You are here

Controlling

8 September, 2015 - 10:52

One important function that needs to be performed within organizations is that of control, and managers are frequently charged with controlling certain organizational processes (or functions). Data, and information, are generally essential components for aiding control.

As an example, consider the task of managing an assembly line in a production facility. For the purposes of illustration, we’ll use the example of a production facility that assembles office chairs. The facility obtains parts from suppliers, assembles them into chairs, and releases the chairs to customers. The customers are distributors who then sell the chairs to the ultimate buyers (mostly larger companies that buy office chairs in bulk).

Note that for the moment, it isn’t important to distinguish who has the responsibility for ensuring that the assembly line uses resources efficiently in creating chairs that are of sufficiently high quality; it could be a shift manager, or it could be the employees working on the line. Either way, certain data need to be captured, and certain information created, in order to control the operations of the assembly line.

To be more specific, assume that a decision has been reached to keep track of each part (chair back, right chair arm, etc.) that is used as input; this is accomplished by ensuring that each part has a UPC (Universal Product Code) bar- code affixed to it when it is received from a supplier, and each part’s bar-code is scanned by a bar-code reader before being used in a chair’s assembly. When a part is scanned, the information contained on the bar-code is copied and stored in a production database. In addition, as each part is added to the chair moving through the assembly line, a record is kept (in the database) of the time at which the part was scanned. When the chair has been completely assembled, it is placed inside a plastic bag, and either a UPC bar-code or an RFID (radio-frequency identification) tag is attached (depending on the needs of the customer). The bar-code is then scanned (or the RFID tag is read by an RFID reader), which records the time at which the chair was completely assembled and ready for storage (or shipment). This record is also added to the production database.

One way of using data to control this process is to constantly monitor the length of time it takes from when the UPC bar-code for the first part is scanned to when the bar-code (or RFID tag) for the assembled chair is scanned. By recording this information over a period of time, it is possible to obtain a distribution of observations (e.g., the mean [average] length of time taken to assemble a chair is 15 minutes, and the standard deviation is 1.5 minutes). Using this information, it would be possible to write a computer program to monitor the times taken as each chair is produced, and notify someone if the time taken is excessively long or unusually short. Note that a person (or group of people) would determine the rule for identifying exceptions (based on past experience), and the software would be programmed to enforce the rule.

Using this approach, a shift manager could be alerted, for example, when a chair takes longer than normal to be assembled. The shift manager could then investigate possible reasons for the delay (e.g., a temporary delay occurred when there were several defective left chair arms in a pallet; the immediate supply of left chair arms was depleted faster than the right chair arms, and a fork-lift truck had to be sent to the parts storage area to retrieve another pallet of left chair arms). As a result of this delay, the shift manager might institute or revise a policy to reduce the possibility of a similar delay occurring in the future.

Note that the scenario described above is only one of many possibilities of how this business process might be designed and controlled, and hence how an information system could be designed to support it. For example, an alternative would be to have the employees on the assembly line responsible for controlling the assembly process. Instead of notifying someone of the time taken after a chair has been completely assembled, it would be possible to compare the time from the start of assembling a chair until each part is scanned, and therefore it would be possible to know much sooner if a problem is occurring. As a general rule, the business process should be designed first, and then the information system should be designed to best support the process.