Nonprobability sampling refers to sampling techniques for which a person’s (or event’s or researcher’s focus’s) likelihood of being selected for membership in the sample is unknown. Because we don’t know the likelihood of selection, we don’t know with nonprobability samples whether a sample represents a larger population or not. But that’s OK, because representing the population is not the goal with nonprobability samples. That said, the fact that nonprobability samples do not represent a larger population does not mean that they are drawn arbitrarily or without any specific purpose in mind (once again, that would mean committing one of the errors of informal inquiry discussed in "Introduction"). In the following subsection, “Types of Nonprobability Samples,” we’ll take a closer look at the process of selecting research elements when drawing a nonprobability sample. But first, let’s consider why a researcher might choose to use a nonprobability sample.
So when are nonprobability samples ideal? One instance might be when we’re designing a research project. For example, if we’re conducting survey research, we may want to administer our survey to a few people who seem to resemble the folks we’re interested in studying in order to help work out kinks in the survey. We might also use a nonprobability sample at the early stages of a research project, if we’re conducting a pilot study or some exploratory research. This can be a quick way to gather some initial data and help us get some idea of the lay of the land before conducting a more extensive study. From these examples, we can see that nonprobability samples can be useful for setting up, framing, or beginning research. But it isn’t just early stage research that relies on and benefits from nonprobability sampling techniques.
Researchers also use nonprobability samples in full-blown research projects. These projects are usually qualitative in nature, where the researcher’s goal is in-depth, idiographic understanding rather than more general, nomothetic understanding. Evaluation researchers whose aim is to describe some very specific small group might use nonprobability sampling techniques, for example. Researchers interested in contributing to our theoretical understanding of some phenomenon might also collect data from nonprobability samples. Maren Klawiter (1999) 1 relied on a nonprobability sample for her study of the role that culture plays in shaping social change. Klawiter conducted participant observation in three very different breast cancer organizations to understand “the bodily dimensions of cultural production and collective action.” Her intensive study of these three organizations allowed Klawiter to deeply understand each organization’s “culture of action” and, subsequently, to critique and contribute to broader theories of social change and social movement organization. Thus researchers interested in contributing to social theories, by either expanding on them, modifying them, or poking holes in their propositions, may use nonprobability sampling techniques to seek out cases that seem anomalous in order to understand how theories can be improved.
In sum, there are a number and variety of instances in which the use of nonprobability samples makes sense. We’ll examine several specific types of nonprobability samples in the next subsection.
- 瀏覽次數:1806