You are here

Brass Instruments

22 July, 2019 - 10:18
Available under Creative Commons-ShareAlike 4.0 International License. Download for free at http://cnx.org/contents/2ad74b7b-a72f-42a9-a31b-7e75542e54bd@3.74

The harmonic series is particularly important for brass instruments. A pianist or xylophone player only gets one note from each key. A string player who wants a different note from a string holds the string tightly in a different place. This basically makes a vibrating string of a new length, with a new fundamental.

But a brass player, without changing the length of the instrument, gets different notes by actually playing the harmonics of the instrument. Woodwinds also do this, although not as much. Most woodwinds can get two different octaves with essentially the same fingering; the lower octave is the fundamental of the column of air inside the instrument at that fingering. The upper octave is the first harmonic.

Note: In some woodwinds, such as the clarinet, the upper "octave" may actually be the third harmonic rather than the second, which complicates the fingering patterns of these instruments. Please see Standing Waves and Wind Instruments for an explanation of this phenomenon.
 

It is the brass instruments that excel in getting different notes from the same length of tubing.

The sound of a brass instruments starts with vibrations of the player's lips. By vibrating the lips at different speeds, the player can cause a harmonic of the air column to sound instead of the fundamental. Thus a bugle player can play any note in the harmonic series of the instrument that falls within the player's range. Compare these well-known bugle calls to the harmonic series above.

: media/image162.png
Figure 4.41 Bugle Calls
Although limited by the fact that it can only play one harmonic series, the bugle can still play many well-known tunes. 

For centuries, all brass instruments were valveless. A brass instrument could play only the notes of one harmonic series. (An important exception was the trombone and its relatives, which can easily change their length and harmonic series using a slide.) The upper octaves of the series, where the notes are close enough together to play an interesting melody, were often difficult to play, and some of the harmonics sound quite out of tune to ears that expect equal temperament. The solution to these problems, once brass valves were perfected, was to add a few valves to the instrument; three is usually enough. Each valve opens an extra length of tube, making the instrument a little longer, and making available a whole new harmonic series. Usually one valve gives the harmonic series one half step lower than the valveless intrument; another, one whole step lower; and the third, one and a half steps lower. The valves can be used in combination, too, making even more harmonic series available. So a valved brass instrument can find, in the comfortable middle of its range (its middle register), a valve combination that will give a reasonably in-tune version for every note of the chromatic scale. (For more on the history of valved brass, see History of the French Horn. For more on how and why harmonics are produced in wind instruments, please see Standing Waves and Wind Instruments)

Note: Trombones still use a slide instead of valves to make their instrument longer. But the basic principle is still the same. At each slide "position", the instrument gets a new harmonic series. The notes in between the positions aren't part of the chromatic scale, so they are usually only used for special effects like glissandos (sliding notes).
 
media/image163.png
Figure 4.42 Overlapping Harmonic Series in Brass Instruments
These harmonic series are for a brass instrument that has a "C" fundamental when no valves are being used - for example, a C trumpet. Remember, there is an entire harmonic series for every fundamental, and any note can be a fundamental. You just have to find the brass tube with the right length. So a trumpet or tuba can get one harmonic series using no valves, another one a half step lower using one valve, another one a whole step lower using another valve, and so on. By the time all the combinations of valves are used, there is some way to get an in-tune version of every note they need. 

Exercise 4.17

Write the harmonic series for the instrument above when both the first and second valves are open. (You can use this PDF file if you need staff paper.) What new notes are added in the instrument's middle range? Are any notes still missing?

Note: The French horn has a reputation for being a "difficult" instrument to play. This is also because of the harmonic series. Most brass instruments play in the first few octaves of the harmonic series, where the notes are farther apart and it takes a pretty big difference in the mouth and lips (the embouchure, pronounced AHM-buh-sher) to get a different note. The range of the French horn is higher in the harmonic series, where the notes are closer together. So very small differences in the mouth and lips can mean the wrong harmonic comes out.