You are here

Data collection strategies

15 January, 2016 - 09:25

The OEE calculations should be based on correct input parameters from the production system as reported by Ericsson1. Data acquisition strategies range from very manual to very automated. The manual data collection method consists of a paper template, where the operators fill in the cause and duration of a breakdown and provide comments about minor stoppages and speed losses. It is a low-tech approach. On the contrary a high-tech approach runs through an automatic OEE calculation system that is governed by sensors connected to the equipment, automatically registering the start time and duration of a stoppage and prompting the operator to provide the system with information about the downtime cause. An automatic approach usually provides opportunities to set up lists of downtime causes, scheduling the available operating time and making an automatic OEE calculation for a time period. A variety of reports of production performance and visualization of the performance results are even possible to retrieve from the system.

Two approaches have to be compared through opportunity and cost both, in a quantitative as well as in a qualitative way. Regarding cost, the main figures in case of the manual approach are derived from the hourly wage cost of operators multiplied by time spent to register data on paper templates, feed them into a computer system and for generating reports and performing OEE calculations. In case of the automatic approach cost concerns a yearly license cost for an automatic OEE calculation system together with an investment cost for hardware. The introduction of both the manual and automatic data collection methods must be preceded and then associated with training of the operators on OEE as a performance measure, and on different parameters affecting the OEE outcome. The purpose of training the operators was twofold:

  1. The quality of the input data is likely to increase in alignment with an increase in the competence of the staff;
  2. The involvement of the operators in identifying performance loss factors is likely to create a better engagement for providing the system with accurate information.

Another issue to overcome is the balance between the efforts of providing adequate information in relation to the level of detail needed in the improvement process. In fact if a critical success factor in an improvement project driven by OEE is the retrieval of detailed information about production losses, however not all the improvement projects require a higher and really expensive data precision.

Generally there are many companies in which manual data collection is convenient. In other companies where each operator is responsible for a number of processing machines, timely and accurate data collection can be very challenging and a key goal should be fast and efficient data collection, with data put it to use throughout the day and in real-time, a more desirable approach would be realized if each machine could indicate data by itself.

An automatic OEE data recording implies:

  • better accuracy;
  • less labor;
  • traceability;
  • integrated reporting and analysis;
  • immediate corrective action;
  • motivation for operators.

In any case the implementation of data collection for OEE has limited value if it is not integrated in a continuous work procedure, as a part of the improvement initiative. Daily meeting and sharing information both cross-functionally and bottom-up in the organization hierarchy become a prerequisite. As well as it is useful integrating OEE into an automated management system. OEE can be applied when using a total manufacturing information system providing the detailed historical information that allows thorough diagnoses and improvement plans but more importantly it gives the summary signals.