You are here

Changes in Productivity

15 January, 2016 - 09:36

Suppose that this simple economy is indeed operating efficiently, with worker A in job 2 and worker B in job 1. Then imagine that the productivity of one of these matches changes. For example, suppose that at some point worker B goes on a training course for job 2, so becomes .

Table 8.2 Revised Output Level per Hour from Assigning Jobs

Worker

Job 1

Job 2

A

9

6

B

8

7

If you compare these two tables, you can see that worker B is now more productive than worker A in job 2. Worker A is still better at job 1, as before.

If we want to produce the maximum amount of output in this economy, we now want to switch the workers around: if worker A does job 1 and worker B does job 2, then the economy can produce 16 units of output per day instead of 14.

How might this change happen in practice? Here are three scenarios.

  1. Instantaneous reallocation.In this case, the labor market is very fluid. Workers A and B trade places as soon as B becomes more productive. No one is unemployed, and real gross domestic product (real GDP) increases immediately.
  2. Stagnant labor market.This scenario is the opposite of the first. Here, there is no reallocation at all. People are stuck in their jobs forever. In this case, worker B remains assigned to job 1, and worker A remains assigned to job 2. Although this was the best assignment of jobs when described the economy, it is not the best assignment for . Relative to the better assignment, the economy loses 2 units of GDP every day.
  3. Frictional unemployment.This scenario lies between these two extremes: workers and firms adjust but not instantaneously. How might workers A and B exchange jobs? One possibility is that worker A is fired from job 2 because the firm wants to attract worker B to the job instead. At the same time, worker B might quit in the hope of getting job 1 when it is vacant. Both workers move from employment into unemployment, as in the arrow from employment to unemployment in . During the time when workers A and B are unemployed, their production is reduced to zero. So, during the period of adjustment, the economy in the third scenario undergoes a recession. But once adjustments are made, the economy is much more productive than before. Economists refer to the unemployment that occurs when workers are moving between jobs as frictional unemployment.

How do these three scenarios compare? It is evident that fluid labor markets are the ideal scenario. In this situation, there is no lost output due to unemployment, and the economy is always operating in the most efficient manner. The choice between the second and third scenarios is not so clear-cut. In the second scenario, there is no loss of output from unemployment, but the assignment of workers to jobs is not efficient. In the third scenario, the economy eventually gets back to the most efficient assignment of jobs, but at the cost of some lost output and unemployment (and, in the real world, various other costs of transition incurred by workers and firms).

You can think of the time spent in unemployment in the second scenario as a type of investment. The economy forgoes some output in the short run to enjoy a more efficient match of workers and firms in the long run. As with any investment decision, we decide if it is worthwhile by comparing the immediate cost (the first four weeks of lost output) with the discounted present value of the future flow of benefits. Discounted present value is a technique that allows us to add together the value of dollars received at different times.

Toolkit:

Discounted present value is a technique for adding together flows at different times. If you are interested in more detail, review the toolkit.

Suppose, for example, that it takes four weeks for the economy to reallocate the jobs in the third scenario. Assuming the workweek has 5 working days, the economy produces 0 output instead of 14 units of output for a total of 20 days. The total amount of lost output is 20 × 14 = 280. Once the workers have found their new jobs, the economy produces 10 more units per week than previously. After 28 weeks, this extra output equals the 280 lost units. If we could just add together output this month and output next month, we could conclude that this investment pays off for the economy after 28 weeks. Because output produced in the future is worth less than output today, it will actually take a bit longer than 28 weeks for the investment to be worthwhile.

Provided that changes to the relative productivity of workers do not occur too frequently, the costs of adjusting the assignment of workers to jobs (the spells of unemployment) will be more than offset by the extra output obtained by putting workers into the right jobs. This is the gain from a fluid labor market, even though the process entails spells of unemployment.