You are here

The Ear

16 February, 2016 - 09:24

Just as the eye detects light waves, the ear detects sound waves. Vibrating objects (such as the human vocal chords or guitar strings) cause air molecules to bump into each other and produce sound waves, which travel from their source as peaks and valleys much like the ripples that expand outward when a stone is tossed into a pond. Unlike light waves, which can travel in a vacuum, sound waves are carried within mediums such as air, water, or metal, and it is the changes in pressure associated with these mediums that the ear detects.

As with light waves, we detect both the wavelength and the amplitude of sound waves. The wavelength of the sound wave (known as frequency) is measured in terms of the number of waves that arrive per second and determines our perception of pitch, the perceived frequency of a sound. Longer sound waves have lower frequency and produce a lower pitch, whereas shorter waves have higher frequency and a higher pitch.

The amplitude, or height of the sound wave, determines how much energy it contains and is perceived as loudness (the degree of sound volume). Larger waves are perceived as louder. Loudness is measured using the unit of relative loudness known as the decibel. Zero decibels represent the absolute threshold for human hearing, below which we cannot hear a sound. Each increase in 10 decibels represents a tenfold increase in the loudness of the sound (see Figure 4.13). The sound of a typical conversation (about 60 decibels) is 1,000 times louder than the sound of a faint whisper (30 decibels), whereas the sound of a jackhammer (130 decibels) is 10 billion times louder than the whisper.

media/image24.png
Figure 4.13 Sounds in Everyday Life 
The human ear can comfortably hear sounds up to 80 decibels. Prolonged exposure to sounds above 80 decibels can cause hearing loss. 
 

Audition begins in the pinna, the external and visible part of the ear, which is shaped like a funnel to draw in sound waves and guide them into the auditory canal. At the end of the canal, the sound waves strike the tightly stretched, highly sensitive membrane known as the tympanic membrane (or eardrum), which vibrates with the waves. The resulting vibrations are relayed into the middle ear through three tiny bones, known as the ossicles—the hammer (or malleus), anvil (or incus), and stirrup (or stapes)—to the cochlea, a snail-shaped liquid-filled tube in the inner ear. The vibrations cause the oval window, the membrane covering the opening of the cochlea, to vibrate, disturbing the fluid inside the cochlea.

The movements of the fluid in the cochlea bend the hair cells of the inner ear, much in the same way that a gust of wind bends over wheat stalks in a field. The movements of the hair cells trigger nerve impulses in the attached neurons, which are sent to the auditory nerve and then to the auditory cortex in the brain. The cochlea contains about 16,000 hair cells, each of which holds a bundle of fibers known as cilia on its tip. The cilia are so sensitive that they can detect a movement that pushes them the width of a single atom. To put things in perspective, cilia swaying at the width of an atom is equivalent to the tip of the Eiffel Tower swaying by half an inch (Corey et al., 2004). 1

media/image25.png
Figure 4.14 The Human Ear
Sound waves enter the outer ear and are transmitted through the auditory canal to the eardrum. The resulting vibrations are moved by the three small ossicles into the cochlea, where they are detected by hair cells and sent to the auditory nerve.

Although loudness is directly determined by the number of hair cells that are vibrating, two different mechanisms are used to detect pitch. The frequency theory of hearing proposes that whatever the pitch of a sound wave, nerve impulses of a corresponding frequency will be sent to the auditory nerve. For example, a tone measuring 600 hertz will be transduced into 600 nerve impulses a second. This theory has a problem with high-pitched sounds, however, because the neurons cannot fire fast enough. To reach the necessary speed, the neurons work together in a sort of volley system in which different neurons fire in sequence, allowing us to detect sounds up to about 4,000 hertz.

Not only is frequency important, but location is critical as well. The cochlea relays information about the specific area, or place, in the cochlea that is most activated by the incoming sound.

The place theory of hearing proposes that different areas of the cochlea respond to different frequencies. Higher tones excite areas closest to the opening of the cochlea (near the oval window). Lower tones excite areas near the narrow tip of the cochlea, at the opposite end. Pitch is therefore determined in part by the area of the cochlea firing the most frequently.

Just as having two eyes in slightly different positions allows us to perceive depth, so the fact that the ears are placed on either side of the head enables us to benefit from stereophonic, or three- dimensional, hearing. If a sound occurs on your left side, the left ear will receive the sound slightly sooner than the right ear, and the sound it receives will be more intense, allowing you to quickly determine the location of the sound. Although the distance between our two ears is only about 6 inches, and sound waves travel at 750 miles an hour, the time and intensity differences are easily detected (Middlebrooks & Green, 1991). 2 When a sound is equidistant from both ears, such as when it is directly in front, behind, beneath or overhead, we have more difficulty pinpointing its location. It is for this reason that dogs (and people, too) tend to cock their heads when trying to pinpoint a sound, so that the ears receive slightly different signals.