You are here

First-order equivalences

26 July, 2019 - 12:03
Available under Creative Commons-ShareAlike 4.0 International License. Download for free at http://cnx.org/contents/383d4b87-2d7b-454e-99fe-2eaa43eae8ff@20.20

The following equivalences are in addition to those of propositional logic (Propositional equivalences). In these, φ and ψ each stand for any WFF, but θ stands for any WFFwith no free occurrences of x .

Equivalence

∀ Variant

∃ Variant

Table 6.3 First-order Logic Equivalences

Complementation of Quantifiers

x : (¬φ) ≡ ¬∃x : (φ)

x : (¬φ) ≡ ¬∀x : (φ)

Interchanging Quantifiers

x : (∀y : (φ)) ≡ ∀y : (∀x : (φ))

x : (∃y : (φ)) ≡ ∃y : (∃x : (φ))

Distribution of Quantifiers

x : (φψ) ≡ ∀x : (φ) ∧ ∀x : (ψ)

x : (φψ) ≡ ∃x : (φ) ∨ ∃x : (ψ)

x : (φθ) ≡ ∀x : (φ) ∨ θ

x : (φθ) ≡ ∃x : (φ) ∧ θ

x : (φθ) ≡ ∃x : (φ) ⇒ θ

 

x : (θφ) ≡ θ ⇒ ∀x : (φ)

Distribution of Quantifiers − − − with non-empty domain

x : (φθ) ≡ ∀x : (φ) ∧ θ

x : (φθ) ≡ ∃x : (φ) ∨ θ

 

x : (φθ) ≡ ∀x : (φ) ⇒ θ

x : (θφ) ≡ θ ⇒ ∃x : (φ)

Renaming

x : (φ) ≡ ∀y : (φ [xy])

x : (φ) ≡ ∃y : (φ [xy])

Simplification of Quantifiers − − − with non-empty domain

x : (θ) ≡ θ

x : (θ) ≡ θ

Simplification of Quantifiers − − − with empty domain

x : (φ) ≡ true

x : (φ) ≡ false

 

When citing Distribution of Quantifiers, say what you're distributing over what: e.g., " distribute ∀ over ∨ (with θ being x-free) ".

In renaming, the notation φ [xy] means " φ with each free occurrence of x replaced by y ". It is a meta-formula; when writing any particular formula you don't write any brackets, and instead just do the replacement.

This set of equivalences isn't actually quite complete. For instance, \exists x(\forall y:(R(x,y)))\Rightarrow \forall y:(\exists x:(R(x,y))) is equivalent to true, but we can't show it using only the rules above. It does become complete5 if we add some analogs of the First-order inference rule, replacing \vdash with ⇒ (and carrying along their baggage of "arbitrary" and "free-to-substitute-in").