You are here

How can I innovate?

7 September, 2015 - 12:02

It would be great if it were possible to describe systems innovation as a simple formula. However, this is not the case. Just as modern societies are open to differing views and ideas, there are many ways routes to innovation.

Sometimes, an existing issue or obstacle with a system prevents the achievement of a certain goal. Individuals may brainstorm solutions to this problem and a novel idea will emerge that provides a good fit for removing or minimizing the obstacle. In other cases, an individual who is unfamiliar with the obstacle may bring an entirely new perspective that leads to an innovative solution. For systems innovators, continuous exposure to new ideas on different topics can bring fresh perspectives to familiar issues, thereby triggering new ideas and insights.

Innovation also necessitates a careful balancing-act between risks versus rewards. Many new ideas promise a tremendous payoff and recognition. However, with increasing rewards often comes increasing risk. For example, introducing an entirely new information system to a company’s operations department may hold the promise of making inventory management more efficient, producing faster product availability, and increased sales. At the same time, the initial implementation of a new information system probably will cause disruption within an organization, perhaps in the form of requiring new processes or employee training. When undertaking an ambitious effort, it is essential that a systems innovator be aware of the potential downsides and risk factors that will undermine success if not adequately addressed. Complex systems often have unexpected consequences, some of which are likely to be undesirable. Failed innovations are not only time consuming but can be costly and a source of embarrassment for a would-be innovator.

While it may seem wise to take the safe route and focus on smaller, seemingly less risky projects, this may mean addressing small problems or introducing ideas that have a minimal impact on a system’s performance. For example, rather than addressing inventory management problems directly, simply upgrading the computers that run the inventory management without actually changing the software that manages the processes, might have a minimal impact on the core problems. In addition, systems projects can often grow in scope as the project progresses. What started as a small effort might uncover additional requirements or system dependencies, prompting a project that started out as a low risk to grow into a longer, larger, more risky endeavor. Systems innovators must balance the reward a potential innovation might provide with the risk that implementation or adoption of such an innovation may go awry.

In addition, systems innovators should appreciate the importance of appropriate timing. Sometimes innovations can be “ahead of it’s time” or “too late.” When designing innovations, it is important to consider environmental factors. An innovation must fit the needs of an organization, market, or society. An innovation introduced out of phase can undermine a system and other innovation efforts. Remember our earlier example of a systems innovator planning to design a new cell phone network for 500,000 subscribers. The systems innovator failed to take into account the requirement of future growth of the cell phone network to 2,000,000 individuals in five years. A skilled systems innovator would have planned for both the present and future of their designed system.

For our modern age, systems innovators can design and create innovation in ways previously unavailable. Innovators must insure that their envisioned innovations are appropriate to the environment of today and tomorrow. Through technology, there are new ways for individuals to combine ideas for entirely new outcomes. This “re-mix” age allows recombination of systems elements to produce results greater than the sum of the parts.