
Database Design

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Contents

Chapter 1 Before the Advent of Database Systems..1
1.1 File-based approach for banking system ..1
1.2 Data Redundancy ...1
1.3 Data Isolation ..2
1.4 Integrity problems..2
1.5 Security problems...2
1.6 Concurrency – access anomalies..2
1.7 Database Approach ...3
1.8 Role of databases in Business ..3
1.9 Meaning of Data ...3

Chapter 2 Fundamental Concepts ..5
Chapter 3 Characteristics and Benefits of a Database ..7
3.1 Self-Describing Nature of a Database System ...7
3.2 Insulation between Program and Data ...7
3.3 Support multiple views of data ..7
3.4 Sharing of data and Multiuser system ..7
3.5 Control Data Redundancy ..8
3.6 Data Sharing ...8
3.7 Enforcing Integrity Constraints ..8
3.8 Restricting Unauthorised Access ...8
3.9 Data Independence ...8
3.10 Transaction Processing ...9
3.11 Providing multiple views of data ...9
3.12 Providing backup and recovery facilities ..9
3.13 Managing information ...9

Chapter 4 Types of Database Models ...11
4.1 High-level Conceptual Data models ..11

4.1.1 Record-based Logical Data models...11

Chapter 5 Data Modelling ..13
5.1 Degree of Data Abstraction ..13
5.2 External models ..14
5.3 Conceptual model ..14
5.4 Internal model ..14
5.5 Physical model ..15

5.5.1 Data Abstraction Layer ...15
5.5.2 Schemas ...16
5.5.3 Logical and Physical Data Independence ...17
5.5.4 Logical data independence ..17
5.5.5 Physical data independence ..17

Chapter 6 Classification of Database Systems ..18
6.1 Based on data model ..18
6.2 Based on the number of users ..18
6.3 Based on the ways database is distributed ..18

6.3.1 Centralized Systems..18

6.3.2 Distributed database system...19
6.3.3 Homogeneous distributed Database Systems ...19
6.3.4 Heterogeneous distributed Database Systems ..19

Chapter 7 The Relational Data Model ..20
7.1 Fundamental concepts in Relational Data Model ..20

7.1.1 Relation...20
7.1.2 Table ...20
7.1.3 Column ...21
7.1.4 Domain ...21
7.1.5 Records...22

7.2 Degree ...23
7.3 Properties of Tables ...23

7.3.1 Terminology ...23

Chapter 8 Entity Relationship Model..25
8.1 Entity, Entity Set and Entity Type ..25

8.1.1 Types of Entities...26
8.1.2 Attributes..27
8.1.3 Types of Attributes ..27
8.1.4 Keys ..29

8.1.4.1 Candidate key ...29
8.1.4.2 Composite key ..29
8.1.4.3 Primary key ...30
8.1.4.4 Secondary key...30
8.1.4.5 Alternate key...30
8.1.4.6 Foreign key..30
8.1.4.7 Nulls ...31

8.1.5 Entity Types ...32
8.1.5.1 Existence Dependency ..32
8.1.5.2 Weak Entities ..32
8.1.5.3 Strong Entities ..32

8.1.6 Relationships ...33
8.1.6.1 1:M relationship ...33
8.1.6.2 1:1 relationship...33
8.1.6.3 1:1 Example:..33
8.1.6.4 M:N relationships ..34
8.1.6.5 M:N relationships ...34

8.1.7 Unary Relationships (recursive)...35
8.1.8 Ternary Relationships ...35
8.1.9 Relationship Strength ...36

Chapter 9 Integrity Rules and Constraints ..37
9.1 Domain Integrity ..37
9.2 Referential integrity Examples ..37
9.3 Referential Integrity in MS Access ..38
9.4 Referential Integrity using Transact SQL (MS SQL Server) ..38
9.5 Foreign Key Rules ...39

9.5.1 Business Rules ...39

9.6 Cardinality ...40
9.6.1 Relationship Participation ..40

9.7 Optional ...41
9.8 Mandatory ...41

9.8.1 Relationship Types ..43

Chapter 10 ER Modelling ..44
10.1 Relational Design and Redundancy ...44
10.2 Insertion anomaly ..45
10.3 Update anomaly ...45
10.4 Deletion anomaly ...45

Chapter 11 Functional Dependencies...48
11.1 Rules of Functional Dependencies ...48
11.2 Inference Rules ...49

11.2.1 Axiom of reflexivity ...49
11.2.2 Axiom of augmentation..50
11.2.3 Axiom of transitivity ..50

11.3 Additional rules ..50
11.3.1 Union ..50
11.3.2 Decomposition ..51

11.4 Dependency Diagram ..51

Chapter 12 Normalization ...52
12.1 Normal Forms...52

12.1.1 School database ...53
12.1.1.1 Process for 1NF ..53
12.1.1.2 Update anomalies in 1st normal form ..53

12.2 2nd Normal Form...53
12.2.1 Process for 2NF ...54
12.2.2 Update anomalies in 2nd normal form..54

12.3 3rd Normal Form..54
12.3.1 Remove Transitive Dependencies...54

12.3.1.1 Update anomalies in 3rd normal form ...55

12.3.2 Boyce-Codd Normal Form (BCNF)...56
12.3.3 BCNF Example 2 ..58

12.3.3.1 Normalization and Database Design ..59

Chapter 13 Database Development Process ...60
13.1 SDLC – Waterfall ...60
13.2 Database Life Cycle ..61
13.3 Requirements gathering ...62
13.4 Analysis ..63
13.5 Logical Design ...63
13.6 Implementation ...65
13.7 Realising the design ..66
13.8 Populating the database ...66
13.9 Guidelines For Developing An ER Diagram ...67

Chapter 14 Database Users ...68
14.1 End users ..68
14.2 Application Programmers ..68
14.3 Database Administrators ..68

Chapter 1 Before the Advent of
Database Systems

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

One way to keep information on a computer is to store it in permanent files. A
company system has a number of application programs; each of them is defined to
manipulate data files. These application programs have been written on request of
the users in the organization. New application will be added to the system as the need
arises. The system just described is called the file-based system.

Consider a traditional banking system which uses the file-based system to manage the
organization’s data in the picture below. As we can see, there are different
departments in the Bank, each of them has their own applications that manage and
manipulate different data files. For banking systems, the programs can be the ones to
debit or credit an account , find the balance of an account, add a new mortgage loan
or generate monthly statements, etc.

Fig. 1.1:

http://cnx.org/ content/m28150/latest/ (http://cnx.org/%20content/m28150/latest/)

1.1 File-based approach for banking system
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Keeping organizational information in this approach has a number of disadvantages,
including:

1.2 Data Redundancy
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Since files and applications are created by different programmers of various
departments over long periods of time, it might lead to several problems such as

1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/%20content/m28150/latest/
http://cnx.org/%20content/m28150/latest/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• inconsistency in data format,

• the same information may be kept in several different place (files)

• data inconsistency, which means various copies of the same data are conflicting ;
this wastes stor age space and duplicates effort

1.3 Data Isolation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• It is difficult for new applications to retrieve the appropriate data, which might be
stored in various files.

1.4 Integrity problems
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Data values must satisfy certain consistency constraints that are specified in the
application programs.•

• It is difficult to make changes to the programs to enforce new constraints.

1.5 Security problems
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• There are constraints regarding accessing privileges.

• Application requirements are added to the system in an ad-hoc manner so it is
difficult to enforce constraints.

1.6 Concurrency – access anomalies
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Data may be accessed by many applications that have not been coordinated
previously so it is not easy to provide a strategy to support multiple users to
update data simultaneously.

These difficulties have prompted the development of a new approach in managing
large amount of organizational information – the database approach.

Chapter 1 2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1.7 Database Approach
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Databases and database technology play an important role in most of areas where
computers are used, including business, education, medicine, etc. To understand the
fundamentals of database systems, we start by introducing the basic concepts in this
area.

1.8 Role of databases in Business
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Everybody uses a database in some way, maybe just to store information about their
friends and family. That data might be written down or stored in a computer using a
word processing program, or it could even be saved in a spreadsheet. However, the
best place for it would be the Database Management Software (DBMS). The DBMS is a
power software tool that allows you to store, manipulate and retrieve data in a variety
of different ways.

Most companies keep track of customer information by storing it in a database. That
data may be customers, employees, products, orders, or anything that may assist the
business in their operations.

1.9 Meaning of Data
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Data is factual information such as measurements or statistics about objects and
concepts. We use it for discussion, or calculation. It could be a person, a place, an
event, an action, any one of a number of things. A single fact is an element of data, or
a data element.

If data is information and information is what we are all in the business of working
with, you can start to see where you may be storing it:

• Filing cabinets

• Spreadsheets

• Folders

• Ledgers Lists

• Piles of papers on your desk

They all store information, and so too does a database. Because of the mechanical
nature of databases, they have terrific power to manage and process the information

3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

they hold. This can make the information they house much more useful for your work.
With this understanding of data, we can start to see how a tool with the capacity to
store a collection of data and organize it especially for rapid search, retrieval and
processing might make a difference to how we can use data. This is all about
managing information. Source: http: //cnx.org/content/m28150/latest/ (http://http:%
20//cnx.org/content/m28150/latest/)

Chapter 1 4

http://http:%20//cnx.org/content/m28150/latest/
http://http:%20//cnx.org/content/m28150/latest/
http://http:%20//cnx.org/content/m28150/latest/

Chapter 2 Fundamental Concepts
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A Database is a shared collection of related data which is used to support the activities
of a particular organization. A database can be viewed as a repository of data that is
defined once and then is accessed by various users. A database has the following
properties:

• It is a representation of some aspect of the real world; or perhaps, a collection of
data elements (facts) representing real-world information.

• A database is logical, coherent and internally consistent.

• A database is designed, built, and populated with data for a specific purpose.

• Each data item is stored in a field,

• A combination of fields makes up a table. For example: an employee table
contains fields that contain data about an individual employee

A Database Management System (DBMS) is a collection of programs that enable users
to create, maintain databases and control all the access to the databases. The primary
goal of the DBMS is to provide an environment that is both convenient and efficient
for users to retrieve and store information.

Fig. 2.1:

https://cnx.org/content/m28150/latest/ With the database approach, we can have the
traditional banking system as shown in the following image.

5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://cnx.org/content/m28150/latest/

Fig. 2.2:

https://cnx.org/content/m28150/latest/

Chapter 2 6

https://cnx.org/content/m28150/latest/

Chapter 3 Characteristics and
Benefits of a Database

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are a number of characteristics that distinguish the database approach with the
file-based approach.

3.1 Self-Describing Nature of a Database System
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A Database System contains not only the database itself but also the descriptions of
data structure and constraints (meta-data). This information is used by the DBMS
software or database users if needed. This separation makes a database system
totally different from the traditional file-based system in which the data definition is a
part of application programs.

3.2 Insulation between Program and Data
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the file based system, the structure of the data files is defined in the application
programs so if a user wants to change the structure of a file, all the programs that
access that file might need to be changed as well. On the other hand, in the database
approach, the data structure is stored in the system catalog not in the programs.
Therefore, one change is all that’s needed.

3.3 Support multiple views of data
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A view is a subset of the database which is defined and dedicated for particular users
of the system. Multiple users in the system might have different views of the system.
Each view might contain only the data of interest to a user or a group of users.

3.4 Sharing of data and Multiuser system
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A multiuser database system must allow multiple users access to the database at the
same time. As a result, the multiuser DBMS must have concurrency control strategies

7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

to ensure several users access to the same data item at the same time, and to do so in
a manner that the data will always be correct – data integrity.

3.5 Control Data Redundancy
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the Database approach, ideally each data item is stored in only one place in the
database. In some cases redundancy still exists so as to improve system performance,
but such redundancy is controlled and kept to minimum.

3.6 Data Sharing
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The integration of the whole data in an organization leads to the ability to produce
more information from a given amount of data.

3.7 Enforcing Integrity Constraints
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

DBMSs should provide capabilities to define and enforce certain constraints such as
data type, data uniqueness, etc.

3.8 Restricting Unauthorised Access
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Not all users of the system have the same accessing privileges. DBMSs should provide
a security subsystem to create and control the user accounts.

3.9 Data Independence
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

System data (Meta Data) descriptions are separated from the application programs.
Changes to the data structure is handled by the DBMS and not embedded in the
program.

Chapter 3 8

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

3.10 Transaction Processing
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The DBMS must include concurrency control subsystems to ensure that several users
trying to update the same data do so in a controlled manner. The results of any
updates to the database must maintain consistency and validity.

3.11 Providing multiple views of data
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A view may be a subset of the database. Various users may have different views of the
database itself. Users may not need to be aware of how and where the data they refer
to is stored.

3.12 Providing backup and recovery facilities
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If the computer system fails in the middle of a complex update process, the recovery
subsystem is responsible for making sure that the database is restored to the stage it
was in before the process started executing.

3.13 Managing information
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Managing information means taking care of it so that it works for us, and is useful for
the work we are doing. The information we collect is no longer subject to “accidental
disorganization” and becomes more easily accessible and integrated with the rest of
our work. Managing information using a database allows us to become strategic users
of the data we have.

We often need to access and re-sort data for various uses. These may include:

• Creating mailing lists

• Writing management reports

• Generating lists of selected news stories

• Identifying various client needs

The processing power of a database allows it to manipulate the data it houses, so it
can

9

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Sort
• Match
• Link
• Aggregate
• Skip fields
• Calculate
• Arrange

So a database tracks data, finding the bits you need and processing them in the way
you arrange for them to be processed.

• Because of the versatility of databases, we find them powering all sorts of
projects. A database can be linked to:

• A web site that is capturing registered users

• A client tracking application for social service organisations

• A medical record system for a health care facility

• Your personal address book in your e-mail client

• A collection of word processed documents

• A system that issues airline reservations

Source: http://cnx.org/content/m28150/latest/ (http://cnx.org/content/m28150/latest/)

Chapter 3 10

http://cnx.org/content/m28150/latest/
http://cnx.org/content/m28150/latest/

Chapter 4 Types of Database Models

4.1 High-level Conceptual Data models
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Provide concepts that are close to the way people perceive data to present the data. A
typical example of this type is the entity relationship model which uses main concepts
like entities, attributes, relationships. An entity represents a real-world object such as
an employee, a project. An entity has some attributes which represents properties of
entity such as employee’s name, address, birthdate. A relationship represents an
association among entities, for example an employee works on many projects. The
relationship exists between employee and project.

4.1.1 Record-based Logical Data models
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Provide concepts that can be understood by the user but not too far from the way
data is stored in the computer. Three well-known data models of this type are
relational data model, network data model and hierarchical data model.

• The Relational model represents data as relations or tables.

• The Network model represents data as record types and also represents a limited
type of one to many relationship, called set type.

Fig. 4.1: http://cnx.org/content/m28150/latest/

The Hierarchical model represents data as a hierarchical tree structures. Each
hierarchy represents a number of related records. Here is the schema in hierarchical
model notation.

11

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Fig. 4.2: http://cnx.org/content/m28150/latest/

Chapter 4 12

Chapter 5 Data Modelling
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Data Modelling is the first step in the process of database design. This step is
sometimes considered as a high-level and abstract design phase (conceptual design).
The aims of this phase is to:

• Describe what data is contained in the database (e.g. entities: students, lecturers,
courses, subjects etc.)

• Describe the relationships between data items (e.g. Students are supervised by
Lecturers; Lecturers teach Courses)

• Describe the constraints on data (e.g. Student Number has exactly 8 digits; a
subject has 4 or 6 unit of credits only)

The data items, the relationships and constraints are all expressed using the concepts
provided by the high-level data model. Because these concepts do not include the
implementation details, the results of the data modelling process is a (semi) formal
representation of the database structure. This result is quite easy to understand so it
is used as reference to make sure that all the user’s requirements are met. The third
step is Database Design. During this step, we might have two sub-steps called
Database Logical Design which define a database in a data model of a specific DBMS
and Database Physical Design which define the internal database storage structure,
file organization or indexing techniques. The last two steps shown are Database
Implementation and Operations/Interfaces Building. These focus on creating an
instance of the schema and implementing operations and user interfaces. In the
database design phases, data is represented using a certain data model. The Data
Model is a collection of conceptual concepts or notations for describing data , data
relationships, data semantics and data constraints. Most data models also include a
set of basic operations for manipulating data in the database.

5.1 Degree of Data Abstraction
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In this section we will look at the database design process in terms of specificity. Just
as any design starts at a high level and proceeds to an ever-increasing level of detail so
does database design. For example, when building a home, you start with how many
bedrooms the home will have, how many bathrooms, whether the home will be on
one level or multiple levels, etc. The next step is to get an architect to design the home
from a more structured perspective. This level gets more detailed with respect to
actual room sizes, how the home will be wired, where the plumbing fixtures will be
placed, etc. The last step is to hire a contractor to build the home. That’s looking at the
design from a high level of abstraction to an increasingly detailed level of abstraction.

13

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The database design is very much like that. It starts with users identifying the business
rules, database designers and analysts creating the database design, and then the
database design is physically created using a DBMS.

5.2 External models
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Is the user’s view of the database

• contains multiple different external views

• is closely related to the real world as perceived by each user

5.3 Conceptual model
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• These models provide a flexible data structuring capabilities.

• Community view : the logical structure of the entire database

• Contains ‘What’ data is stored •

• Shows relationships among data

• constraints

• semantic information (business rules – discussed later)

• security & integrity information

• A database is considered as a collection of entities (objects) of various
kinds.

• Basis for identification and high-level description of main data objects, avoids
details

• They are database independent. It does not matter what database you will be
using.

5.4 Internal model
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Database is considered as a collection of fixed – size record.

• This model is closer to the physical level or file structure.

• Is a representation of database as seen by the DBMS.

Chapter 5 14

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Requires the designer to match the conceptual model’s characteristics and
constraints to those of the selected implementation model.

• The entities in the conceptual model are mapped to the tables in the relational
model.

• The three most well-known models of this kind are the relational data model, the
network data model and the hierarchical data model.

5.5 Physical model
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Physical representation of the database

• Lowest level of abstractions •

• It is how the data is stored, dealing with

• Run-time performance

• Storage utilization & compression

• File organization & access methods

• Data encryption

• Physical level – managed by OS

• Provide concepts that describe the details of how data is stored in the computer’s
memory

5.5.1 Data Abstraction Layer
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In a pictorial view, you can see how the different models work together. Let’s look at
this from the highest level; the External Model.

The External Model is the end user view of the data. Typically a database is an
enterprise system that serves the needs of multiple departments. However, one
department is not interested in seeing the other departments’ data. E.g. Human
Resource does care to view the Sales data. Therefore, one user view will differ from
another.

The External model requires that the designer subdivide a set of requirements and
constraints into functional modules that can be examined within the framework of
their external models (i.e. HR vs. Sales)

As a data designer you need to understand all the data so that you can build an
enterprise wide database. Based on the needs of various departments the conceptual
model is the first model created.

15

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

At this stage the conceptual model is independent of both software and hardware. It
does not depend on the DBMS software used to implement the model. It does not
depend on the hardware used in the implementation of the model. Changes in either
hardware or DBMS software have no effect on the database design at the conceptual
level.

Once a DBMS is selected, you can then implement it. This is the Internal model. Here
you create all the tables, constraints, keys, rules, etc. This is often referred to as the
Logical design.

The physical model is simply the way the data is stored on disk. Each database Vendor
will have their own way of storing the data.

Fig. 5.1:

5.5.2 Schemas
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A schema is an overall description of a database and it is usually represented by the
Entity Relationship diagram. There are multiple subschemas which are
representations of the external models. To put it into perspective of one database:

• External Schemas :

• multiple multiple subschemas = multiple external views of the data •

• Conceptual Schema : one only

• Data items, relationships & constraints – ER diagram

• Physical Schema : one only

• Record definitions, representation methods

• Access methods, indexes, hashing

Chapter 5 16

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

5.5.3 Logical and Physical Data Independence
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Data independence refers to the immunity of user applications to changes made in
the definition and organization of data. Data abstractions expose only those items
that are important or pertinent to the user. Complexity is hidden from the database
user.

Physical data independence deals with hiding the details of the storage structure from
user applications. The application should not be involved with these issues, since
there is no difference in the operation carried out against the data.

The data independence and operation independence together gives the feature of
data abstraction. There are two types of data independence: Logical and Physical.

Source: http://cnx.org/content/m28150/latest/

5.5.4 Logical data independence
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The ability to change the logical (conceptual) schema without changing the External
schema (User View) is called logical data independence. For example, the addition or
removal of new entities, attributes, or relationships to the conceptual schema should
be possible without having to change existing external schemas or having to rewrite
existing application programs.

In other words, if the logical schema changed, i.e. changes to the structure of the
database like adding a columns or other tables, should not affect the functioning of
the application (external views).

Source: http://cnx.org/content/m28150/latest/

5.5.5 Physical data independence
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This refers to the immunity of the internal model to changes in the physical model.
The logical schema stays unchanged even though changes are made to file
organization or storage structures, storage devices, or indexing strategy.

Source: http://cnx.org/content/m28150/latest/

17

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/m28150/latest/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/m28150/latest/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/m28150/latest/

Chapter 6 Classification of Database
Systems

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The database management systems can be classified based on several criteria.

6.1 Based on data model
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The most popular data model in use today is the relational data model. Well known
DBMSs like Oracle, MS SQL Server, DB2, MySQL support this model. Other traditional
models can be named hierarchical data model, or network data model. In the recent
years, we are getting familiar with object-oriented data models but these models have
not had widespread use. Some examples of Object-oriented DBMSs are O2,
ObjectStore or Jasmine.

6.2 Based on the number of users
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

We can have a single user database system which supports one user at a time or
multiuser systems which support multiple users concurrently.

6.3 Based on the ways database is distributed

6.3.1 Centralized Systems
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

With centralized database systems, the system is stored at a single site.

Fig. 6.1: Source: http://cnx.org/content/m28150/latest/

Chapter 6 18

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

6.3.2 Distributed database system
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Actual database and DBMS software are distributed in various sites connected by a
computer network.

Fig. 6.2: Source: http://cnx.org/content/m28150/latest/

6.3.3 Homogeneous distributed Database Systems
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Use the same DBMS software at multiple sites. Data is exchanged between various
sites and can be handled easily.

6.3.4 Heterogeneous distributed Database Systems
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Different sites might use different DBMS software. There is additional software to
support data exchange between sites.

Source: http://cnx.org/content/m28150/latest/

19

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 7 The Relational Data Model
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This data model is introduced by C.F.Codd in 1970. Currently, it is considered as the
most widely used data model.

The relational model has provided the basis for:

• Research on theory of data/relationship/constraint

• Numerous database design methodologies

• The standard database access language SQL

• Almost all modern commercial database management systems

The relational data model describes the world as “a collection of inter-related
relations (or tables) “

7.1 Fundamental concepts in Relational Data Model

7.1.1 Relation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A relation is a subset of the Cartesian product of a list of domains characterized by a
name. Given n domains denoted by D1, D2, …, Dn , r is a relation defined on these
domains if r?D1×D2×…×Dn. A relation can be viewed as a “table”. In that table, each
row represents a tuple of data values and each column represents an attribute.

Source: http://cnx.org/content/m28250/latest/

7.1.2 Table
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

To put it simply, a table holds the data. A database is composed of multiple tables. The
one below shows a database with three tables.

Chapter 7 20

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://cnx.org/content/m28250/latest/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Fig. 7.1:

7.1.3 Column
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A database stores pieces of information or facts in an organised way. Understanding
how to use and get the most out of databases requires us to understand that method
of organisation.

The principal storage units are called columns, or fields, or attributes. These will
house the basic components of data that your content can be broken down into.
When deciding which fields to create you need to think generically about your
information. For example, drawing out the common components of the information
that you will store in the database, and avoiding the specifics that distinguish one item
from another.

Look at the following example of an ID card to see the relationship between fields and
their data:

7.1.4 Domain
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A domain is the original sets of atomic values used to model data. By atomic, we mean
that each value in the domain is indivisible as far as the relational model is concerned.
For example:

21

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• The domain of Marital status has a set of possibilities: Married, Single, Divorced

• The domain of day Shift has the set of all possible days : {Mon, Tue, Wed…}.

• The domain of Salary is the set of all floating-point numbers greater than 0 and
less than 200,000.

• The domain of First Name is the set of character strings that represents names of
people.

In summary, a Domain is a set of acceptable values that a column is allowed to
contain. This is based on various properties and the data type for the column. We will
discuss data types in another chapter.

7.1.5 Records
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Just as the content of any one document or item needs to be broken down into its
constituent bits of data for storage in the fields, the link between them also needs to
be available so that they can be re-constituted into their whole form. Records allow us
to do this. A tuple is another term used for records.

A simple table gives us the clearest picture of how records and fields work together in
the database storage project. Records and fields form the basis of all databases.

Fig. 7.2:

The example above shows us how fields can hold a range of different sorts of data –
this one has:

• An ID field: ordinal number. integer

• A Pubdate field: day/month/year. date

• An author field: Initial. Surname. text

• A title field: text. •

• A body text field: text.

By creating fields especially for the sorts of data they will house, the database can sort
them intelligently. You can request a selection of records which are limited by their
date – all before a given date, or all after a given date or all between 2 given dates.

Chapter 7 22

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Similarly you can choose to have records sorted by date. What is happening here is
that the database is reading the information in the date field, not just as numbers
separated by slashes, but rather as dates which must be ordered according to a
calendar system – because the field was set up as a date field. You are commanding
the database to sift through its data and organise it in a particular way.

7.2 Degree
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The degree is the number of attributes. In our example above, the degree is 4.

7.3 Properties of Tables
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Table has a name that is distinct from all other tables in the database.

• There are no duplicate rows, each row is distinct.

• Entries in columns are atomic (no repeating groups or multivalued attributes)

• Entries from columns are from the same domain based on their data type:

number (numeric, integer, float, smallint,…)

character (string)

date

logical (true or false)

• Operations combining different data types are disallowed

• Each attribute has a distinct name

• sequence of columns is insignificant

• sequence of rows is insignificant

7.3.1 Terminology
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

We have used many different terms. Here is a summary. Alternative 1 is the most
common.

23

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 7 24

Chapter 8 Entity Relationship Model
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The Entity Relationship Data Model (ER) has existed for over 35 years.

The ER model is well-suited to data modelling for use with databases because it is
fairly abstract and is easy to discuss and explain. ER models are readily translated to
relations.

ER modelling is based on two concepts:

• Entities, that is, things. E.g. Prof. Ba, Course Database System.

• Relationships, that is, associations or interactions between entities.

E.g. Prof. Ba teaches course Database Systems ER models (or ER schemas) are
represented by ER diagrams.

The example database

For the next section we will look at a sample database called the COMPANY database
to illustrate the concepts of Entity Relationship Model.

This database contains the information about employees, departments and projects:

• There are several departments in the company. Each department has a unique
identification, a name, location of the office and a particular employee who
manages the department.

• A department controls a number of projects, each of which has unique name, a
unique number and the budget.

• Each employee has name, an identification number, address, salary, birthdate. An
employee is assigned to one department but can join in several projects.

• We need to record the start date of the employee in each project. We also need
to know the direct supervisor of each employee. We want to keep track of the
dependents of the employees. Each dependent has name, birthdate and
relationship with the employee.

8.1 Entity, Entity Set and Entity Type
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

An entity is an object in the real world with an independent existence and can be
differentiated from other objects

An entity might be

• An object with physical existence. E.g. a lecturer, a student, a car

25

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• An object with conceptual existence. E.g. a course, a job, a position

An Entity Type defines a collection of similar entities.

An Entity Set is a collection of entities of an entity type at a point of time. In ER
diagrams, an entity type is represented by a name in a box.

Fig. 8.1: Source: http://cnx.org/content/m28250/latest/

8.1.1 Types of Entities
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Independent entities, also referred to as Kernels, are the backbone of the database. It
is what other tables are based on. Kernels have the following characteristics:

• they are the ‘building blocks’ of a database

• the primary key may be simple or composite

• the primary key is not a foreign key

• they do not depend on another entity for their existence

Example: Customer table, Employee table, Product table
Dependent Entities, also referred to as derived, depend on other tables for their
meaning.

• Dependent entities are used to connect two kernels together.

• They are said to be existent dependent on two or more tables.

• Many to many relationships become associative tables with at least two foreign
keys.

• They may contain other attributes.

• The foreign key identifies each associated table.

• There are three options for the primary key:

• use a composite of foreign keys of associated tables if unique

• use a composite of foreign keys and qualifying column

• create a new simple primary key

Characteristic entities provide more information about another table. These entities
have the following characteristic.

Chapter 8 26

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• They represent multi-valued attributes.

• They describe other entities.

• They typically have a one to many relationship.

• The foreign key is used to further identify the characterized table.

• Options for primary key are as follows:

• foreign key plus a qualifying column

• or create a new simple primary key

• Employee(EID, Name, Address, Age, Salary)

• EmployeePhone(EID, Phone)

8.1.2 Attributes
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Each entity is described by a set of attributes. E.g. Employee = (Name, Address, Age,
Salary).

Each attribute has a name, associated with an entity and is associated with a domain
of legal values. However the information about attribute domain is not presented on
the ER diagram.

In the diagram, each attribute is represented by an oval with a name inside.

Fig. 8.2: Source: http://cnx.org/content/m28250/latest/

8.1.3 Types of Attributes
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are a few types of attributes you need to be familiar with. Some of these are to
be left as is, but some need to be adjusted to facilitate representation in the relational
model. This first section will discuss the types of attributes. Later on we will discuss
fixing the attributes to fit correctly into the relational model.

Simple attributes are attributes that are drawn from the atomic value domains

e.g. Name = {John} ; Age = {23} , also called Single valued. Composite
attributes: Attributes that consist of a hierarchy of attributes

27

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

e.g. Address may consists of “Number”, “Street” and “Suburb” → Address = {59 +
‘Meek Street’ + ‘Kingsford’}

Fig. 8.3: Source: http://cnx.org/content/m28250/latest/

Multivalued attributes: Attributes that have a set of values for each entity

e.g. Degrees of a person: ‘ BSc’ , ‘MIT’, ‘PhD’

Fig. 8.4: Source: http://cnx.org/content/m28250/latest/

Derived attributes: Attributes contain values that are calculated from other attributes

e.g. Age can be derived from attribute DateOfBirth. In this situation, DateOfBirth might
be called Stored Attribute.

Fig. 8.5: Source: http://cnx.org/content/m28250/latest/

Chapter 8 28

8.1.4 Keys
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

An important constraint on the entities is the key. The key is an attribute or a group of
attributes whose values can be used to uniquely identify an individual entity in an
entity set.

8.1.4.1 Candidate key

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• a simple or composite key that is unique and minimal

• unique – no two rows in a table may have the same value at any time

• minimal – every column must be necessary for uniqueness

• For example, for the entity

Employee(EID, First Name, Last Name, SIN, Address, Phone, BirthDate, Salary,
DepartmentID)

Possible candidate keys are EID, SIN

FirstName and Last Name – assuming there is no one else in the company with the
same name, Last Name and DepartmentID – assuming two people with the same last
name don’t work in the same depart ment.

EID, SIN are also candidate keys

8.1.4.2 Composite key

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Composed of more than one attribute

• For example, as discussed earlier

First Name and Last Name – assuming there is no one else in the company with the
same name, Last Name and Department ID – assuming two people with the same last
name don’t work in the same department.

• A composite key can have two or more attributes, but it must be minimal.

29

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

8.1.4.3 Primary key

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• A candidate key is selected by the designer to uniquely identify tuples in a table. It
must not be null.

• A key is chosen by the database designer to be used as an identifying mechanism
for the whole entity set. This is referred to as the primary key. This key is
indicated by underlining the attribute in the ER model.

• For example Employee(EID, First Name, Last Name, SIN, Address, Phone,
BirthDate, Salary, DepartmentID) -EID is the Primary key.

8.1.4.4 Secondary key

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• an attribute used strictly for retrieval purposes (can be composite), for example:
Phone number, Last Name and Phone number, etc.

• all other candidate keys not chosen as the primary key

• An attribute in one table that references the primary key of another table OR it
can be null.

• Both foreign and primary keys must be of the same data type

• For example: Employee(EID, First Name, Last Name, SIN, Address, Phone,
BirthDate, Salary, DepartmentID) -DepartmentID is the Foreign key. all other
candidate keys not chosen as the primary key

8.1.4.5 Alternate key

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• all other candidate keys not chosen as the primary key

8.1.4.6 Foreign key

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• An attribute in one table that references the primary key of another table OR it
can be null.

• Both foreign and primary keys must be of the same data type

Chapter 8 30

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• For example: Employee(EID, First Name, Last Name, SIN, Address, Phone,
BirthDate, Salary, DepartmentID) -DepartmentID is the Foreign key.

8.1.4.7 Nulls

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

This is a special symbol, independent of data type, which means either unknown or
inapplicable. (it does not mean zero or blank)

• No data entry

• Not permitted in primary key

• Should be avoided in other attributes

• Can represent

• An unknown attribute value

• A known, but missing, attribute value

• A “not applicable” condition

• Can create problems when functions such as COUNT, AVERAGE, and SUM
are used

• Can create logical problems when relational tables are linked

NOTE: the result of a comparison operation is null when either argument is null. The
result of an arithmetic operation is null when either argument is null (except functions
which ignore nulls)

PROBLEM: Find all employees (EMP#) in Sales whose salary plus commission is
greater than 30,000.

SELECT emp# FROM salary_tbl

WHERE jobname = ‘Sales’ AND

(commission + salary) > 30000 –> E10 and E12

This result does not include E13 because of the Null value in Commission. To ensure
the row with the null value is included, we need to look at the individual fields. By
adding commission and Salary for employee E13, the result will be a null value. The
solution is shown below.

31

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

SELECT emp# FROM salary_tbl

WHERE jobName = ‘Sales’ AND

(commission > 30000 OR salary > 30000 OR

(commission + salary) > 30000) –>E10 and E12 and E13

8.1.5 Entity Types

8.1.5.1 Existence Dependency

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• An entity’s existence is dependent on the existence of the related entity.

• It’s existence-dependent if it has a mandatory foreign key. That is a foreign key
attribute that cannot be null.

• Spouse entity is existence dependent on the employee

8.1.5.2 Weak Entities

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

These tables are existence dependent.
They cannot exist without entity with which it has a relationship.
Primary key is derived from the primary key of the parent entity

• The spouse table is a weak entity because its PK is dependent on the
employee table. Without a corresponding employee record, the spouse
record could not exist

8.1.5.3 Strong Entities

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• If an entity can exist apart from all of its related entities it’s considered a strong
entity.

• Kernels are strong entities.

• A table without a foreign key is or a table that contains a foreign key which can
contain NULLS is a strong entity.

Chapter 8 32

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

8.1.6 Relationships
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

These are the glue that holds the tables together. They are used to connect together
related information in other tables.

8.1.6.1 1:M relationship

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Should be the norm in any relational database design

• Relational database norm

• Found in any database environment

e.g. One department has many employees

Fig. 8.6: Source: http://cnx.org/content/m28250/latest/

8.1.6.2 1:1 relationship

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Should be rare in any relational database design

• One entity can be related to only one other entity, and vice versa

• Could indicate that two entities actually belong in the same table

e.g. A professor chairs one department and a department has only one chair.

8.1.6.3 1:1 Example:

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• An employee is associated with one spouse, and one spouse is associated with
one employee.

33

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Cannot be implemented as such in the relational model

• M:N relationships can be changed into two 1:M relationships

• Can be implemented by breaking it up to produce a set of 1:M relationships

• Can avoid problems inherent to M:N relationship by creating a composite entity
or bridge entity

• A student has many classes and a class can hold many students.

• Implementation of a composite entity

• Yields required M:N to 1:M conversion

• Composite entity table must contain at least the primary keys of original tables

• Linking table contains multiple occurrences of the foreign key values

• Additional attributes may be assigned as needed

8.1.6.4 M:N relationships

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Mapping M-N Binary Relationship Type: For each M-N Binary Relationship, identify two
relations A, B represent two entity type participating in R. Create a new relation S to
represent R. Include in S as foreign keys the primary keys of A and B and all the simple
attributes of R. The combination of primary keys of A and B will make the primary key
of S.

8.1.6.5 M:N relationships

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 8.7: Source: http://cnx.org/content/m28250/latest/

Chapter 8 34

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

8.1.7 Unary Relationships (recursive)
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

One in which a relationship exists between occurrences of the same entity set

The two keys (primary key and foreign key) are the same but they represents two
entities of different roles relate to this relationship.

In some entities, a separate column can be created that refers to the primary key of
the same entity set.

Fig. 8.8: Source: http://cnx.org/content/m28250/latest/

8.1.8 Ternary Relationships
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Mapping Ternary Relationship Type: For each n-ary (> 2) Relationships create a new
relation to represent the relationship. The primary key of the new relation is the
combination of the primary keys of the participating entities that hold the N (many)
side. In most cases of an n-ary relationship all the participating entities hold a many
side. Source: http://cnx.org/content/m28250/latest/

Fig. 8.9: Source: http://cnx.org/content/m28250/latest/

35

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

8.1.9 Relationship Strength
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Relationship strength is based on how the primary key of a related entity is defined.

Weak Relationships (non-identifying relationship)

• Exists if the PK of the related entity does not contain a PK component of the
parent entity.

• Customer(custid, custname)

• Order(orderID, custid, date)

Strong Relationship (identifying)

• Exists when the PK of the related entity contains the PK component of the parent
entity.

• Course(CrsCode, DeptCode, Description)

• Class(CrsCode, Section, ClassTime…)

Chapter 8 36

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 9 Integrity Rules and
Constraints

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Constraints are a very important feature in a relational model. In fact, the relational
model supports well defined theory of constraints on attributes or tables. Constraints
are useful because they allow a designer to specify the semantics of data in the
database and constraints are the rules to enforce DBMSs to check that data satisfies
the semantics.

9.1 Domain Integrity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Domain restricts the values of attributes in the relation and it is a constraint of the
relational model. However, there are real –world semantics on data that cannot
specified if used only with domain constraints. We need more specific ways to state
what data values are/are not allowed and what format is suitable for an attributes. For
example, the employee ID must be unique, the employee birthday is in the range [Jan
1, 1950, Jan 1, 2000]. Such information is provided in logical statements called integrity
constraints.

There are several kinds of integrity constraints:

Entity Integrity – Every table requires a primary key. The primary key, nor any part of
the primary key, can contain NULL values. This is because NULL values for the primary
key means we cannot identify some rows. For example, in the EMPLOYEE table, Phone
cannot be a key since some people may not have a phone.

Referential integrity – a foreign key must have a matching primary key or it must be
null

This constraint is specified between two tables (parent and child); it maintains the
correspondence between rows in these tables. It means the reference from a row in
one table to other table must be valid. Examples of Referential integrity constraint:

9.2 Referential integrity Examples
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In the Customer/Order database:

• Customer(custid, custname)

• Order(orderID, custid, OrderDate)

37

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

To ensure that there are no orphan records, we need to enforce referential integrity.
An orphan record is one whose foreign key value is not found in the corresponding
entity – the entity where the PK is located. Recall that a typical join is between a PK and
FK.
The referential integrity constraint states that the CustID in the Order table must
match a valid CustiD in the Customer table. Most relational databases have declarative
referential integrity. In other words, when the tables are created the referential
integrity constraints are set up.
In the Course/Class database:

• Course(CrsCode, DeptCode, Description)

• Class(CrsCode, Section, ClassTime)

The referential integrity constraint states that CrsCode in the Class table must match a
valid CrsCode in the Course table. In this situation, it’s not enough that the CrsCode
and Section in the Class table make up the PK, we must also enforce referential
integrity.

When setting up referential integrity it is important that the PK and FK have the same
data types and come from the same domain. Otherwise the RDBMS will not allow the
join.

9.3 Referential Integrity in MS Access
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

In MS Access referential integrity is set up by joining the PK in the Customer table to
the CustID in the Order table.

9.4 Referential Integrity using Transact SQL (MS SQL
Server)

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

CREATE TABLE Customer

Chapter 9 38

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

(CustID INTEGER PRIMARY KEY, CustName CHAR(35))

CREATE TABLE Orders

(OrderID INTEGER PRIMARY KEY, CustID INTEGER REFERENCES Customer(CustID),
OrderDate DATETIME)

The referential integrity is set when creating the table (Orders) with the FK.

9.5 Foreign Key Rules
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Additional foreign key rules may be added, such as what to do with the child rows
(Orders table) when the record with the PK – the parent (Customer) is deleted or
changed (updated). The relationship window in Access shows two additional options
for foreign keys rules. Cascade Update and Cascade Delete. If they are not selected,
the system would prevent the deletion or update of PK values in the parent table (Cus
tomer) if a child record exists. The child record is any record with a matching PK.

DELETE

• RESTRICT

• CASCADE

• SET TO NULL

UPDATE

• RESTRICT

• CASCADE

In some databases, an additional option exists when selecting the Delete option. That
is ‘Set to Null’. In these situations, the PK row is deleted, but the FK in the child table is
set to Null. Though this creates an orphan row, it is acceptable.

Enterprise Constraints – sometimes referred to as Semantic constraints. They are
additional rules specified by users or database administrators. i.e. A class can have a
maximum of 30 students. A teacher can teach a maximum of 4 classes a semester. An
employee cannot take a part in more than 5 projects. Salary of an employee cannot
exceed the salary of the employee’s manager.

9.5.1 Business Rules
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Another term we’ve used is semantics. Business rules are obtained from users when
gathering requirements. The requirements gathering process is very important and
should be verified by the user before the database design is built. If the business rules

39

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

are incorrect, the design will be incorrect and ultimately the application built will not
function as expected by the users.

Some examples of business rules are:

• A teacher can teach many students

• A class can have a maximum of 35 students

• A course can be taught many times, but by only one instructor

• Not all teachers teach classes, etc.

9.6 Cardinality
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Expresses minimum and maximum number of entity occurrences associated with one
occurrence of related entity. Business rules are used to determine cardinality.

9.6.1 Relationship Participation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

There are two sides to each of the relationships when it comes to participation. Each
side can have two options for participation. It is either 0 (zero), 1 (one), or many. The
outer most symbol represents the con nectivity. i.e. one to many would be
represented by

The inner most symbols represent the cardinality which indicates the minimum
number of instances in the corresponding entity. i.e. on the right hand side it is read
as: minimum 1 maximum many. On the left hand side it’s read as minimum 1 and
maximum 1. See below for more examples.

Chapter 9 40

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

9.7 Optional
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

One entity occurrence does not require a corresponding entity occurrence in a
relationship

This shows a zero or many. The many side is optional.

Fig. 9.1:

This can also be read as:

Right hand side: A customer can be in a minimum of 0 orders or a maximum of many
orders. Left hand side: The order entity must contain a minimum of one related
entity in the customer table and a maximum of 1 related entity.

This shows a zero or one. The 1 side is optional.

9.8 Mandatory
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

One entity occurrence requires a corresponding entity occurrence in a relationship

This example shows one or many. The many side is mandatory.

41

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Fig. 9.2:

This example shows one or many. The many side is mandatory.

Fig. 9.3:

So far we have seen that the right hand side can have

a 0 (zero) cardinality and a connectivity of many or one.

The left hand side can also have a cardinality

of 0 (zero).

However, it cannot have a connectivity of 0 only 1 (as shown). The connectivity
symbols show maximums. So if you think about it logically, if the connectivity symbol
on the left hand side shows 0, then there would be no connection between the tables.
The way to read the left hand side is: The CustID in the Order table must be found in
the Customer table a minimum of 0 and a maximum of 1 time. The 0 means that the
CustID in the Order table may be null. The left most 1 (right before the 0 representing
connectiv ity) says that if there is a CustID in the Order table it can only be in the
Customer table once. When you see the 0 symbol for cardinality you can assume two

Chapter 9 42

things. The FK in the Order table allows nulls, and the FK is not part of the PK since PKs
must not contain null values.

Fig. 9.4:

9.8.1 Relationship Types
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

You may have noticed in the previous image is the dashed line that connects the two
tables. This is referred as the relationship type. It’s either identifying or non-
identifying. Please see the section that discussed weak and strong relationships for
more explanation. The only thing you need to understand for this section is the way
the relationship is depicted in the ERD. Identifying relationships will have a solid line
(PK contains the FK). The non-Identifying relationship does not contain the FK in the
PK.

Fig. 9.5:

43

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 10 ER Modelling
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

One important theory developed for the relational model involves the notion of
functional dependency (fd). Like constraints, functional dependencies are drawn from
the semantics of the application domain. Essentially, fd’s describe how individual
attributes are related. Functional dependencies are a kind of constraint among
attributes within a relation and that have implications for “good” relational schema
design. Here we will look at:

• basic theory and definition of functional dependencies

• methodology for improving schema designs (normalization)

The aim of studying this is to improve understanding of relationships among data and
to gain enough formalism to assist practical database design.

10.1 Relational Design and Redundancy
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Generally, a good relational database design must capture all of the necessary
attributes/associations and should do this with a minimal amount of stored
information (it means there is no redundant data).

In database design, redundancy is generally a “bad thing” because it causes problems
maintaining consistency after updates. However, it can sometimes lead to
performance improvements e.g. may be able to avoid a join to collect bits of data
together.

Consider the following table defining bank accounts/branches:

Fig. 10.1: Source: http://cnx.org/content/m28252/latest/

Chapter 10 44

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

10.2 Insertion anomaly
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

When we insert a new record, we need to check that branch data is consistent with
existing rows.

Fig. 10.2: Source: http://cnx.org/content/m28252/latest/

10.3 Update anomaly
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If a branch changes address, we need to update all rows referring to that branch.

Fig. 10.3: Source: http://cnx.org/content/m28252/latest/

10.4 Deletion anomaly
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If we remove information about the last account at a branch (Downtown), all of the
branch information disappears

45

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Fig. 10.4: Source: http://cnx.org/content/m28252/latest/

The problem is that after deleting the row, we don’t know where the Downtown
branch is located and we lose all information regarding customer ‘1313131’. To avoid
these kinds of update/delete problems we need to decompose the original table into
several smaller tables where each table has minimal overlap with other tables.
Typically, each table contains information about one entity (e.g. branch, customer, …)

The Bank Accounts tables should appear as follows

Fig. 10.5:

This will ensure that when branch information is added or updated it will only affect
one record. When customer information is added or deleted, the Branch information
will not be accidently modified or incorrectly recorded.

Source: http://cnx.org/content/m28252/latest/

Another Example:

Employee Project Table

Assumptions: EmpID and ProjectID is a composite PK

Project ID determines Budget. i.e. Project P1 has a budget of 32 hours.

Fig. 10.6:

Chapter 10 46

http://http://cnx.org/content/m28252/latest/

Let’s look at some possible anomalies: Add row {S85,35,P1,9) Problem: Two tuples
with conflicting budgets Delete tuple {S79, 27, P3, 1} Problem: Deletes the budget of
project P3 Update tuple {S75, 32, P1, 7} to {S75, 35, P1, 7) Problem: Two tuples with
different values for project P1’s budget To fix this, we need a table for employees and
a table for projects.

Fig. 10.7:

Tables with Data

Fig. 10.8:

1. No anomalies will be created if a budget is changed

2. No dummy values are needed for projects that have no employees assigned

3. If an employee’s contribution is deleted, no important data is lost

4. No anomalies are created if an employee’s contribution is added.

The best approach to creating tables without anomalies is to ensure tables are
normalized and that’s accomplished by understanding functional dependencies (FD).
FD ensures that all attributes in a table belong to that table. In other words, it will
eliminate redundancies and anomalies.

47

Chapter 11 Functional Dependencies
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A functional dependency is a relationship between two attributes. Typically between
the PK and other non-key attributes with in the table. For any relation R, attribute Y is
functionally dependent on attribute X (usually the PK), if for every valid instance of X,
that value of X uniquely determines the value of Y.

X ———–> Y
The left-hand side of the FD is called the determinant, and the right-hand side is the
dependent.
Examples:
SIN ———-> Name, Address, Birthdate
SIN determines names and address and birthdays. Given SIN, we can determine any
of the other at tributes within the table.

Sin, Course ———> DateCompleted
Sin and Course determine date completed. This must also work for a composite PK.
ISBN ———–> Title
ISBN determines title.

11.1 Rules of Functional Dependencies
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Consider the following instance r(R) of the relation schema R(ABCDE):

Fig. 11.1:

What kind of dependencies can we observe among the attributes in Table R?

• Since the values of A are unique, it follows from the FD definition that:

• A →B, A →C, A →D, A →E

Chapter 11 48

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• It also follows that A →BC (or any other subset of ABCDE).

• This can be summarized as A →BCDE

• From our understanding of primary keys, A is a Primary Key.

• Since the values of E are always the same, it follows that: A →E, B →E, C →E, D →E
However, we cannot generally summarized above by ABCD →E In general, A →E,
B →E AB →E

Other observations:

combinations of BC are unique, therefore BC →ADE
combinations of BD are unique, therefore BD →ACE
if C values match, so do D values, therefore C →D however, D values don’t determine
C values, so C does not determine D, and D does not determine C.

When looking at the data, it makes a lot more sense in terms of which attributes are
dependent and which are determinants.

11.2 Inference Rules
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Armstrong’s axioms are a set of axioms (or, more precisely, inference rules) used to
infer all the functional dependencies on a relational database. They were developed
by William W. Armstrong.

Let R(U) be a relation scheme over the set of attributes U. We will use the letters X, Y, Z
to represent any subset of and, for short, the union of two sets of attributes and by
instead of the usual X U Y.

Source: http://en.wikipedia.org/wiki/Armstrong%27s_axioms

11.2.1 Axiom of reflexivity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If Y is a subset of X, then X determines Y

e g. PartNo —> NT123 – composed of category (NT) and partID (123)

X X Y

49

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://en.wikipedia.org/wiki/Armstrong%27s_axioms
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

11.2.2 Axiom of augmentation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• Also known as a Partial dependency

Studentno, course —> studentName, address, city, prov, pc, grade, dateCompleted

This situation is not desirable, because every non key attribute has to be fully
dependent on the PK. In this situation Student information is only ‘partially’ dependent
on the PK; StudentNo.

To fix this problem, we need to break down the table into two as follows:
StudentNo, course à grade, dateCompleted
StudentNo à studentName, address, city, prov, pc

11.2.3 Axiom of transitivity
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

If X determines Y and Y determines Z, then X must also determine Z.
StudentNoàstudentName,address, city, prov, pc, ProgramID, ProgramName
X Y Z
This situation is not desirable, because a non key attributes depends on another non
key attribute.
To fix this problem, we need to break this table into two; one to hold information
about the student and the other to hold information about the program. However we
still need to leave a FK in the student table, so that we can determine which program
the Student is enrolled in.

StudentNo—> studentName,address, city, prov, pc, ProgramID

ProgramID —> ProgramName

11.3 Additional rules

11.3.1 Union
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 11.2:

If X determines Y and X determines Z then X must also determines Y and Z.

Chapter 11 50

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

This is suggesting that if two tables are separate, and the PK is the same, you may
want to consider putting them together.

SIN —> EmpName

SIN —> SpouseName

You may want to join these two tables into one.

SIN –> EmpName, SpouseName

Some DBAs would leave them separated for a couple of reasons. They describes two
entities, so should be separated. If in one table, the spouse name may be left NULL
most of the time, so there is no need to have it in the same table.

11.3.2 Decomposition
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 11.3:

If X determines Y and Z, then X determines Y and X determines Z separately. This is the
reverse of Union. If you have a table that appears to contain two entities that are
determined by the same PK, consider breaking them up into two tables.

11.4 Dependency Diagram
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Fig. 11.4:

A dependency diagram illustrates the various dependencies that may exist in a non
normalized table. The following dependencies are identified:

ProjectNo, and EmpNo combined is the PK.

Partial Dependencies:

ProjectNo —> ProjName

EmpNo —> EmpName, DeptNo, HrsWork

Transitive Dependency:

DeptNo —> DeptName

51

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 12 Normalization
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Normalization is the branch of relational theory providing design insights. The goals of
normalization are:

• be able to characterize the level of redundancy in a relational schema

• provide mechanisms for transforming schemas to remove redundancy

Normalization draws heavily on the theory of functional dependencies. Normalization
theory defines six normal forms (NFs). Each normal form involves a set of dependency
properties that a schema must satisfy and each gives guarantees about presence/
absence of update anomalies. That means higher normal forms have less redundancy
so less update problems.

12.1 Normal Forms
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

All the tables in any database can be in one of the normal forms we will discuss next.
Normalization is the process of determining how much redundancy exists in your
tables. Idealy we only want minimal redun dancy. That is PK to FK. Everything else
should be derived from other tables. There are 6 normal forms, but we will only look
at the first 4. The last two are rarely used.

1stNormal Form

2ndNormal Form

3rdNormal Form

BCNF

First Normal Form

In the first normal form only single values are permitted at the intersection of each
row and column hence, there are no repeating groups.

To normalize a relation that contains a repeating group, remove the repeating group
and form two new relations.

The primary key of the new relation is a combination of the primary key of the original
relation plus an attribute from the newly created relation for unique identification.

Chapter 12 52

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.1.1 School database
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Student_Grade_Report(Studentno, student_name, major,course_no, course_name,
instructor_no, instructor_name, instructor_location, grade)

12.1.1.1 Process for 1NF

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• In the Student Grade Report table the repeating group is the course information.
A student can take many courses.

• Remove the repeating group. In this case it’s the Course information for each
student.

• Identify the Primary Key in your new table.

• Primary key must uniquely identify attribute value (StudentNo, and CourseNo)

• After removing all the attributes related to the Course and Student, what’s left is
the Student_course table. Student (Student_no,student_name,major)

• The Student table is in First Normal Form (repeating group removed)

Student (Student_no, student_name, major) Student_Course(Studentno, course_no,
course_name,instructor_no,instructor_name, instructor_location, grade)

12.1.1.2 Update anomalies in 1st normal form

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Student_Course(Studentno, course_no, course_name, instructor_no, instructor_name,
instructor_location, grade)

• To add a new course, we need a student

• When Course information needs to be updated, we may have inconsistencies

• To delete a student, we might also delete critical information about a course

12.2 2nd Normal Form
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• The relation must first be in 1stNF.

53

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• The relation is automatically in 2ndNF, if and only if the primary key comprises a
single attribute.

• If the relation has a composite primary key, then each non-key attribute must be
fully dependent on the entire primary key and not on a subset of the primary key
(i.e. there must be no partial dependency – augmentation).

12.2.1 Process for 2NF
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• To move on to 2ndNF, the table must be in 1stNF.

• The student table is already in 2ndNF because it has a single column PK.

• When examining the Student Course table, we see that not all the attributes are
fully dependent on the PK. Specifically, all course information. The only attribute
that is fully dependent is grade.

• Identify the new table that contains the course information.

• Identify the PK for the new table.

Student (Studentno,student_name,major)

Course_Grade(studentno,course_no,grade)
Course_Instructor(Course_no, course_name, instructor_no, instructor_name,
instructor_location)

12.2.2 Update anomalies in 2nd normal form
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• When adding a new instructor we need a course

• Updating course information could lead to inconsistencies for instructor
information

• Deleting a course may also delete instructor information

12.3 3rd Normal Form

12.3.1 Remove Transitive Dependencies
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

• The relation has to be in 2nd normal form.

Chapter 12 54

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Remove all transitive dependencies – a non-key attribute may not be functionally
dependent on another non-key attribute

• Eliminate all dependent attributes in transitive relationship(s) from each of the
tables that have a transitive relationship

• Create new table(s) with removed dependency.

• Check new table(s) as well as table(s) modified to make sure that each table has
determinant and that no table contains inappropriate dependencies

Student (Studentno, student_name, major)
Course_Grade (Studentno, course_no, grade)
Course (Course_no,course_name,instructor_no)
Instructor (Instructor_no, instructor_name, instructor_location)

12.3.1.1 Update anomalies in 3rd normal form

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

At this stage there should be no anomalies in 3rd normal form.

Lets look at the dependency diagrams for this example.

The first step is to remove repeating groups. As discussed above.

Student (Student_no, student_name, major)

Student_Course (Studentno, course_no, course_name,instructor_no,instructor_name,
instructor_location, grade)

To recap the normalization process for the School database, the following
dependencies are shown in the diagram:

Fig. 12.1:

PD – Partial Dependency

TD – Transitive Dependency
FD – Full Dependency

55

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

12.3.2 Boyce-Codd Normal Form (BCNF)
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

When a table has more than one candidate key, anomalies may result even though
the relation is in 3NF. Boyce-Codd normal form is a special case of 3NF. A relation is in
BCNF if and only if every determinant is a candidate key.

Consider the following table

St_Maj_Adv table

Semantic Rules:

Each student may major in several subjects
For each major, a given student has only one advisor
Each major has several advisors
Each advisor advises only one major
Each advisor advises several students in one major

Functional dependencies:

Fd1: Student_id,Major ——> Advisor (candidate Key)

Fd2: Advisor ——> Major (not a candidate key)

ANOMALIES

Deleting student deletes advisor info

Insert a new advisor – need a student

Update – inconsistencies

Chapter 12 56

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Note: no single attribute is a candidate key

Primary key can be student_id,major or student_id,advisor

To reduce the St_Maj_Adv relation to BCNF, create two new tables:

1. St_Adv (Student_id,Advisor)

2. Adv_Maj (Advisor,Major)

St_Adv

Adv_Maj

57

12.3.3 BCNF Example 2
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Client Interview Table

Fd1 – ClientNo, InterviewDate –> interviewTime, staffNo, roomNo (PK)
Fd2 – staffNo, InterviewDate, InterviewTime –> ClientNO (CK)
Fd3 – roomNo, InterviewDate, InterviewTime –> StaffNo, clientNo (CK)
Fd4 – staffNo, interviewDate –> roomNo
A relation is in BCNF if and only if every determinant is a candidate key. We need to

create a table that incorporates the first 3 Fds and another table for the 4thFd.

Interview

StaffRoom

Chapter 12 58

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Fig. 12.2: Source: http://db.grussell.org/section008.html

12.3.3.1 Normalization and Database Design

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Normalization should be part of design process. Make sure that proposed entities
meet required normal form before table structures are created. Many real-world
databases have been improperly designed or burdened with anomalies if improperly
modified during the course of time. You may be asked to redesign and modify existing
databases. This could be a really big endeavor if the tables are not properly
normalized.

Use an Entity Relation Diagram (ERD) to provide a big picture. The ERD shows a macro
view of an organization’s data requirements and operations. The ER Diagram is
created through an iterative process which involves identifying relevant entities, their
attributes and their relationships.

Normalization procedure focuses on characteristics of specific entities and it
represents the micro view of entities within ERD.

It is difficult to separate normalization process from ER modeling process. The two
techniques should be used concurrently.

59

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 13 Database Development
Process

Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A core aspect of software engineering is the subdivision of the development process
into a series of phases, or steps, each of which focuses on one aspect of the
development. The collection of these steps is sometimes referred to as a development
life cycle. The software product moves through this life cycle (sometimes repeatedly as
it is refined or redeveloped) until it is finally retired from use. Ideally, each phase in the
life cycle can be checked for correctness before moving on to the next phase.

Fig. 13.1: Source: http://www.oercommons.org/courses/the-database-development-life-cycle/view

13.1 SDLC – Waterfall
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The waterfall figure above illustrates a general waterfall model which could apply to
any computer system development. It shows the process as a strict sequence of steps
where the output of one step is the input to the next and all of one step has to be
completed before moving onto the next.

We can use the waterfall process as a means of identifying the tasks that are required,
together with the input and output for each activity. What is important is the scope of
the activities, which can be summarised as follows:

• Establishing requirements involves consultation with, and agreement among,
stakeholders as to what they want of a system, expressed as a statement of
requirements.

Chapter 13 60

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

• Analysis starts by considering the statement of requirements and finishes by
producing a system specification. The specification is a formal representation of
what a system should do, expressed in terms that are independent of how it may
be realized.

• Design begins with a system specification and produces design documents, and
provides a detailed description of how a system should be constructed.

• Implementation is the construction of a computer system according to a given
design document and taking account of the environment in which the system will
be operating (for example specific hardware or software available for the
development). Implementation may be staged, usually with an initial system than
can be validated and tested before a final system is released for use.

• Testing compares the implemented system against the design documents and
requirements specification and produces an acceptance report or, more usually, a
list of errors and bugs that require a review of the analysis, design and
implementation processes to correct (testing is usually the task that leads to the
waterfall model iterating through the life cycle).

• Maintenance involves dealing with changes in the requirements, or the
implementation environment, bug fixing or porting of the system to new
environments (for example migrating a system from a standalone PC to a UNIX
workstation or a networked environment). Since maintenance involves the
analysis of the changes required, design of a solution, implementation and testing
of that solution over the lifetime of a maintained software system, the waterfall
life cycle will be repeatedly revisited.

http://cnx.org/content/m28139/latest/

13.2 Database Life Cycle
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

We can use the waterfall cycle as the basis for a model of database development
which incorporates three assumptions:

• We can separate the development of a database – that is, specification and
creation of a schema to define data in a database – from the user processes that
make use of the database.

• We can use the three-schema architecture as a basis for distinguishing the
activities associated with a schema.

• We can represent the constraints to enforce the semantics of the data once,
within a database, rather than within every user process that uses the data.

http://www.oercommons.org/courses/the-database-development-life-cycle/view

61

http://cnx.org/content/m28139/latest/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.oercommons.org/courses/the-database-development-life-cycle/view

Fig. 13.2: Source: http://www.oercommons.org/courses/the-database-development-life-cycle/view

Using these assumptions, the diagram above represents a model of the activities and
their outputs for database development. It is applicable to any class of DBMS
(database management system), not just a relational approach.

http://cnx.org/content/m28139/latest/

Database Application Development is the process of obtaining real-world
requirements, analyzing requirements, designing the data and functions of the system
and then implementing the operations in the system.

http://www.oercommons.org/courses/the-database-development-life-cycle/view

13.3 Requirements gathering
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

The first step is Requirements Gathering. During this step, the database designers
have to interview the customers (database users) to understand the proposed system,
obtain and document the data and functional requirements. The result of this step is a
document including the detail requirements provided by the users.

Establishing requirements involves consultation with, and agreement among, all the
users as to what persistent data they want to store along with an agreement as to the
meaning and interpretation of the data elements. The data administrator plays a key
role in this process as they overview the business, legal and ethical issues within the
organization that impact on the data requirements.

The data requirements document is used to confirm the understanding of
requirements with users. To make sure that it is easily understood, it should not be
overly formal or highly encoded. The document should give a concise summary of all
users’ requirements – not just a collection of individuals’ requirements – as the
intention is to develop a single shared database.

Chapter 13 62

http://cnx.org/content/m28139/latest/
http://www.oercommons.org/courses/the-database-development-life-cycle/view
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

The requirements should not describe how the data is to be processed, but rather
what the data items are, what attributes they have, what constraints apply and the
relationships that hold between the data items.

13.4 Analysis
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Data analysis begins with the statement of data requirements and then produces a
conceptual data model. The aim of analysis is to obtain a detailed description of the
data that will suit user requirements so that both high and low level properties of data
and their use are dealt with. These include properties such as the possible range of
values that can be permitted for attributes such as, in the School Database example;
for instance, the Student course code, course title and credit points.

The conceptual data model provides a shared, formal representation of what is being
communicated between clients and developers during database development – it is
focused on the data in a database, irrespective of the eventual use of that data in user
processes or implementation of the data in specific computer environments.
Therefore, a conceptual data model is concerned with the meaning and structure of
data, but not with the details affecting how they are implemented.

The conceptual data model then is a formal representation of what data a database
should contain and the constraints the data must satisfy. This should be expressed in
terms that are independent of how the model may be implemented. As a result,
analysis focuses on ‘What is required?’ not ‘How is it achieved?

http://www.oercommons.org/courses/the-database-development-life-cycle/view

13.5 Logical Design
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Database design starts with a conceptual data model and produces a specification of a
logical schema; this will determine the specific type of database system (network,
relational, object-oriented) that is required. The relational representation is still
independent of any specific DBMS, it is another conceptual data mod el.

We can use a relational representation of the conceptual data model as input to the
logical design process. The output of this stage is a detailed relational specification,
the logical schema, of all the tables and constraints needed to satisfy the description
of the data in the conceptual data model. It is during this design activity that choices
are made as to which tables are most appropriate for representing the data in a
database. These choices must take into account various design criteria including, for
example, flexibility for change, control of duplication and how best to represent the
constraints. It is the tables defined by the logical schema that determine what data are
stored and how they may be manipulated in the database.

63

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.oercommons.org/courses/the-database-development-life-cycle/view
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Database designers familiar with relational databases and SQL might be tempted to
go directly to implementation after they have produced a conceptual data model.
However, such a direct transformation of the relational representation to SQL tables
does not necessarily result in a database that has all the desirable properties:
completeness, integrity, flexibility, efficiency and usability. A good conceptual data
model is an essential first step towards a database with these properties, but that does
not mean that the direct transformation to SQL tables automatically produces a good
database. This first step will accurately represent the tables and constraints needed to
satisfy the conceptual data model description, and so satisfies the completeness and
integrity requirements, but it may be inflexible or offer poor usability. The first design
is then flexed to improve the quality of the database design. Flexing is a term that is
intended to capture the simultaneous ideas of bending something for a different
purpose and weakening aspects of it as it is bent.

The figure below summarizes the iterative (repeated) steps involved in database
design, based on the overview given. Its main purpose is to distinguish the general
issue of what tables should be used from the detailed definition of the constituent
parts of each table – these tables are considered one at a time, although they are not
independent of each other. Each iteration that involves a revision of the tables would
lead to a new design; collectively they are usually referred to as second-cut designs,
even if the process iterates for more than a single loop.

http://www.oercommons.org/courses/the-database-development-life-cycle/view

Fig. 13.3: Source: http://www.oercommons.org/courses/the-database-development-life-cycle/ view

First, for a given conceptual data model it is not necessary that all the user
requirements it represents have to be satisfied by a single database. There can be
various reasons for the development of more than one database, such as the need for
independent operation in different locations or departmental control over ‘their’ data.
However, if the collection of databases contains duplicated data and users need to
access data in more than one database, then there are possible reasons that the one
database can satisfy multiple requirements or issues related to data replication and
distribution need to be examined.

Chapter 13 64

http://www.oercommons.org/courses/the-database-development-life-cycle/view

Second, one of the assumptions about database development is that we can separate
the development of a database from the development of user processes that make
use of it. This is based on the expectation that, once a database has been
implemented, all data required by currently identified user processes have been
defined and can be accessed; but we also require flexibility to allow us to meet future
requirements changes. In developing a database for some applications it may be
possible to predict the common requests that will be presented to the database and
so we can optimize our design for the most common requests.

Third, at a detailed level, many aspects of database design and implementation
depend on the particular DBMS being used. If the choice of DBMS is fixed or made
prior to the design task, that choice can be used to determine design criteria rather
than waiting until implementation. That is, it is possible to incorporate design
decisions for a specific DBMS rather than produce a generic design and then tailor it
to the DBMS during implementation.

It is not uncommon to find that a single design cannot simultaneously satisfy all the
properties of a good database. So it is important that the designer has prioritized
these properties (usually using information from the requirements specification), for
example, to decide if integrity is more important than efficiency and whether usability
is more important than flexibility in a given development.

At the end of our design stage the logical schema will be specified by SQL data
definition language (DDL) statements, which describe the database that needs to be
implemented to meet the user requirements.

http://www.oercommons.org/courses/the-database-development-life-cycle/view

13.6 Implementation
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

Implementation involves the construction of a database according to the specification
of a logical schema. This will include the specification of an appropriate storage
schema, security enforcement, external schema, and so on. Implementation is heavily
influenced by the choice of available DBMS, database tools and operating
environment. There are additional tasks beyond simply creating a database schema
and implementing the constraints – data must be entered into the tables, issues
relating to the users and user processes need to be addressed and the management
activities associated with wider aspects of corporate data management need to be
supported. In keeping with the DBMS approach we want as many of these concerns as
possible to be addressed within the DBMS. We look at some of these concerns briefly
now.

In practice, implementation of the logical schema in a given DBMS requires a very
detailed knowledge of the specific features and facilities that the DBMS has to offer. In
an ideal world, and in keeping with good software engineering practice, the first stage
of implementation would involve matching the design requirements with the best
available implementing tools and then using those tools for the implementation. In

65

http://www.oercommons.org/courses/the-database-development-life-cycle/view
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

database terms, this might involve choosing vendor products who’s DBMS and SQL
variants are most suited to the database we need to implement. However, we don’t
live in an ideal world and more often than not, hardware choice and decisions
regarding the DBMS will have been made well in advance of consideration of the
database design. Consequently, implementation can involve additional flexing of the
design to overcome any software or hardware limitations.

13.7 Realising the design
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

After the Logical Design has been created, we need our database to be created
according to the definitions we have produced. For an implementation with a
relational DBMS, this will probably involve the use of SQL to create tables and
constraints that satisfy the logical schema description and the choice of appropriate
storage schema (if the DBMS permits that level of control).

One way to achieve this is to write the appropriate SQL DDL statements into a file that
can be executed by a DBMS so that there is an independent record, a text file, of the
SQL statements defining the database. Another method is to work interactively using a
database tool like SQL Server Management Studio or Microsoft Access. Whatever
mechanism is used to implement the logical schema, the result is that a database,
with tables and constraints, is defined but will contain no data for the user processes.

13.8 Populating the database
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

After a database has been created, there are two ways of populating the tables –
either from existing data, or through the use of the user applications developed for
the database.

For some tables, there may be existing data from another database or data files. For
example, in establishing a database for a hospital you would expect that there are
already some records of all the staff that have to be included in the database. Data
might also be bought in from an outside agency (address lists are frequently brought
in from external companies) or produced during a large data entry task (converting
hard-copy manual records into computer files can be done by a data entry agency). In
such situations the simplest approach to populate the database is to use the import
and export facilities found in the DBMS.

Facilities to import and export data in various standard formats are usually available
(these functions are also known in some systems as loading and unloading data).
Importing enables a file of data to be copied directly into a table. When data are held
in a file format that is not appropriate for using the import function then it is
necessary to prepare an application program that reads in the old data, transforms
them as necessary and then inserts them into the database using SQL code
specifically produced for that purpose. The transfer of large quantities of existing data

Chapter 13 66

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

into a database is referred to as a bulk load. Bulk loading of data may involve very
large quantities of data being loaded, one table at a time so you may find that there
are DBMS facilities to postpone constraint checking until the end of the bulk loading.

http://www.oercommons.org/courses/the-database-development-life-cycle/view

13.9 Guidelines For Developing An ER Diagram
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

NOTE: These are general guidelines which will assist in developing a strong basis for
the actual database design (the logical model)

• Document all entities discovered during the information gathering stage.

• Document all attributes that belong to each entity. Select candidate and primary
keys. Ensure that all non-key attributes for each entity are full-functionally
dependent on the primary key.

• Develop an initial E-R diagram and review with appropriate personnel.
(Remember that this is an iterative process).

• Create new entities (tables) for multi-valued attributes and repeating groups.
Incorporate these new entities (tables) in the E-R diagram. Review with
appropriate personnel.

• Verify E-R modeling by normalizing tables.

67

http://www.oercommons.org/courses/the-database-development-life-cycle/view
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Chapter 14 Database Users

14.1 End users
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

These are people whose jobs require access to a database for querying, updating and
generating reports.

An end user might be one of the following:

The application user uses the existing application programs to perform their daily
tasks.

Sophisticated users are those who have their own way of accessing the database. This
mean they do not use the application program provided in the system. Instead, they
might define their own application or describe their need directly using query
languages. Specialized users maintain their personal database by using ready –made
program packages that provide easy-to-use menu driven commands – such as MS
Access.

14.2 Application Programmers
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

People implement specific application programs to access to the stored data. This kind
of user needs to be familiar with the DBMSs to accomplish their task.

14.3 Database Administrators
Available under Creative Commons-ShareAlike 4.0 International License (http://

creativecommons.org/licenses/by-sa/4.0/).

A person or a group of people in the organization who is responsible for authorizing
the access to the database, monitoring its use and managing all the resource to
support the use of the whole database system.

Chapter 14 68

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	1 Before the Advent of Database Systems
	1.1 File-based approach for banking system
	1.2 Data Redundancy
	1.3 Data Isolation
	1.4 Integrity problems
	1.5 Security problems
	1.6 Concurrency – access anomalies
	1.7 Database Approach
	1.8 Role of databases in Business
	1.9 Meaning of Data

	2 Fundamental Concepts
	3 Characteristics and Benefits of a Database
	3.1 Self-Describing Nature of a Database System
	3.2 Insulation between Program and Data
	3.3 Support multiple views of data
	3.4 Sharing of data and Multiuser system
	3.5 Control Data Redundancy
	3.6 Data Sharing
	3.7 Enforcing Integrity Constraints
	3.8 Restricting Unauthorised Access
	3.9 Data Independence
	3.10 Transaction Processing
	3.11 Providing multiple views of data
	3.12 Providing backup and recovery facilities
	3.13 Managing information

	4 Types of Database Models
	4.1 High-level Conceptual Data models
	4.1.1 Record-based Logical Data models

	5 Data Modelling
	5.1 Degree of Data Abstraction
	5.2 External models
	5.3 Conceptual model
	5.4 Internal model
	5.5 Physical model
	5.5.1 Data Abstraction Layer
	5.5.2 Schemas
	5.5.3 Logical and Physical Data Independence
	5.5.4 Logical data independence
	5.5.5 Physical data independence

	6 Classification of Database Systems
	6.1 Based on data model
	6.2 Based on the number of users
	6.3 Based on the ways database is distributed
	6.3.1 Centralized Systems
	6.3.2 Distributed database system
	6.3.3 Homogeneous distributed Database Systems
	6.3.4 Heterogeneous distributed Database Systems

	7 The Relational Data Model
	7.1 Fundamental concepts in Relational Data Model
	7.1.1 Relation
	7.1.2 Table
	7.1.3 Column
	7.1.4 Domain
	7.1.5 Records

	7.2 Degree
	7.3 Properties of Tables
	7.3.1 Terminology

	8 Entity Relationship Model
	8.1 Entity, Entity Set and Entity Type
	8.1.1 Types of Entities
	8.1.2 Attributes
	8.1.3 Types of Attributes
	8.1.4 Keys
	8.1.4.1 Candidate key
	8.1.4.2 Composite key
	8.1.4.3 Primary key
	8.1.4.4 Secondary key
	8.1.4.5 Alternate key
	8.1.4.6 Foreign key
	8.1.4.7 Nulls

	8.1.5 Entity Types
	8.1.5.1 Existence Dependency
	8.1.5.2 Weak Entities
	8.1.5.3 Strong Entities

	8.1.6 Relationships
	8.1.6.1 1:M relationship
	8.1.6.2 1:1 relationship
	8.1.6.3 1:1 Example:
	8.1.6.4 M:N relationships
	8.1.6.5 M:N relationships

	8.1.7 Unary Relationships (recursive)
	8.1.8 Ternary Relationships
	8.1.9 Relationship Strength

	9 Integrity Rules and Constraints
	9.1 Domain Integrity
	9.2 Referential integrity Examples
	9.3 Referential Integrity in MS Access
	9.4 Referential Integrity using Transact SQL (MS SQL Server)
	9.5 Foreign Key Rules
	9.5.1 Business Rules

	9.6 Cardinality
	9.6.1 Relationship Participation

	9.7 Optional
	9.8 Mandatory
	9.8.1 Relationship Types

	10 ER Modelling
	10.1 Relational Design and Redundancy
	10.2 Insertion anomaly
	10.3 Update anomaly
	10.4 Deletion anomaly

	11 Functional Dependencies
	11.1 Rules of Functional Dependencies
	11.2 Inference Rules
	11.2.1 Axiom of reflexivity
	11.2.2 Axiom of augmentation
	11.2.3 Axiom of transitivity

	11.3 Additional rules
	11.3.1 Union
	11.3.2 Decomposition

	11.4 Dependency Diagram

	12 Normalization
	12.1 Normal Forms
	12.1.1 School database
	12.1.1.1 Process for 1NF
	12.1.1.2 Update anomalies in 1st normal form

	12.2 2nd Normal Form
	12.2.1 Process for 2NF
	12.2.2 Update anomalies in 2nd normal form

	12.3 3rd Normal Form
	12.3.1 Remove Transitive Dependencies
	12.3.1.1 Update anomalies in 3rd normal form

	12.3.2 Boyce-Codd Normal Form (BCNF)
	12.3.3 BCNF Example 2
	12.3.3.1 Normalization and Database Design

	13 Database Development Process
	13.1 SDLC – Waterfall
	13.2 Database Life Cycle
	13.3 Requirements gathering
	13.4 Analysis
	13.5 Logical Design
	13.6 Implementation
	13.7 Realising the design
	13.8 Populating the database
	13.9 Guidelines For Developing An ER Diagram

	14 Database Users
	14.1 End users
	14.2 Application Programmers
	14.3 Database Administrators

