You are here

Wavelength, Frequency, and Pitch

22 July, 2019 - 10:18
Available under Creative Commons-ShareAlike 4.0 International License. Download for free at http://cnx.org/contents/2ad74b7b-a72f-42a9-a31b-7e75542e54bd@3.74

The aspect of evenly-spaced sound waves that really affects music theory is the spacing between the waves, the distance between, for example, one high point and the next high point. This is the wavelength, and it affects the pitch of the sound; the closer together the waves are, the higher the tone sounds.

All sound waves are travelling at about the same speed - the speed of sound. So waves with a shorter wavelength arrive (at your ear, for example) more often (frequently) than longer waves.

This aspect of a sound - how often a peak of a wave goes by, is called frequency by scientists and engineers. They measure it in hertz, which is how many peaks go by per second. People can hear sounds that range from about 20 to about 17,000 hertz.

: media/image111.png
Figure 3.4 Wavelength, Frequency, and Pitch
Since the sounds are travelling at about the same speed, the one with the shorter wavelength "waves" more frequently; it has a higher frequency, or pitch. In other words, it sounds higher. 

The word that musicians use for frequency is pitch. The shorter the wavelength, the higher the frequency, and the higher the pitch, of the sound. In other words, short waves sound high; long waves sound low. Instead of measuring frequencies, musicians name the pitches that they use most often. They might call a note "middle C" or "second line G" or "the F sharp in the bass clef". (See Octaves and Diatonic Music and Tuning Systems for more on naming specific frequencies.) These notes have frequencies (Have you heard of the "A 440" that is used as a tuning note?), but the actual frequency of a middle C can vary a little from one orchestra, piano, or performance, to another, so musicians usually find it more useful to talk about note names.

Most musicians cannot name the frequencies of any notes other than the tuning A (440 hertz).

The human ear can easily distinguish two pitches that are only one hertz apart when it hears them both, but it is the very rare musician who can hear specifically that a note is 442 hertz rather than 440. So why should we bother talking about frequency, when musicians usually don't? As we will see, the physics of sound waves - and especially frequency - affects the most basic aspects of music, including pitch, tuning, consonance and dissonance, harmony , and timbre.