or across time. Are
they different after than they were before? For example, if your firm has conducted a
training program you will want to know if the workers who participated became more
productive. If the work area has been re-arranged, do workers produce more than
before? Though you can use the difference of means test developed earlier, this is a
different situation. Earlier, you had two samples that were chosen independently of
each other; you might have a sample of workers who received the training and a
sample of workers who had not. The situation for this test is different; now you have a
sample of workers and for each worker you have measured their productivity before
the training or re-arrangement of the work space and you have measured their
productivity after. For each worker you have a pair of measures, before and after.
Another way to look at this is that for each member of the sample you have a
difference between before and after.

You can test to see if these differences equal zero, or any other value, because a
statistic based on these differences follows the t-distribution for n-1 df when you have
n matched pairs. That statistic is:

where: = the mean of the differences in the pairs in the sample

= the mean of the differences in the pairs in the population

= the standard deviation of the differences in the sample

n = the number of pairs in the sample.
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It is a good idea to take a minute and figure out this formula. There are paired
samples and the differences in those pairs, the D's, are actually a population. The
mean of those D's is . Any sample of pairs will also yield a sample of D's. If those D's
are normally distributed, then the t-statistic in the formula above will follow the t-
distribution. If you think of the D's as the same as x's in the t-formula at the beginning
of the chapter, and think of δ as the population mean, you should realize that this
formula is really just that basic t formula.

Lew Podolsky is division manager for Dairyland Lighting, a manufacturer of outdoor
lights for parking lots, barnyards, and playing fields. Dairyland Lighting organizes its
production work by teams. The size of the team varies somewhat with the product
being assembled, but there are usually three to six in a team, and a team usually stays
together for a few weeks assembling the same product. Dairyland Lighting has a
branch plant in the US state of Arizona that serves their west coast customers and Lew
has noticed that productivity seems to be lower in Arizona during the summer, a
problem that does not occur at the main plant in the US city of Green Bay, Wisconsin.
After visiting the Arizona plant in July, August, and November, and talking with the
workers during each visit, Lew suspects that the un-air conditioned plant just gets too
hot for good productivity. Unfortunately, it is difficult to directly compare plant-wide
productivity at different times of the year because there is quite a bit of variation in
the number of employees and product mix across the year. Lew decides to see if the
same workers working on the same products are more productive on cool days than
hot days by asking the local manager, Dave Mueller, to find a cool day and a hot day
from last fall and choose ten work teams who were assembling the same products on
the two days. Dave sends Lew the following data:

Team leader Output—cool day Output—hot day Difference (cool-hot)

October 14 October 20

Martinez 153 149 4

McAlan 167 170 -3

Wilson 164 155 9

Burningtree 183 179 4

Sanchez 177 167 10

Lilly 162 150 12

Cantu 165 158 7

Table 5.3: Lew Podolsky's data for the air-conditioning decision

Lew decides that if the data support productivity being higher of cool days, he will call
in a heating/airconditioning contractor to get some cost estimates so that he can
decide if installing air conditioning in the Arizona plant is cost-effective. Notice that he
has matched pairs data--for each team he has production on October 14, a cool day,
and on October 20, a hot day. His hypotheses are:

and
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Using in this one-tail test, Lew will decide to call the engineer if his sample t-
score is greater than 1.943, since there are 6 df. This sample is small, so it is just as
easy to do the computations on a calculator. Lew finds:

and his sample t-score is:

Because his sample t-score is greater than 1.943, Lew gets out the telephone book
and looks under air conditioning contractors to call for some estimates.

5.6 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The t-tests are commonly used hypothesis tests. Researchers often find themselves in
situations where they need to test to see if a sample comes from a certain population,
and therefore test to see if the sample probably came from a population with that
certain mean. Even more often, researchers will find themselves with two samples and
want to know if the samples come from the same population, and will test to see if the
samples probably come from populations with the same mean. Researchers also
frequently find themselves asking if two sets of paired samples have equal means. In
any case, the basic strategy is the same as for any hypothesis test. First, translate the
question into null and alternative hypotheses, making sure that the null hypothesis
includes an equal sign. Second, choose α. Third, compute the relevant statistics, here
the t-score, from the sample or samples. Fourth, using the tables, decide if the sample
statistic leads you to conclude that the sample came from a population where the null
hypothesis is true or a population where the alternative is true.

The t-distribution is also used in testing hypotheses in other situations since there are
other sampling distributions with the same t-distribution shape. So, remember how to
use the t-tables for later chapters.

Statisticians have also found how to test to see if three or more samples come from
populations with the same mean. That technique is known as "one-way analysis of
variance". The approach used in analysis of variance is quite different from that used
in the t-test. It will be covered in chapter, "The F-test and One-Way ANOVA".
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Chapter  6 F-test and one-way anova
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Years ago, statisticians discovered that when pairs of samples are taken from a
normal population, the ratios of the variances of the samples in each pair will always
follow the same distribution. Not surprisingly, over the intervening years, statisticians
have found that the ratio of sample variances collected in a number of different ways
follow this same distribution, the F-distribution. Because we know that sampling
distributions of the ratio of variances follow a known distribution, we can conduct
hypothesis tests using the ratio of variances.

The F-statistic is simply:

where si
2 is the variance of sample i. Remember that the sample variance is:

Think about the shape that the F-distribution will have. If and come from
samples from the same population, then if many pairs of samples were taken and F-
scores computed, most of those F-scores would be close to one. All of the F-scores will
be positive since variances are always positive—the numerator in the formula is the
sum of squares, so it will be positive, the denominator is the sample size minus one,
which will also be positive. Thinking about ratios requires some care. If is a lot
larger than , F can be quite large. It is equally possible for to be a lot larger than

, and then F would be very close to zero. Since F goes from zero to very large, with
most of the values around one, it is obviously not symmetric; there is a long tail to the
right, and a steep descent to zero on the left.

There are two uses of the F-distribution which will be discussed in this chapter. The
first is a very simple test to see if two samples come from populations with the same
variance. The second is one-way Analysis Of Variance (ANOVA) which uses the F-
distribution to test to see if three or more samples come from populations with the
same mean.

6.1 A simple test: Do these two samples come from
populations with the same variance?

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Because the F-distribution is generated by drawing two samples from the same
normal population, it can be used to test the hypothesis that two samples come from
populations with the same variance. You would have two samples (one of size n1 and
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one of size n2 ), and the sample variance from each. Obviously, if the two variances
are very close to being equal the two samples could easily have come from
populations with equal variances. Because the F-statistic is the ratio of two sample
variances, when the two sample variances are close to equal, the F-score is close to
one. If you compute the F-score, and it is close to one, you accept your hypothesis that
the samples come from populations with the same variance.

This is the basic method of the F-test. Hypothesize that the samples come from
populations with the same variance. Compute the F-score by finding the ratio of the
sample variances. If the F-score is close to one, conclude that your hypothesis is
correct and that the samples do come from populations with equal variances. If the F-
score is far from one, then conclude that the populations probably have different
variances.

The basic method must be fleshed out with some details if you are going to use this
test at work. There are two sets of details: first, formally writing hypotheses, and
second, using the F-distribution tables so that you can tell if your F-score is close to
one or not. Formally, two hypotheses are needed for completeness. The first is the
null hypothesis that there is no difference (hence "null"). It is usually denoted as H0 :.
The second is that there is a difference, and it is called the alternative, and is denoted
H1 : or Ha :.

Using the F-tables to decide how close to one is close enough to accept the null
hypothesis (truly formal statisticians would say "fail to reject the null"), is fairly tricky,
for the F-distribution tables are fairly tricky. Before using the tables, the researcher
must decide how much chance he or she is willing to take that the null will be rejected
when it is really true. The usual choice is 5 per cent, or as statisticians say, " ".
If more, or less, chance is wanted, can be varied. Choose your and go to the F-
tables. First notice that there are a number of F-tables, one for each of several
different levels of (or at least a table for each two 's with the F-values for one in
bold type and the values for the other in regular type). There are rows and columns
on each F-table, and both are for degrees of freedom. Because two separate samples
are taken to compute an F-score and the samples do not have to be the same size,
there are two separate degrees of freedom—one for each sample. For each sample,
the number of degrees of freedom is n-1, one less than the sample size. Going to the
table, how do you decide which sample's degrees of freedom (df) is for the row and
which is for the column? While you could put either one in either place, you can save
yourself a step if you put the sample with the larger variance (not necessarily the
larger sample) in the numerator, and then that sample's df determines the column
and the other sample's df determines the row. The reason that this saves you a step is
that the tables only show the values of F that leave α in the right tail where F > 1, the
picture at the top of most F-tables shows that. Finding the critical F value for left tails
requires another step, which is outlined in the box below.
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df 10 20 30 120 infinity

10 2.98 2.77 2.70 2.58 2.54

20 2.35 2.12 2.04 1.90 1.84

30 2.16 1.93 1.84 1.68 1.62

120 1.91 1.66 1.55 1.35 1.25

infinity 1.83 1.57 1.46 1.22 1.00

Table 6.1: F Distribution α =.05 (rows are df in the numerator,
columns are df in denominator)

F-tables are virtually always printed as "one-tail" tables, showing the critical F-value
that separates the right tail from the rest of the distribution. In most statistical
applications of the F-distribution, only the right tail is of interest, because most
applications are testing to see if the variance from a certain source is greater than the
variance from another source, so the researcher is interested in finding if the F-score
is greater than one. In the test of equal variances, the researcher is interested in
finding out if the F-score is close to one, so that either a large F-score or a small F-score
would lead the researcher to conclude that the variances are not equal. Because the
critical F-value that separates the left tail from the rest of the distribution is not
printed, and not simply the negative of the printed value, researchers often simply
divide the larger sample variance by the smaller sample variance, and use the printed
tables to see if the quotient is "larger than one", effectively rigging the test into a one-
tail format. For purists, and occasional instances, the left tail critical value can be
computed fairly easily.

The left tail critical value for x, y degrees of freedom (df) is simply the inverse of the
right tail (table) critical value for y, x df. Looking at an F-table, you would see that the F-
value that leaves in the right tail when there are 10, 20 df is F=2.35. To find
the F-value that leaves in the left tail with 10, 20 df, look up F=2.77 for

, 20, 10 df. Divide one by 2.77, finding .36. That means that 5 per cent of the
F-distribution for 10, 20 df is below the critical value of .36, and 5 per cent is above the
critical value of 2.35.

Putting all of this together, here is how to conduct the test to see if two samples come
from populations with the same variance. First, collect two samples and compute the
sample variance of each, and . Second, write your hypotheses and choose .

Third find the F-score from your samples, dividing the larger s2 by the smaller so that
F>1. Fourth, go to the tables, find the table for , and find the critical (table) F-score
for the proper degrees of freedom (n-1 and n-1). Compare it to the samples' F-score. If
the samples' F is larger than the critical F, the samples' F is not "close to one", and Ha :
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the population variances are not equal, is the best hypothesis. If the samples' F is less
than the critical F, H0 :, that the population variances are equal should be accepted.

6.1.1 An example
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A young banker has recently been promoted and made the manager of her own
branch. After a few weeks, she has discovered that maintaining the correct number of
tellers seems to be more difficult than it was when she was assistant manager of a
larger branch. Some days, the lines are very long, and other days, the tellers seem to
have little to do. She wonders if the number of customers at her new branch is simply
more variable than the number of customers at the branch where she used to work.
Because tellers work for a whole day or half a day (morning or afternoon), she collects
the following data on the number of transactions in a half day from her branch and
the branch where she used to work:

Her branch:156, 278, 134, 202, 236, 198, 187, 199, 143, 165, 223
Old branch: 345, 332, 309, 367, 388, 312, 355, 363, 381

She hypothesizes:

She decides to use . She computes the sample variances and finds:

sh
2 =2027.1

so
2 =795.2

Following the rule to put the larger variance in the numerator, so that she saves a
step, she finds:

From the table, (remembering to use the table because the table is one-tail
and the test is two-tail) she finds that the critical F for 10,8 df is 4.30. Because her F-
score is less than the critical score, she concludes that her F-score is "close to one",
and that the variance of customers in her office is the same as it was in the old office.
She will need to look further to solve her staffing problem.
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6.2 Analysis of variance (ANOVA)

6.2.1 The importance of ANOVA
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A more important use of the F-distribution is in analyzing variance to see if three or
more samples come from populations with equal means. This is an important
statistical test, not so much because it is frequently used, but because it is a bridge
between univariate statistics and multivariate statistics and because the strategy it
uses is one which is used in many multivariate tests and procedures.

6.2.2 One-way ANOVA: Do these three (or more) samples all
come from populations with the same mean?

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This seems wrong—we will test a hypothesis about means by "analyzing variance". It is
not wrong, but rather a really clever insight that some statistician had years ago. This
idea —looking at variance to find out about differences in means—is the basis for
much of the multivariate statistics used by researchers today. The ideas behind
ANOVA are used when we look for relationships between two or more variables, the
big reason we use multivariate statistics.

Testing to see if three or more samples come from populations with the same mean
can often be a sort of multivariate exercise. If the three samples came from three
different factories or were subject to different treatments, we are effectively seeing if
there is a difference in the results because of different factories or treatments —is
there a relationship between factory (or treatment) and the outcome?

Think about three samples. A group of x's have been collected, and for some good
reason (other than their x value) they can be divided into three groups. You have
some x's from group (sample) 1, some from group (sample) 2, and some from group
(sample) 3. If the samples were combined, you could compute a "grand mean" and a
"total variance" around that grand mean. You could also find the mean and (sample)
"variance within" each of the groups. Finally, you could take the three sample means,
and find the "variance between" them. ANOVA is based on analyzing where the "total"
variance comes from. If you picked one x, the source of its variance, its distance from
the grand mean would have two parts: (1) how far it is from the mean of its sample,
and (2) how far its sample's mean is from the grand mean. If the three samples really
do come from populations with different means, then for most of the x's, the distance
between the sample mean and the grand mean will probably be greater than the
distance between the x and its group mean. When these distances are gathered
together and turned into variances, you can see that if the population means are
different, the variance between the sample means is likely to be greater than the
variance within the samples.
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By this point in the book, it should not surprise you to learn that statisticians have
found that if three or more samples are taken from a normal population, and the
variance between the samples is divided by the variance within the samples, a
sampling distribution formed by doing that over and over will have a known shape. In
this case it will be distributed like F with m-1, n-m df, where m is the number of
samples and n is the size of the m samples altogether. "Variance between" is found
by:

where xj is the mean of sample j, and x is the "grand mean".

The numerator of the variance between is the sum of the squares of the distance
between each x's sample mean and the grand mean. It is simply a summing of one of
those sources of variance across all of the observations.

The "variance within" is found by:

Double sums need to be handled with care. First (operating on the "inside" or second
sum sign) find the mean of each sample and the sum of the squares of the distances
of each x in the sample from its mean. Second (operating on the "outside" sum sign),
add together the results from each of the samples.

The strategy for conducting a one-way analysis of variance is simple. Gather m
samples. Compute the variance between the samples, the variance within the
samples, and the ratio of between to within, yielding the F-score. If the F-score is less
than one, or not much greater than one, the variance between the samples is no
greater than the variance within the samples and the samples probably come from
populations with the same mean. If the F-score is much greater than one, the variance
between is probably the source of most of the variance in the total sample, and the
samples probably come from populations with different means.

The details of conducting a one-way ANOVA fall into three categories: (1) writing
hypotheses, (2) keeping the calculations organized, and (3) using the F-tables. The null
hypothesis is that all of the population means are equal, and the alternative is that not
all of the means are equal. Quite often, though two hypotheses are really needed for
completeness, only H0 : is written:

Keeping the calculations organized is important when you are finding the variance
within. Remember that the variance within is found by squaring, and then summing,
the distance between each observation and the mean of its sample. Though different
people do the calculations differently, I find the best way to keep it all straight is to
find the sample means, find the squared distances in each of the samples, and then
add those together. It is also important to keep the calculations organized in the final
computing of the F-score. If you remember that the goal is to see if the variance
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between is large, then its easy to remember to divide variance between by variance
within.

Using the F-tables is the second detail. Remember that F-tables are one-tail tables and
that ANOVA is a one-tail test. Though the null hypothesis is that all of the means are
equal, you are testing that hypothesis by seeing if the variance between is less than or
equal to the variance within. The number of degrees of freedom is m-1, n-m, where m
is the number of samples and n is the total size of all the samples together.

6.2.3 An example
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The young bank manager in the last example is still struggling with finding the best
way to staff her branch. She knows that she needs to have more tellers on Fridays
than on other days, but is trying to find if the need for tellers is constant across the
rest of the week. She collects data for the number of transactions each day for two
months. Here is her data:

Mondays: 276, 323, 298, 256, 277, 309, 312, 265, 311
Tuesdays: 243, 279, 301, 285, 274, 243, 228, 298, 255
Wednesdays: 288, 292, 310, 267, 243, 293, 255, 273
Thursdays: 254, 279, 241, 227, 278, 276, 256, 262

She tests the null hypothesis:

and decides to use . She finds:
m = 291.8
tu = 267.3
w = 277.6
th = 259.1
and the grand mean, = 274.3

She computes variance within:

[(276-291.8)2+(323-291.8)2+...+(243-267.6)2+...+(288-277.6)2+...+(254-259.1)2]/[34-4]=15887.6/
30=529.6

Then she computes variance between:

[9(291.8-274.3)2+9(267.3-274.3)2+8(277.6-274.3)2+8(259.1-274.3)2]/[4-1] = 5151.8/3 =
1717.3

She computes her F-score:

Consulting the F-tables for and 3, 30 df, she finds that the critical F-value is
2.92. Because her F-score is larger than the critical F-value, she concludes that the
mean number of transactions is not the equal on different days of the week. She will
want to adjust her staffing so that she has more tellers on some days than on others.
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6.3 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The F-distribution is the sampling distribution of the ratio of the variances of two
samples drawn from a normal population. It is used directly to test to see if two
samples come from populations with the same variance. Though you will occasionally
see it used to test equality of variances, the more important use is in analysis of
variance, (ANOVA). ANOVA, at least in its simplest form as presented in this chapter, is
used to test to see if three or more samples come from populations with the same
mean. By testing to see if the variance of the observations comes more from the
variation of each observation from the mean of its sample or from the variation of the
means of the samples from the grand mean, ANOVA tests to see if the samples come
from populations with equal means or not.

6.3.1 Connections
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

ANOVA has more elegant forms that appear in later chapters. It also forms the basis
for regression analysis, a statistical technique that has many business applications; it
is covered in later chapters. The F-tables are also used in testing hypotheses about
regression results.

This is also the beginning of multivariate statistics. Notice that in the one-way ANOVA,
each observation is for two variables: the "x" variable and the group of which the
observation is a part. In later chapters, observations will have two, three, or more
variables.

The F-test for equality of variances is sometimes used before using the t-test for
equality of means because the t-test, at least in the form presented in this text,
requires that the samples come from populations with equal variances. You will see it
used along with t-tests when the stakes are high or the researcher is a little
compulsive.

Chapter 6 63

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Chapter  7 Some non-parametric
tests

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Remember that you use statistics to make inferences about populations from
samples. Most of the techniques statisticians use require that two assumptions are
met. First, the population that the sample comes from is normal. Second, whenever
means and variances were computed, the numbers in the data are "cardinal" or
"interval", meaning that the value given an observation not only tells you which
observation is larger or smaller, but how much larger or smaller. There are many
situations when these assumptions are not met, and using the techniques developed
so far will not be appropriate. Fortunately, statisticians have developed another set of
statistical techniques, non-parametric statistics, for these situations. Three of these
tests will be explained in this chapter. These three are the Mann-Whitney U-Test,
which tests to see if two independently chosen samples come from populations with
the same location; the Wilcoxon Rank Sum Test, which tests to see if two paired
samples come from populations with the same location; and Spearman's Rank
Correlation, which tests to see if two variables are related.

7.1 What does "non-parametric" mean?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

To a statistician, a parameter is a measurable characteristic of a population. The
population characteristics that usually interest statisticians are the location and the
shape. Non-parametric statistics are used when the parameters of the population are
not measurable or do not meet certain standards. In cases when the data only orders
the observations, so that the interval between the observations is unknown, neither a
mean nor a variance can be meaningfully computed. In such cases you need to use
non-parametric tests. Because your sample does not have cardinal, or interval, data
you cannot use it to estimate the mean or variance of the population, though you can
make other inferences. Even if your data is cardinal, the population must be normal
before the shape of the many sampling distributions are known. Fortunately, even if
the population is not normal, such sampling distributions are usually close to the
known shape if large samples are used. In that case, using the usual techniques is
acceptable. However, if the samples are small and the population is not normal, you
have to use non-parametric statistics. As you know, "there is no such thing as a free
lunch". If you want to make an inference about a population without having cardinal
data, or without knowing that the population is normal, or with very small samples,
you will have to give up something. In general, non-parametric statistics are less
precise than parametric statistics. Because you know less about the population you
are trying to learn about, the inferences you make are less exact.
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When either (1) the population is not normal and the samples are small, or (2) when
the data is not cardinal, the same non-parametric statistics are used. Most of these
tests involve ranking the members of the sample, and most involve comparing the
ranking of two or more samples. Because we cannot compute meaningful sample
statistics to compare to a hypothesized standard, we end up comparing two samples.

7.1.1 Do these populations have the same location? The Mann-
Whitney U test.

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the chapter “The t-test (Page 44)”, you learned how to test to see if two samples
came from populations with the same mean by using the t-test. If your samples are
small and you are not sure if the original populations are normal, or if your data does
not measure intervals, you cannot use that t-test because the sample t-scores will not
follow the sampling distribution in the t-table. Though there are two different data
problems that keep you from using the t-test, the solution to both problems is the
same, the non-parametric Mann-Whitney U test. The basic idea behind the test is to
put the samples together, rank the members of the combined sample, and then see if
the two samples are mixed together in the common ranking.

Once you have a single ranked list containing the members of both samples, you are
ready to conduct a Mann-Whitney U test. This test is based on a simple idea. If the first
part of the combined ranking is largely made up of members from one sample, and
the last part is largely made up of members from the other sample, then the two
samples are probably from populations with different ”averages” and therefore
different locations. You can test to see if the members of one sample are lumped
together or spread through the ranks by adding up the ranks of each of the two
groups and comparing the sums. If these "rank sums" are about equal, the two groups
are mixed together. If these ranks sums are far from equal, each of the samples is
lumped together at the beginning or the end of the overall ranking.

Willy Senn works for Old North Gadgets, a maker and marketer of computer
peripherals aimed at scientists, consultants, and college faculty. Old North's home
office and production facilities are in a small town in the US state of Maine. While this
is a nice place to work, the firm wants to expand its sales and needs a sales office in a
location closer to potential customers and closer to a major airport. Willy has been
given the task of deciding where that office should be. Before he starts to look at
office buildings and airline schedules, he needs to decide if Old North's potential
customers are in the east or the west. Willy finds an article in Fortune magazine that
lists the best cities for finding "knowledge workers", Old North's customers. That
article lists the ten best cities in the United States.
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Rank Metro Area Region

1 Raleigh-Durham East

2 New York East

3 Boston East

4 Seattle West

5 Austin West

6 Chicago East

7 Houston West

8 San Jose West

9 Philadelphia East

10 Minnesota- St Paul East

Table 7.1: Data for Willy's problem. From Kenneth Labich, "The
Best Cities for Knowledge Workers," Fortune, 128:12, Nov. 15, 1993,
pp. 50 ff.

Six of the top ten are in the east and four are in the west, but these ten represent only
a sample of the market. It looks like the eastern places tend to be higher in the top
ten, but is that really the case? If you add up the ranks, the six eastern cities have a
"rank sum" of 31 while the western cities have a rank sum of 24, but there are more
eastern cities and even if there were the same number would that difference be due
to a different "average" in the rankings, or is it just due to sampling? The Mann-
Whitney U test can tell you if the rank sum of 31 for the eastern cities is significantly
less than would be expected if the two groups really were about the same and six of
the ten in the sample happened to be from one group. The general formula for
computing the Mann-Whitney U for the first of two groups is:

where:
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= the sum of the ranks of group 1
= the number of members of the sample from group 1
= the number of members of the sample from group 2.

This formula seems strange at first, but a little careful thought will show you what is
going on. The last third of the formula, -T1, subtracts the rank sum of the group from
the rest of the formula. What is the first two-thirds of the formula? The bigger the total
of your two samples, and the more of that total that is in the first group, the bigger
you would expect T1 to be, everything else equal. Looking at the first two-thirds of the
formula, you can see that the only variables in it are n1 and n2, the sizes of the two
samples. The first two-thirds of the formula depends on the how big the total group is
and how it is divided between the two samples. If either or gets larger, so does
this part of the formula. The first two-thirds of the formula is the maximum value for
T1, the rank sum of group 1. T1 will be at its maximum if the members of the first
group were all at the bottom of the rankings for the combined samples. The U1 score
then is the difference between the actual rank sum and the maximum possible. A
bigger U1 means that the members of group 1 are bunched more at the top of the
rankings and a smaller U1 means that the members of group 1 are bunched near the
bottom of the rankings so that the rank sum is close to its maximum. Obviously, a U-
score can be computed for either group, so there is always a U1 and a U2. If U1 is
larger, U2 is smaller for a given n1 and n2 because if T1 is smaller, T2 is larger.

What should Willy expect if the best cities are in one region rather than being evenly
distributed across the country? If the best cities are evenly distributed, then the
eastern group and the western group should have U's that are close together since
neither group will have a T that is close to either its minimum or its maximum. If the
one group is mostly at the top of the list, then that group will have a large U since its T
will be small, and the other group will have a smaller U since its T will be large. U1 +
U2 is always equal to n so either one can be used to test the hypothesis that the two
groups come from the same population. Though there is always a pair of U-scores for
any Mann-Whitney U-test, the published tables only show the smaller of the pair. Like
all of the other tables you have used, this one shows what the sampling distribution of
U's is like.

The sampling distribution, and this test, were first described by HB Mann and DR
Whitney in 1947. 1 While you have to compute both U-scores, you only use the smaller
one to test a two-tailed hypothesis. Because the tables only show the smaller U, you
need to be careful when conducting a one-tail test. Because you will accept the
alternative hypothesis if U is very small, you use the U computed for that sample
which Ha: says is farther down the list. You are testing to see if one of the samples is
located to the right of the other, so you test to see if the rank sum of that sample is
large enough to make its U small enough to accept Ha :. If you learn to think through
this formula, you will not have to memorize all of this detail because you will be able
to figure out what to do.

Let us return to Willy 's problem. He needs to test to see if the best cities in which to
locate the sales office, the best cities for finding "knowledge workers", are

1. "On a test of whether one or two random variables is stochastically larger than the other.” Annals of Mathematical
Statistics, 18, 50-60.
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concentrated in one part of the country or not. He can attack his problem with a
hypothesis test using the Mann-Whitney U-test. His hypotheses are:

H0 : The distributions of eastern and western city rankings among the "best places to
find knowledge workers" are the same.

Ha : The distributions are different.

Looking at the table of Mann-Whitney values, he finds the following if one of the n's is
6:

n1

U₀ 1 2 3 4

0 0.1429 0.0357 0.0119 0.0005

1 0.2857 0.0714 0.0238 0.0095

2 0.4286 0.1429 0.0476 0.0190

3 0.5714 0.2143 0.0833 0.0333

4 0.4286 0.1310 0.0571

5 0.5714 0.1905 0.0857

6 0.2738 0.1286

7 0.3571 0.1762

8 0.4524 0.2381

9 0.5476 0.3048

10 0.3810

Table 7.2: Some lower-tail values for the Mann Whitney U statistic

The values in the table show what portion of the sampling distribution of U-statistics is
in the lower tail, below the U value in the first column, if the null hypothesis is true.
Willy decides to use an . Since he will decide that the data supports Ha if
either the east or the west has a small U, Willy has a two-tail test and needs to divide
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his a between the two tails. He will choose Ha if either U is in the lowest .05 of the
distribution. Going down the column for the other n equal to 4, Willy finds that if the
null hypothesis is true, the probability that the smaller of the two U-scores will be 4 or
less is only .0571, and probability that the lower U-score will be 3 or less is .0333. His
half of .05 is between these two, so he decides to be conservative and use as a
decision rule to conclude that the data supports Ha: The distributions are different, if
his sample U is less than 3 and that the data supports H0: the distributions are the
same, if his U is greater than or equal to 3. Now he computes his U, finding both Ue

and Uw.

Remembering the formula from above, he finds his two U values::

For the eastern cities:

For the western cities:

The smaller of his two U-scores is Uw = 10.Because 10 is larger than 3, his decision rule
tells him that the data supports the null hypothesis that eastern and western cities
rank about the same. Willy decides that the sales office can be in either an eastern or
western city, at least based on locating the office close to near large numbers of
knowledge workers. The decision will depend on office cost and availability and airline
schedules.

7.1.2 Testing with matched pairs: the Wilcoxon signed ranks
test

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

During your career, you will often be interested in finding out if the same population is
different in different situations. Do the same workers perform better after a training
session? Do customers who used one of your products prefer the "new improved"
version? Are the same characteristics important to different groups? When you are
comparing the same group in two different situations, you have "matched pairs". For
each member of the population or sample you have what happened under two
different sets of conditions.

There is a non-parametric test using matched pairs that allows you to see if the
location of the population is different in the different situations. This test is the
Wilcoxon Signed Ranks Test. To understand the basis of this test, think about a group
of subjects who are tested under two sets of conditions, A and B. Subtract the test
score under B from the test score under A for each subject. Rank the subjects by the
absolute size of that difference, and look to see if those who scored better under A are
mostly lumped together at one end of your ranking. If most of the biggest absolute
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differences belong to subjects who scored higher under one of the sets of conditions,
then the subjects probably perform differently under A than under B.

The details of how to perform this test were published by Frank Wilcoxon in 1945 2 .
Wilcoxon found a method to find out if the subjects who scored better under one of
the sets of conditions were lumped together or not. He also found the sampling
distribution needed to test hypotheses based on the rankings. To use Wilcoxon's test,
collect a sample of matched pairs. For each subject, find the difference in the outcome
between the two sets of conditions and then rank the subjects according to the
absolute value of the differences. Next, add together the ranks of those with negative
differences and add together the ranks of those with positive differences. If these rank
sums are about the same, then the subjects who did better under one set of
conditions are mixed together with those who did better under the other condition,
and there is no difference. If the rank sums are far apart, then there is a difference
between the two sets of conditions.

Because the sum of the rank sums is always equal to [N(N-1)]/2], if you know the rank
sum for either the positives or the negatives, you know it for the other. This means
that you do not really have to compare the rank sums, you can simply look at the
smallest and see if it is very small to see if the positive and negative differences are
separated or mixed together. The sampling distribution of the smaller rank sums
when the populations the samples come from are the same was published by
Wilcoxon. A portion of a table showing this sampling distribution is in Table 7.3
Sampling distribution. See below.

one-tail significance 0.05 0.025 0.01

two-tail significance 0.1 0.05 0.02

number of pairs, N

5 0

6 2 0

7 3 2 0

8 5 3 1

9 8 5 3

10 10 8 5

Table 7.3: Sampling distribution

Wendy Woodruff is the President of the Student Accounting Society at the University
of North Carolina at Burlington (UNC-B). Wendy recently came across a study by Baker
and McGregor 3 in which both accounting firm partners and students were asked to

2. "Individual comparisons by ranking methods", Biometrics,1,80-83
3. "Empirically Assessing the Utility of Accounting Student Characteristics", unpublished, 1993
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score the importance of student characteristics in the hiring process. A summary of
their findings is in Table 7.4 Data on importance of student attributes. From Baker and
McGregor..

ATTRIBUTE
Mean: student
rating

Mean: big firm
rating

High Accounting
GPA

2.06 2.56

High Overall GPA 0.08 -0.08

Communication
Skills

4.15 4.25

Personal Integrity 4.27 7.5

Energy, drive,
enthusiasm

4.82 3.15

Appearance 2.68 2.31

Table 7.4: Data on importance of student attributes. From Baker
and McGregor.

Wendy is wondering if the two groups think the same things are important. If the two
groups think that different things are important, Wendy will need to have some
society meetings devoted to discussing the differences. Wendy has read over the
article, and while she is not exactly sure how Baker and McGregor's scheme for rating
the importance of student attributes works, she feels that the scores are probably not
distributed normally. Her test to see if the groups rate the attributes differently will
have to be non-parametric since the scores are not normally distributed and the
samples are small.Wendy uses the Wilcoxon Signed Ranks Test.

Her hypotheses are:

H0: There is no true difference between what students and Big 6 partners think
is important.
Hs: There is a difference.

She decides to use a level of significance of .05. Wendy's test is a two-tail test because
she wants to see if the scores are different, not if the Big 6 partners value these things
more highly. Looking at the table, she finds that, for a two-tail test, the smaller of the
two sum of ranks must be less than or equal to 2 to accept Ha :.
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Wendy finds the differences between student and Big 6 scores, and ranks the absolute
differences, keeping track of which are negative and which are positive. She then sums
the positive ranks and sum the negative ranks. Her work is shown below:

ATTRIBUTE
Mean: student
rating

Mean: big firm
rating

Difference Rank

High Accounting
GPA

2.06 2.56 -0.5 -4

High Overall GPA 0.08 -0.08 0.16 2

Communication
Skills

4.15 4.25 -0.1 -1

Personal Integrity 4.27 7.5 -2.75 -6

Energy, drive,
enthusiasm

4.82 3.15 1.67 5

Appearance 2.68 2.31 0.37 3

sum of positive ranks = 4+5+3=10
sum of negative ranks = 4+1=6=11
number of pairs=6

Table 7.5: The worksheet for the Wilcoxon Signed Ranks Test

Her sample statistic, T, is the smaller of the two sums of ranks, so T=10. According to
her decision rule to accept Ha: if T < 2, she decides that the data supports H0: that
there is no difference in what students and Big 6 firms think is important to look for
when hiring students. This makes sense, because the attributes that students score as
more important, those with positive differences, and those that the Big 6 score as
more important, those with negative differences, are mixed together when the
absolute values of the differences are ranked. Notice that using the rankings of the
differences rather than the size of the differences reduces the importance of the large
difference between the importance students and Big 6 partners place on Personal
integrity. This is one of the costs of using non-parametric statistics. The Student
Accounting Society at UNC-B does not need to have a major program on what
accounting firms look for in hiring. However, Wendy thinks that the discrepancy in the
importance in hiring placed on Personal Integrity by Big 6 firms and the students
means that she needs to schedule a speaker on that subject. Wendy wisely tempers
her statistical finding with some common sense.

7.1.3 Are these two variables related? Spearman's rank
correlation

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Are sales higher in those geographic areas where more is spent on advertising? Does
spending more on preventive maintenance reduce down-time? Are production
workers with more seniority assigned the most popular jobs? All of these questions
ask how the two variables move up and down together; when one goes up, does the
other also rise? when one goes up does the other go down? Does the level of one have
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no effect on the level of the other? Statisticians measure the way two variables move
together by measuring the correlation coefficient between the two.

Correlation will be discussed again in the next chapter, but it will not hurt to hear
about the idea behind it twice. The basic idea is to measure how well two variables are
tied together. Simply looking at the word, you can see that it means co-related. If
whenever variable X goes up by 1, variable Y changes by a set amount, then X and Y
are perfectly tied together, and a statistician would say that they are perfectly
correlated. Measuring correlation usually requires interval data from normal
populations, but a procedure to measure correlation from ranked data has been
developed. Regular correlation coefficients range from -1 to +1. The sign tells you if
the two variables move in the same direction (positive correlation) or in opposite
directions (negative correlation) as they change together. The absolute value of the
correlation coefficient tells you how closely tied together the variables are; a
correlation coefficient close to +1 or to -1 means they are closely tied together, a
correlation coefficient close to 0 means that they are not very closely tied together.
The non-parametric Spearman's Rank Correlation Coefficient is scaled so that it
follows these same conventions.

The true formula for computing the Spearman's Rank Correlation Coefficient is
complex. Most people using rank correlation compute the coefficient with a computer
program, but looking at the equation will help you see how Spearman's Rank
Correlation works. It is:

where:

n = the number of observations
d = the difference between the ranks for an observation

Keep in mind that we want this non-parametric correlation coefficient to range from -1
to +1 so that it acts like the parametric correlation coefficient. Now look at the

equation. For a given sample size, n, the only thing that will vary is . If the
samples are perfectly positively correlated, then the same observation will be ranked
first for both variables, another observation ranked second for both variables, etc.
That means that each difference in ranks, d, will be zero, the numerator of the fraction
at the end of the equation will be zero, and that fraction will be zero. Subtracting zero
from one leaves one, so if the observations are ranked in the same order by both
variables, the Spearman's Rank Correlation Coefficient is +1. Similarly, if the
observations are ranked in exactly the opposite order by the two variables, there will

many large d2's, and will be at its maximum. The rank correlation coefficient
should equal -1, so you want to subtract 2 from 1 in the equation. The middle part of

the equation, 6/n(n2-1), simply scales so that the whole term equals 2. As n

grows larger, will grow larger if the two variables produce exactly opposite

rankings. At the same time, n(n2-1) will grow larger so that 6/n(n2-1) will grow smaller.

Colonial Milling Company produces flour, corn meal, grits, and muffin, cake, and
quickbread mixes. They are considering introducing a new product, Instant Cheese
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Grits mix. Cheese grits is a dish made by cooking grits, combining the cooked grits
with cheese and eggs, and then baking the mixture. It is a southern favorite in the
United States, but because it takes a long time to cook, is not served much anymore.
The Colonial mix will allow someone to prepare cheese grits in 20 minutes in only one
pan, so if it tastes right, it should be a good-selling product in the South. Sandy Owens
is the product manager for Instant Cheese Grits, and is deciding what kind of cheese
flavoring to use. Nine different cheese flavorings have been successfully tested in
production, and samples made with each of those nine flavorings have been rated by
two groups: first, a group of food experts, and second, a group of potential customers.
The group of experts was given a taste of three dishes of "homemade" cheese grits
and ranked the samples according to how well they matched the real thing. The
customers were given the samples and asked to rank them according to how much
they tasted like "real cheese grits should taste". Over time, Colonial has found that
using experts is a better way of identifying the flavorings that will make a successful
product, but they always check the experts' opinion against a panel of customers.
Sandy must decide if the experts and customers basically agree. If they do, then she
will use the flavoring rated first by the experts. The data from the taste tests is in Table
7.6 Data from two taste tests of cheese flavorings.

Expert ranking Consumer ranking

Flavoring

NYS21 7 8

K73 4 3

K88 1 4

Ba4 8 6

Bc11 2 5

McA A 3 1

McA A 9 9

WIS4 5 2

WIS43 6 7

Table 7.6: Data from two taste tests of cheese flavorings
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Sandy decides to use the SAS statistical software that Colonial has purchased. Her
hypotheses are:

H0: The correlation between the expert and consumer rankings is zero or
negative.
Ha: The correlation is positive.

Sandy will decide that the expert panel does know best if the data supports Ha : that
there is a positive correlation between the experts and the consumers. She goes to a
table that shows what value of the Spearman's Rank Correlation Coefficient will
separate one tail from the rest of the sampling distribution if there is no association in
the population. A portion of such a table is in Table 7.7 Some one-tail critical values for
Spearman's Rank Correlation Coefficient.

n a=0.5 a=0.25 a=.10

5 0.9

6 0.829 0.886 0.943

7 0.714 0.786 0.893

8 0.643 0.738 0.833

9 0.6 0.683 0.783

10 0.564 0.648 0.745

11 0.523 0.623 0.736

12 0.497 0.591 0.703

Table 7.7: Some one-tail critical values for Spearman's Rank
Correlation Coefficient

Using , going across the n = 9 row in Table 7.7, Sandy sees that if H0 : is true,
only .05 of all samples will have an rs greater than .600. Sandy decides that if her
sample rank correlation is greater than .600, the data supports the alternative, and
flavoring K88, the one ranked highest by the experts, will be used. She first goes basck
to the two sets of rankings and finds the difference in the rank given each flavor by the
two groups, squares those differences and adds them together:
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Expert ranking
Consumer
ranking

difference d²

Flavoring

NYS21 7 8 -1 1

K73 4 3 1 1

K88 1 4 -3 9

Ba4 8 6 2 4

Bc11 2 5 -3 9

McA A 3 1 2 4

McA A 9 9 0 0

WIS 4 5 2 3 9

WIS 43 6 7 -1 1

sum = 38

Table 7.8: Sandy's worksheet

Then she uses the formula from above to find her Spearman rank correlation
coefficient:

1-[6/(9)(92-1)][38] = 1 -.3166 = .6834

Her sample correlation coefficient is .6834, greater than .600, so she decides that the
experts are reliable, and decides to use flavoring K88. Even though Sandy has ordinal
data that only ranks the flavorings, she can still perform a valid statistical test to see if
the experts are reliable. Statistics has helped another manager make a decision.

7.2 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Though they are less precise than other statistics, non-parametric statistics are useful.
You will find yourself faced with small samples, populations that are obviously not
normal, and data that is not cardinal. At those times, you can still make inferences
about populations from samples by using non-parametric statistics.

Non-parametric statistical methods are also useful because they can often be used
without a computer, or even a calculator. The Mann-Whitney U, and the t-test for the
difference of sample means, test the same thing. You can usually perform the U-test
without any computational help, while performing a t-test without at least a good
calculator can take a lot of time. Similarly, the Wilcoxon Signed Ranks test and
Spearman's Rank Correlation are easy to compute once the data has been carefully
ranked. Though you should proceed on to the parametric statistics when you have
access to a computer or calculator, in a pinch you can use non-parametric methods
for a rough estimate.

Notice that each different non-parametric test has its own table. When your data is
not cardinal, or your populations are not normal, the sampling distributions of each
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statistic is different. The common distributions, the t, the χ2, and the F, cannot be
used.

Non-parametric statistics have their place. They do not require that we know as much
about the population, or that the data measure as much about the observations. Even
though they are less precise, they are often very useful.
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Chapter  8 Regression basics
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Regression analysis, like most multivariate statistics, allows you to infer that there is a
relationship between two or more variables. These relationships are seldom exact
because there is variation caused by many variables, not just the variables being
studied.

If you say that students who study more make better grades, you are really
hypothesizing that there is a positive relationship between one variable, studying, and
another variable, grades. You could then complete your inference and test your
hypothesis by gathering a sample of (amount studied, grades) data from some
students and use regression to see if the relationship in the sample is strong enough
to safely infer that there is a relationship in the population. Notice that even if
students who study more make better grades, the relationship in the population
would not be perfect; the same amount of studying will not result in the same grades
for every student (or for one student every time). Some students are taking harder
courses, like chemistry or statistics, some are smarter, some will study effectively,
some will get lucky and find that the professor has asked them exactly what they
understood best. For each level of amount studied, there will be a distribution of
grades. If there is a relationship between studying and grades, the location of that
distribution of grades will change in an orderly manner as you move from lower to
higher levels of studying.

Regression analysis is one of the most used and most powerful multivariate statistical
techniques for it infers the existence and form of a functional relationship in a
population. Once you learn how to use regression you will be able to estimate the
parameters—the slope and intercept—of the function which links two or more
variables. With that estimated function, you will be able to infer or forecast things like
unit costs, interest rates, or sales over a wide range of conditions. Though the simplest
regression techniques seem limited in their applications, statisticians have developed
a number of variations on regression which greatly expand the usefulness of the
technique. In this chapter, the basics will be discussed. In later chapters a few of the
variations on, and problems with, regression will be covered. Once again, the t-
distribution and F-distribution will be used to test hypotheses.

8.1 What is regression?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Before starting to learn about regression, go back to algebra and review what a
function is. The definition of a function can be formal, like the one in my freshman
calculus text: "A function is a set of ordered pairs of numbers (x,y) such that to each
value of the first variable (x) there corresponds a unique value of the second variable
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(y)". 1 More intuitively, if there is a regular relationship between two variables, there
is usually a function that describes the relationship. Functions are written in a number
of forms. The most general is "y = f(x)", which simply says that the value of y depends
on the value of x in some regular fashion, though the form of the relationship is not
specified. The simplest functional form is the linear function where

and are parameters, remaining constant as x and y change. is the intercept and
is the slope. If the values of and are known, you can find the y that goes with any x

by putting the x into the equation and solving. There can be functions where one
variable depends on the values of two or more other variables:

where x1 and x2 together determine the value of y. There can also be non-linear
functions, where the value of the dependent variable ("y" in all of the examples we
have used so far) depends on the values of one or more other variables, but the
values of the other variables are squared, or taken to some other power or root or
multiplied together, before the value of the dependent variable is determined.
Regression allows you to estimate directly the parameters in linear functions only,
though there are tricks which allow many non-linear functional forms to be estimated
indirectly. Regression also allows you to test to see if there is a functional relationship
between the variables, by testing the hypothesis that each of the slopes has a value of
zero.

First, let us consider the simple case of a two variable function. You believe that y, the
dependent variable, is a linear function of x, the independent variable—y depends on
x. Collect a sample of (x, y) pairs, and plot them on a set of x, y axes. The basic idea
behind regression is to find the equation of the straight line that "comes as close as
possible to as many of the points as possible". The parameters of the line drawn
through the sample are unbiased estimators of the parameters of the line that would
"come as close as possible to as many of the point as possible" in the population, if
the population had been gathered and plotted. In keeping with the convention of
using Greek letters for population values and Roman letters for sample values, the line
drawn through a population is

while the line drawn through a sample is

In most cases, even if the whole population had been gathered, the regression line
would not go through every point. Most of the phenomena that business researchers
deal with are not perfectly deterministic, so no function will perfectly predict or
explain every observation.

Imagine that you wanted to study household use of laundry soap. You decide to
estimate soap use as a function of family size. If you collected a large sample of (family
size, soap use) pairs you would find that different families of the same size use
different amounts of laundry soap—there is a distribution of soap use at each family

1. George B. Thomas, Calculus and Analytical Geometry, 3rd ed., Addison-Wesley, 1960.
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size. When you use regression to estimate the parameters of soap use = f(family size),
you are estimating the parameters of the line that connects the mean soap use at
each family size. Because the best that can be expected is to predict the mean soap
use for a certain size family, researchers often write their regression models with an
extra term, the "error term", which notes that many of the members of the population
of (family size, soap use) pairs will not have exactly the predicted soap use because
many of the points do not lie directly on the regression line. The error term is usually
denoted as " ", or "epsilon", and you often see regression equations written

Strictly, the distribution of at each family size must be normal, and the distributions
of for all of the family sizes must have the same variance (this is known as
homoskedasticity to statisticians).

It is common to use regression to estimate the form of a function which has more
than one independent, or explanatory, variable. If household soap use depends on
household income as well as family size, then soap use = f(family size, income), or

where y is soap use, x1 is family size and x2 is income. This is the equation for a plane,
the three-dimensional equivalent of a straight line. It is still a linear function because
neither of the x's nor y is raised to a power nor taken to some root nor are the x's
multiplied together. You can have even more independent variables, and as long as
the function is linear, you can estimate the slope, , for each independent variable.

8.1.1 Testing your regression: does y really depend upon x?
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Understanding that there is a distribution of y (soap use) values at each x (family size)
is the key for understanding how regression results from a sample can be used to test
the hypothesis that there is (or is not) a relationship between x and y. When you
hypothesize that y = f(x), you hypothesize that the slope of the line ( in

) is not equal to zero. If was equal to zero, changes in x would not
cause any change in y. Choosing a sample of families, and finding each family's size
and soap use, gives you a sample of (x, y). Finding the equation of the line that best fits
the sample will give you a sample intercept, a, and a sample slope, b. These sample
statistics are unbiased estimators of the population intercept, , and slope, . If
another sample of the same size is taken another sample equation could be
generated. If many samples are taken, a sampling distribution of sample 's, the
slopes of the sample lines, will be generated. Statisticians know that this sampling
distribution of b's will be normal with a mean equal to , the population slope.
Because the standard deviation of this sampling distribution is seldom known,
statisticians developed a method to estimate it from a single sample. With this
estimated sb , a t-statistic for each sample can be computed:
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where n = sample size
m = number of explanatory (x) variables
b = sample slope

= population slope
sb = estimated standard deviation of b's, often called the "standard error".

These t's follow the t-distribution in the tables with n-m-1 df.

Computing sb is tedious, and is almost always left to a computer, especially when
there is more than one explanatory variable. The estimate is based on how much the
sample points vary from the regression line. If the points in the sample are not very
close to the sample regression line, it seems reasonable that the population points are
also widely scattered around the population regression line and different samples
could easily produce lines with quite varied slopes. Though there are other factors
involved, in general when the points in the sample are farther from the regression line
sb is greater. Rather than learn how to compute sb , it is more useful for you to learn
how to find it on the regression results that you get from statistical software. It is often
called the "standard error" and there is one for each independent variable. The
printout in Table 8.1 Typical statistical package output for regression is typical.

Variable DF Parameter Std Error t-score

Intercept 1 27.01 4.07 6.64

TtB 1 -3.75 1.54 -2.43

Table 8.1: Typical statistical package output for regression

You will need these standard errors in order to test to see if y depends upon x or not.
You want to test to see if the slope of the line in the population, , is equal to zero or
not. If the slope equals zero, then changes in x do not result in any change in y.
Formally, for each independent variable, you will have a test of the hypotheses:

if the t-score is large (either negative or positive), then the sample b is far from zero
(the hypothesized ), and Ha : should be accepted. Substitute zero for b into the t-
score equation, and if the t-score is small, b is close a enough to zero to accept H0 :. To
find out what t-value separates "close to zero" from "far from zero", choose an , find
the degrees of freedom, and use a t-table to find the critical value of t. Remember to
halve when conducting a two-tail test like this. The degrees of freedom equal n - m -
1, where n is the size of the sample and m is the number of independent x variables.
There is a separate hypothesis test for each independent variable. This means you test
to see if y is a function of each x separately. You can also test to see if (or

) rather than simply if by using a one-tail test, or test to see if his some
particular value by substituting that value for β when computing the sample t-score.

Casper Gains has noticed that various stock market newsletters and services often
recommend stocks by rating if this is a good time to buy that stock. Cap is cynical and
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thinks that by the time a newsletter is published with such a recommendation the
smart investors will already have bought the stocks that are timely buys, driving the
price up. To test to see if he is right or not, Cap collects a sample of the price-earnings
ratio (P/E) and the "time to buy" rating (TtB) for 27 stocks. P/E measures the value of a
stock relative to the profitability of the firm. Many investors search for stocks with P/
E's that are lower than would be expected, so a high P/E probably means that the
smart investors have discovered the stock. He decides to estimate the functional
relationship between P/E and TtB using regression. Since a TtB of 1 means "excellent
time to buy", and a TtB of 4 means "terrible time to buy", Cap expects that the slope,
, of the line will be negative. Plotting out the data gives
the graph in Figure 8.1 A plot of Cap's stock data.

Fig. 8.1: A plot of Cap's stock data

Entering the data into the computer, and using the SAS statistical software Cap has at
work to estimate the function, yields the output given above.

Because Cap Gains wants to test to see if P/E is already high by the time a low TtB
rating is published, he wants to test to see if the slope of the line, which is estimated
by the parameter for TtB, is negative or not. His hypotheses are:

He should use a one-tail t-test, because the alternative is "less than zero", not simply
"not equal to zero". Using an , and noting that there are n-m-1, 26-1-1 = 24
degrees of freedom, Cap goes to the t-table and finds that he will accept Ha : if the t-
score for the slope of the line with respect to TtB is smaller (more negative) than
-1.711. Since the t-score from the computer output is -2.43, Cap should accept Ha : and
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conclude that by the time the TtB rating is published, the stock price has already been
bid up, raising P/E. Buying stocks only on the basis of TtB is not an easy way to make
money quickly in the stock market. Cap's cynicism seems to be well founded.

Both the laundry soap and Cap Gains's examples have an independent variable that is
always a whole number. Usually, all of the variables are continuous, and to use the
hypothesis test developed in this chapter all of the variables really should be
continuous. The limit on the values of x in these examples is to make it easier for you
to understand how regression works; these are not limits on using regression.

8.1.2 Testing your regression. Does this equation really help
predict?

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Returning to the laundry soap illustration, the easiest way to predict how much
laundry soap a particular family (or any family, for that matter) uses would be to take
a sample of families, find the mean soap use of that sample, and use that sample
mean for your prediction, no matter what the family size. To test to see if the
regression equation really helps, see how much of the error that would be made using
the mean of all of the y's to predict is eliminated by using the regression equation to
predict. By testing to see if the regression helps predict, you are testing to see if there
is a functional relationship in the population.

Imagine that you have found the mean soap use for the families in a sample, and for
each family you have made the simple prediction that soap use will be equal to the
sample mean, . This is not a very sophisticated prediction technique, but remember
that the sample mean is an unbiased estimator of population mean, so "on average"
you will be right. For each family, you could compute your "error" by finding the
difference between your prediction (the sample mean, ) and the actual amount of
soap used.

As an alternative way to predict soap use, you can have a computer find the intercept,
, and slope, , of the sample regression line. Now, you can make another prediction

of how much soap each family in the sample uses by computing:

Once again, you can find the error made for each family by finding the difference
between soap use predicted using the regression equation, ŷ, and actual soap use, .
Finally, find how much using the regression improves your prediction by finding the
difference between soap use predicted using the mean, , and soap use predicted
using regression, ŷ. Notice that the measures of these differences could be positive or
negative numbers, but that "error" or "improvement" implies a positive distance.
There are probably a few families where the error from using the regression is greater
than the error from using the mean, but generally the error using regression will be
smaller.

If you use the sample mean to predict the amount of soap each family uses, your
error is for each family. Squaring each error so that worries about signs are
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overcome, and then adding the squared errors together, gives you a measure of the

total mistake you make if you use to predict y. Your total mistake is The

total mistake you make using the regression model would be . The
difference between the mistakes, a raw measure of how much your prediction has

improved, is . To make this raw measure of the improvement
meaningful, you need to compare it to one of the two measures of the total mistake.
This means that there are two measures of "how good" your regression equation is.
One compares the improvement to the mistakes still made with regression. The other
compares the improvement to the mistakes that would be made if the mean was used
to predict. The first is called an F-score because the sampling distribution of these
measures follows the F-distribution seen in the “F-test and one-way anova” chapter.

The second is called R2 , or the "coefficient of determination".

All of these mistakes and improvements have names, and talking about them will be
easier once you know those names. The total mistake made using the sample mean to

predict, , is called the "sum of squares, total". The total mistake made

using the regression, , is called the "sum of squares, residual" or the
"sum of squares, error". The total improvement made by using regression,

is called the "sum of squares, regression" or "sum of squares, model".
You should be able to see that:

Sum of Squares Total = Sum of Squares Regression + Sum of Squares Residual

The F-score is the measure usually used in a hypothesis test to see if the regression
made a significant improvement over using the mean. It is used because the sampling
distribution of F-scores that it follows is printed in the tables at the back of most
statistics books, so that it can be used for hypothesis testing. There is also a good set
of F-tables at http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm. It
works no matter how many explanatory variables are used. More formally if there was
a population of multivariate observations, ( y ,x1 ,x2 , ..., xm) , and there was no linear
relationship between y and the x's, so that , if samples of n
observations are taken, a regression equation estimated for each sample, and a
statistic, F, found for each sample regression, then those F's will be distributed like
those in the F-table with (m, n-m-1) df. That F is:
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where: n is the size of the sample
m is the number of explanatory variables (how many x's there are in the

regression equation).

If, the sum of squares regression (the improvement), is large relative to

, the sum of squares residual (the mistakes still made), then the F-score
will be large. In a population where there is no functional relationship between y and
the x's, the regression line will have a slope of zero (it will be flat), and the will be
close to y. As a result very few samples from such populations will have a large sum of
squares regression and large F-scores. Because this F-score is distributed like the one
in the F-tables, the tables can tell you whether the F-score a sample regression
equation produces is large enough to be judged unlikely to occur if

. The sum of squares regression is divided by the number of
explanatory variables to account for the fact that it always decreases when more
variables are added. You can also look at this as finding the improvement per
explanatory variable. The sum of squares residual is divided by a number very close to
the number of observations because it always increases if more observations are
added. You can also look at this as the approximate mistake per observation.

To test to see if a regression equation was worth estimating, test to see if there seems
to be a functional relationship:

This might look like a two-tailed test since H0 : has an equal sign. But, by looking at the
equation for the F-score you should be able to see that the data supports Ha : only if
the F-score is large. This is because the data supports the existence of a functional
relationship if sum of squares regression is large relative to the sum of squares
residual. Since F-tables are usually one-tailed tables, choose an α, go to the F-tables
for that α and (m, n-m1) df, and find the table F. If the computed F is greater than the
table F, then the computed F is unlikely to have occurred if H0 : is true, and you can
safely decide that the data supports Ha :. There is a functional relationship in the
population.

The other measure of how good your model is, the ratio of the improvement made
using the regression to the mistakes made using the mean is called "R-square", usually

written R2. While R2 is not used to test hypotheses, it has a more intuitive meaning

than the F-score. R2 is found by:

The numerator is the improvement regression makes over using the mean to predict,

the denominator is the mistakes made using the mean, so R2 simply shows what
proportion of the mistakes made using the mean are eliminated by using regression.

Cap Gains, who in the example earlier in this chapter, was trying to see if there is a
relationship between price-earnings ratio (P/E) and a "time to buy" rating (TtB), has
decided to see if he can do a good job of predicting P/E by using a regression of TtB
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and profits as a percent of net worth (per cent profit) on P/E. He collects a sample of
(P/E, TtB, per cent profit) for 25 firms, and using a computer, estimates the function

He again uses the SAS program, and his computer printout gives him the results in
Figure 8.2 Cap's SAS computer printout. This time he notices that there are two pages
in the printout.

Fig. 8.2: Cap's SAS computer printout

The equation the regression estimates is:

Cap can now test three hypotheses. First, he can use the F-score to test to see if the
regression model improves his ability to predict P/E. Second and third, he can use the
t-scores to test to see if the slopes of TtB and Profit are different from zero.

To conduct the first test, Cap decides to choose an α = .10. The F-score is the
regression or model mean square over the residual or error mean square, so the df
for the F-statistic are first the df for the model and second the df for the error. There
are 2,23 df for the F-test. According to his F-table, with 2.23 degrees of freedom, the
critical F-score for is 2.55. His hypotheses are:
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Because the F-score from the regression, 2.724, is greater than the critical F-score,
2.55, Cap decides that the data supports Ha : and concludes that the model helps him
predict P/E. There is a functional relationship in the a population.

Cap can also test to see if P/E depends on TtB and Profit individually by using the t-
scores for the parameter estimates. There are (n-m-1)=23 degrees of freedom. There
are two sets of hypotheses, one set for , the slope for TtB, and one set for , the
slope for Profit. He expects that , the slope for TtB, will be negative, but he does not
have any reason to expect that will be either negative or positive. Therefore, Cap
will use a one-tail test on , and a two-tail test on :

Since he has one one-tail test and one two-tail test, the t-values he chooses from the t-
table will be different for the two tests. Using , Cap finds that his t-score for

the one-tail test, will have to be more negative than -1.32 before the data supports
P/E being negatively dependent on TtB. He also finds that his t-score for , the two-
tail test, will have to be outside ±1.71 to decide that P/E depends upon Profit. Looking
back at his printout and checking the t-scores, Cap decides that Profit does not affect
P/E, but that higher TtB ratings mean a lower P/E. Notice that the printout also gives a
t-score for the intercept, so Cap could test to see if the intercept equals zero or not.

Though it is possible to do all of the computations with just a calculator, it is much
easier, and more dependably accurate, to use a computer to find regression results.
Many software packages are available, and most spreadsheet programs will find
regression slopes. I left out the steps needed to calculate regression results without a
computer on purpose, for you will never compute a regression without a computer (or
a high end calculator) in all of your working years, and there is little most people can
learn about how regression works from looking at the calculation method.

8.2 Correlation and covariance
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The correlation between two variables is important in statistics, and it is commonly
reported. What is correlation? The meaning of correlation can be discovered by
looking closely at the word—it is almost co-relation, and that is what it means: how
two variables are co-related. Correlation is also closely related to regression. The
covariance between two variables is also important in statistics, but it is seldom
reported. Its meaning can also be discovered by looking closely at the word—it is co-
variance, how two variables vary together. Covariance plays a behind-the-scenes role
in multivariate statistics. Though you will not see covariance reported very often,
understanding it will help you understand multivariate statistics like understanding
variance helps you understand univariate statistics.

There are two ways to look at correlation. The first flows directly from regression and
the second from covariance. Since you just learned about regression, it makes sense
to start with that approach.
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Correlation is measured with a number between -1 and +1 called the correlation
coefficient. The population correlation coefficient is usually written as the Greek "rho",

, and the sample correlation coefficient as r. If you have a linear regression equation
with only one explanatory variable, the sign of the correlation coefficient shows
whether the slope of the regression line is positive or negative, while the absolute
value of the coefficient shows how close to the regression line the points lie. If is
+.95, then the regression line has a positive slope and the points in the population are
very close to the regression line. If r is -.13 then the regression line has a negative
slope and the points in the sample are scattered far from the regression line. If you

square r, you will get R2, which is higher if the points in the sample lie very close to the
regression line so that the sum of squares regression is close to the sum of squares
total.

The other approach to explaining correlation requires understanding covariance, how
two variables vary together. Because covariance is a multivariate statistic it measures
something about a sample or population of observations where each observation has
two or more variables. Think of a population of (x,y) pairs. First find the mean of the
x's and the mean of the y's, and . Then for each observation, find

. If the x and the y in this observation are both far above their
means, then this number will be large and positive. If both are far below their means,

it will also be large and positive. If you found , it would be
large and positive if x and y move up and down together, so that large x's go with large
y's, small x's go with small y's, and medium x's go with medium y's. However, if some
of the large x's go with medium y's, etc. then the sum will be smaller, though probably

still positive. A implies that x's above x are generally paired
with y's above , and those x's below their mean are generally paired with y's below
their mean. As you can see, y the sum is a measure of how x and y vary together. The
more often similar x's are paired with similar y's, the more x and y vary together and
the larger the sum and the covariance.

The term for a single observation, , will be negative when the x
and y are on opposite sides xy of their means. If large x's are usually paired with small
y's, and vice-versa, most of the terms will be negative and the sum will be negative. If
the largest x's are paired with the smallest y's and the smallest x's with the largest y's,
then many of the will be large and negative and so will the sum. A
population with more xy members will have a larger sum simply because there are
more terms to be added together, so you divide the sum by the number of
observations to get the final measure, the covariance, or cov:

The maximum for the covariance is the product of the standard deviations of the x
values and of the y values, . While proving that the maximum is exactly equal to
the product of the standard deviations is complicated, you should be able to see that
the more spread out the points are, the greater the covariance can be. By now you
should understand that a larger standard deviation means that the points are more
spread out, so you should understand that a larger or a larger will allow for a
greater covariance.
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Sample covariance is measured similarly, except the sum is divided by n-1 so that
sample covariance is an unbiased estimator of population covariance:

Correlation simply compares the covariance to the standard deviations of the two
variables. Using the formula for population correlation:

or

At its maximum, the absolute value of the covariance equals the product of the
standard deviations, so at its maximum, the absolute value of r will be 1. Since the
covariance can be negative or positive while standard deviations are always positive, r
can be either negative or positive. Putting these two facts together, you can see that r
will be between -1 and +1. The sign depends on the sign of the covariance and the
absolute value depends on how close the covariance is to its maximum. The
covariance rises as the relationship between x and y grows stronger, so a strong
relationship between x and y will result in r having a value close to -1 or +1.

8.3 Covariance, correlation, and regression
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Now it is time to think about how all of this fits together and to see how the two
approaches to correlation are related. Start by assuming that you have a population of
(x, y) which covers a wide range of y-values, but only a narrow range of x-values. This
means that σy is large while σx is small. Assume that you graph the (x, y) points and
find that they all lie in a narrow band stretched linearly from bottom left to top right,
so that the largest y's are paired with the largest x's and the smallest y's with the
smallest x's. This means both that the covariance is large and a good regression line
that comes very close to almost all the points is easily drawn. The correlation
coefficient will also be very high (close to +1). An example will show why all these
happen together.

Imagine that the equation for the regression line is , , and
, and the two points farthest to the top right, (10, 43) and (12, 51), lie exactly on

the regression line. These two points together contribute

to
the numerator of the covariance. If we switched the x's and y's of these two points,
moving them off the regression line, so that they became (10, 51) and (12, 43), , ,

, and would remain the same, but these points would only contribute
(10-7)(51-31)+(12-7)(43-31)= 120 to the numerator. As you can see, covariance is at its
greatest, given the distributions of the x's and y's, when the (x, y) points lie on a
straight line. Given that correlation, r, equals 1 when the covariance is maximized, you
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can see that r=+1 when the points lie exactly on a straight line (with a positive slope).
The closer the points lie to a straight line, the closer the covariance is to its maximum,
and the greater the correlation.

As this example shows, the closer the points lie to a straight line, the higher the
correlation. Regression finds the straight line that comes as close to the points as
possible, so it should not be surprising that correlation and regression are related.

One of the ways the "goodness of fit" of a regression line can be measured is by R2.

For the simple two-variable case, R2 is simply the correlation coefficient, r, squared.

Fig. 8.3: Plot of initial population

Correlation does not tell us anything about how steep or flat the regression line is,
though it does tell us if the slope is positive or negative. If we took the initial
population shown in Figure 8.3 Plot of initial population, and stretched it both left and
right horizontally so that each point's x-value changed, but its y-value stayed the same,

would grow while stayed the same. If you pulled equally to the right and to the
left, both and would stay the same. The covariance would certainly grow since
the that goes with each point would be larger absolutely while the
's would stay the same. The equation of the regression line would change, with the
slope, b, becoming smaller, but the correlation coefficient would be the same because
the points would be just as close to the regression line as before. Once again, notice
that correlation tells you how well the line fits the points, but it does not tell you
anything about the slope other than if it is positive or negative. If the points are
stretched out horizontally, the slope changes but correlation does not. Also notice that
though the covariance increases, correlation does not because σx increases causing
the denominator in the equation for finding r to increase as much as covariance, the
numerator.

The regression line and covariance approaches to understanding correlation are
obviously related. If the points in the population lie very close to the regression line,
the covariance will be large in absolute value since the x's that are far from their mean
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will be paired with y's which are far from theirs. A positive regression slope means
that x and y rise and fall together, which also means that the covariance will be
positive. A negative regression slope means that x and y move in opposite directions,
which means a negative covariance.

8.4 Summary
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Simple linear regression allows researchers to estimate the parameters—the intercept
and slopes—of linear equations connecting two or more variables. Knowing that a
dependent variable is functionally related to one or more independent or explanatory
variables, and having an estimate of the parameters of that function, greatly improves
the ability of a researcher to predict the values the dependent variable will take under
many conditions. Being able to estimate the effect that one independent variable has
on the value of the dependent variable in isolation from changes in other independent
variables can be a powerful aid in decision making and policy design. Being able to
test the existence of individual effects of a number of independent variables helps
decision makers, researchers, and policy makers identify what variables are most
important. Regression is a very powerful statistical tool in many ways.

The idea behind regression is simple, it is simply the equation of the line that "comes
as close as possible to as many of the points as possible". The mathematics of
regression are not so simple, however. Instead of trying to learn the math, most
researchers use computers to find regression equations, so this chapter stressed
reading computer printouts rather than the mathematics of regression.

Two other topics, which are related to each other and to regression, correlation and
covariance, were also covered.

Something as powerful as linear regression must have limitations and problems. In
following chapters those limitations, and ways to overcome some of them, will be
discussed. There is a whole subject, econometrics, which deals with identifying and
overcoming the limitations and problems of regression.
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